
On Modeling and Evaluation of Logic Circuits
Under Timing Variations

Mehdi Dehbashi∗
∗Institute of Computer Science

University of Bremen
28359 Bremen, Germany

dehbashi@informatik.uni-bremen.de

Görschwin Fey∗†
†Institute of Space Systems
German Aerospace Center
28359 Bremen, Germany

goerschwin.fey@dlr.de

Kaushik Roy‡, Anand Raghunathan‡
‡School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907, USA
{kaushik, raghunathan}@purdue.edu

Abstract—This paper presents a methodology to model and
analyze the functional behavior of logic circuits under timing
variations. In the framework, first a Time Accurate Model (TAM)
of the circuit is constructed. The TAM represents the behavior
of the circuit in the functional domain under a discrete time
model. Afterwards, Variation Logic is inserted to apply the timing
variations. Moreover, the circuit TAM is enhanced by Time
Control (TC) logic to model the circuit frequency. We apply the
proposed methodology to analyze a circuit or an approximate
circuit under timing variations as well as to analyze a circuit
under timing-induced errors for approximate computing.

Keywords—logic circuits, timing variations, formal verification

I. INTRODUCTION

As Integrated Circuit (IC) technology continues to scale
down, variability is recognized to be a major challenge in an-
alyzing the circuits. In this case, delay deviations are imposed
by process variations such as uncertainty in the parameters
of fabricated devices and interconnects, and by environmental
variations such as temperature and voltage [1] [2] [3].

Recently, there is a range of works that considers timing
analysis of circuits under variations. A survey of the works
focusing on Statistical Static Timing Analysis (SSTA) is given
in [1]. The statistically-critical paths under process variations
are extracted by a bound-based method in [4]. The extracted
paths have the highest probability to fail the timing constraint.
The effects of process variations on the delays of logic gates
and timing errors are analyzed in [2] [5] [3]. Timing error
detection and correction has been proposed as an approach to
bridge the gap between typical case and worst case design, by
allowing circuits to operate without any margins [6] [7]. The
work in [8] presents a framework to evaluate how microarchi-
tectural techniques can trade off variation-induced errors for
power and processor frequency.

On the other hand, in the recent years, significant progress
in areas such as approximate and probabilistic computing
has been achieved. Computations typically addressed in these
areas focus on good enough or bounded results but not nec-
essarily exact results [9]. In these techniques, the requirement
of exact numerical or Boolean equivalence is relaxed to yield
performance or energy efficiency [10] [11] [12].

An approximate implementation of a circuit does not exactly
match the specification because of timing-induced errors or
functional approximations [9]. Timing-induced errors can be
produced by voltage over-scaling or overclocking.

Systematic synthesis of approximate circuits is exploited in
[13] [14] [15] to reduce circuit area and delay as well as to
increase yield. The work in [16] develops a logic optimization
procedure that utilizes multi-Vt (threshold voltage) libraries
to optimize a circuit for higher frequency and throughput
under timing error detection and correction. The work in [17]

This work has been funded in part by the German Research Foundation
(DFG, grant no. FE 797/6-1).

uses a power-aware slack redistribution that shifts the timing
slack of frequently-excercised, near-critical timing paths in a
power- and area-efficient manner. The work in [18] presents an
Error-Resilient System Architecture (ERSA) which combines
unreliable cores with a small fraction of reliable processor
cores for running system software, controlling application
flow, and recovering from errors generated on unreliable
cores. Scalable effort hardware design is proposed in [19]
to identify mechanisms at each level of design abstraction
(circuit, architecture, and algorithm) which can be used to vary
the computational effort expended for generating the exact
results. These scaling mechanisms are utilized to improve
energy efficiency while maintaining an acceptable result.

A systematic methodology for the modeling and analysis
of circuits for approximate computing is proposed in [12].
The methodology is utilized to analyze a circuit under timing-
induced approximations as well as functional approximations
using multiple metrics. However, timing variations are not con-
sidered. Since variations can significantly perturb the timing
of various paths in a circuit, it is natural to expect that they
will also significantly impact which paths fail under timing-
induced approximations, and therefore, the functional behavior
of approximate circuits. For this purpose considering the tim-
ing behavior of variations during the analysis of approximate
circuits is essential.

In this paper, we propose a unified framework that can be
used to analyze how a circuit behaves under timing variations,
how a circuit behaves under timing-induced approximations,
and how an approximate circuit behaves under timing vari-
ations. By considering the functional domain, our approach
is complementary to SSTA. In the approach, we first convert
the timing behavior of a circuit into the functional domain
according to a time unit model. The newly constructed circuit
is called the Time Accurate Model (TAM) of the circuit. The
TAM represents the functional behavior of the circuit with
respect to the circuit delay and a precision of an arbitrarily
fine-grained but discrete time unit. Afterwards, Variation Logic
(VL) is inserted in the TAM to apply the timing variation.
The VL is applied at each gate. The cumulative slowdown
or speedup normalized to a time unit may affect the correct
behavior of the circuit. The behavior of the VL is determined
by a Variation Control (VC) component. Moreover, the circuit
is enhanced by Time Control (TC) logic. TC is a flexible model
to control the frequency at the inputs. TC models timing-
induced approximations like overclocking. We use Boolean
Satisfiability (SAT) as an underlying reasoning engine to
analyze the circuits.

The rest of this paper is organized as follows. Section II
introduces preliminary information. Section III describes our
approach to construct the TAM, to insert VL, and to enhance a
circuit by TC and VC. Then, experimental results on arithmetic
units are presented in Section IV. Section V concludes the
work.

Gate Level

TAM + VL

RTLCell Library

 Delay Library

Freq. Range

 Timing Variation

(D)

Fig. 1. Overview of proposed methodology

II. PRELIMINARIES

A. Timing Parameters
Delay of a component in a circuit is the amount of time

that a signal needs to propagate from the component inputs to
its outputs. A change of the component delay is called timing
variation. Timing variation may increase the component delay
called slowdown, or may decrease the component delay called
speedup.

We consider a time unit which is an arbitrarily fine-grained
but discrete unit of delay. The delays of gates and interconnects
are assumed to be an integer multiple of one time unit1. In a
circuit where the shortest path delay is Ds time units, and
the longest path delay is Dl time units, the current output Ot

depends on the inputs of It−Ds
, It−Ds−1, . . . , It−Dl

where
indices denote the times of input with a step of one time unit.
Each index is also called time step.

A clock period is defined as T time units. In synchronous
circuits, the input to the combinational logic changes only once
every clock cycle. Clock cycles denote the times of inputs with
a step of one clock period. If the circuit has a clock period
of T , the output at time step t depends on the inputs of the
following clock cycles:

∀i, a ≤ i ≤ b : [It−iT−1, . . . , It−(i+1)T] (1)

a = dDs/T e − 1 , b = dDl/T e − 1

This formula partitions the times of input according to the
clock period T such that in each clock cycle, the inputs are
assumed to be fixed. For example, when Ds = 1, Dl = 5,
T = 5, Ot depends on input values from time steps that fall
within the previous clock cycle [It−1, It−2, It−3, It−4, It−5],
and in this clock cycle, the inputs do not change: It−1 =
It−2 = It−3 = It−4 = It−5. When T = 2, Ot depends on
input values from time steps that fall within the following
clock cycles: [It−1, It−2], [It−3, It−4], [It−5, It−6]. Overall,
when T < Dl, the clock is overscaled, i.e., the current output
depends on the inputs of multiple previous clock cycles. This
case is also called overclocking. We note that, for our purpose,
voltage overscaling has the same effect as overclocking, since
the delays of the gates will be scaled up based on the lower
voltage, while the clock period remains the same.

When the clock is overscaled, the longer paths fail because
the input does not have enough time to propagate to the output.
In this case, the current output result depends not only on the

1At the end of Section III-C, we discuss how more complex timing models
can be handled by our approach.

DDt l

I

sDt
I

t
O

O
0
T
I

Fig. 2. Overall model created by the framework

2 1 1

1
w

g

2
1

Fig. 3. Converting original gates and wires to untimed gates and wires

input of one previous clock cycle but also on the inputs of
multiple previous clock cycles. The "older" inputs (the inputs
of the clock cycles more distant from current time t) influence
the output through longer paths and the "newer" inputs (the
inputs of the clock cycles closer to the current time t) affect
the output through shorter paths.

III. METHODOLOGY

The fine-grained timing behavior of a circuit is converted
into the functional domain. Having the behavior of a circuit
according to a fine-grained time unit allows us to utilize it for
modeling races, glitches, etc. The fine-grained timing model is
also utilized to control and to modify the frequency of a circuit
during our analysis. This fine-grained timing model of the
circuit is called Time Accurate Model (TAM). When the timing
behavior of a circuit is available in the functional domain,
formal verification methods can comprehensively analyze the
timing effects of the circuit.

Figure 1 shows the overview of our approach. Firstly, the
gate level circuit (synthesized netlist) is generated according
to a cell library. Afterwards, the TAM engine creates the time
accurate model of the circuit which models the fine-grained
timing behavior of a circuit in the functional domain. The
TAM is generated according to a fine-grained time unit. The
time unit specifies the granularity of the analysis. The delays
of all gates in the circuit are normalized according to the time
unit. Variation logic (VL) is inserted in the TAM according to
the maximum timing variation (D).

In the final step, Time Control (TC) and Variation Control
(VC) are added. TC includes some constraints on the inputs
to control the clock period according to Formula 1. VC is a
constraint to control the timing variation. By this, the model
can be used to analyze a circuit with respect to different
frequencies.

Figure 2 shows the overall model created by our framework
for the analysis. The main components of the model are:
TAM and VL, TC, VC. Also the model includes two side
components: spec and miter. These two components serve
different tasks in different applications. Spec can be a golden
specification or golden properties of the ideal circuit behavior.
Miter measures the deviation of the circuit output result against
its specification. Here, we use a SAT solver as an underlying
engine to measure the deviations.

By using our framework, a designer can answer the follow-
ing questions while varying the frequency:

a

b c

d

e

1

1

1

1

1 tc

1 td

2 tc

2 ta

3 tb

2 tb

t
e

1

1

1

1

1 tc

1 td

2 tc

2 ta

3 tb

2 tb

t
e

1

0

d

t
e 1

1

0

1

0

1

0

d

t
c 2

d

t
c 3

d

t
d 2

(b)

(c) (d)

1

1

a

b c

d

1
e

(a)

t

 t-1

 t-2

 t-3

t

 t-1

 t-2

 t-3

 t-4

1

1

1

1

d

t
e 1

d

t
c 3

d

t
c 2

d

t
b 3

d

t
b 4

d

t
a 3 d

t
d 2

Fig. 4. (a) Original circuit and original gates (b) Untimed circuit and untimed gates (c) TAM circuit and TAM gates (d) TAM and VL

1 f u n c t i o n TAM(In : untimed circuit, Out : TAM circuit)
2 time = 0
3 SIG = PO
4 whi le SIG 6= ∅ do
5 {
6 SIG_temp = ∅
7 foreach sig ∈ SIG do
8 {
9 gate = predecessor(sig)

10 copy(gate, it−time−1, ot−time)
11
12 foreach input ∈ I(gate) do
13 i f input /∈ SIG_temp and input /∈ PI then
14 SIG_temp = SIG_temp ∪ input
15 }
16 SIG = SIG_temp
17 time + +
18 }
19 end f u n c t i o n

Fig. 5. Creation of Time Accurate Model

- How does a circuit behave under timing variations?
- How does a circuit behave under timing-induced approx-

imations, i.e., under overclocking?
- How does an approximate circuit (overclocked circuit)

behave under timing variations?
In the following, Section III-A describes how the TAM of

a circuit and its VL are created. The TC and VC components
are explained in Section III-B. Section III-C discusses how
speedup variations are considered in our framework.

A. TAM Engine
The TAM algorithm was inspired from the algorithm pre-

sented in [12]. However, there are key differences necessitated
by the need to handle variations - we consider a fine-grained
time unit and also the variation logic is added into the model.

The underlying idea is that a signal st represents a signal
s of the original circuit at time step t. In the TAM engine,
first the delays of the original gates and wires are converted
into the functional domain according to the chosen time unit.
An original gate g with delay n is converted to n successive
untimed gates: (g, Bufn−1, . . . , Buf1) modelling the n time
steps required to propagate a value from the input of g to the
output of g (Figure 3(a)). The equivalent untimed gates show
the behavior of the original gate with an accuracy of one time
unit. Also a wire w with delay n is converted to n successive
buffers: (Bufn, . . . , Buf1) (Figure 3(b)). The circuit with the
untimed gates and wires is called the untimed circuit. In [20],
untimed gates are used for ATPG of crosstalk faults.

After untiming the original gates and wires, the second step
of the TAM engine starts to convert the timing behavior of the
overall circuit into the functional domain. Figure 5 describes
the algorithm in pseudo code. The input data of this algorithm
is an untimed circuit. For each gate the algorithm creates as
many copies as values of the gate at different time steps may
be relevant to determine the output.

The algorithm starts from Primary Outputs (PO) and tra-
verses the untimed circuit graph backward (line 3). Given the
delay of one time unit at each gate in the untimed circuit, the
output of an untimed gate depends on its corresponding inputs
one time step ago. These inputs are given by the predecessor
node of the output in the untimed circuit graph (line 9). Given
the output and its driving inputs, a new gate is created in
which the output and the inputs have the timing difference
of one time unit (line 10). The newly created gates are called
TAM gates and constitute a new circuit called the TAM circuit.
The inputs of the current untimed gates are collected in the
set SIG_temp to be used for the next backward traversal step
(lines 12-14). If the input is a Primary Input (PI) or already
exists in the set SIG_temp (fanout case), it will not be added
to the set SIG_temp (line 13).

We explain the algorithm using the example original circuit
of Figure 4(a). For sake of simplicity, the delays of original
gates are considered to be 1. Therefore, the untimed circuit
(Figure 4(b)) is the same as the original circuit. In the first
step, the algorithm starts from primary output e and copies
the OR gate: OR(ct−1, dt−1, et). The copied gates (TAM
gates) are shown in Figure 4(c). The dotted lines visualize
the time steps. SIG_temp = {c, d} is created. The second
step is backward traversal of the untimed circuit from c and
d. The NOT and AND gates are copied: NOT (bt−2, ct−1),
AND(at−2, ct−2, dt−1). Having SIG_temp = {c}, the
third step starts and copies the NOT gate: NOT (bt−3, ct−2).
As explained in Section II-A, Ot depends on the inputs of
It−Ds , It−Ds−1, . . . , It−Dl

where Ds = 2 and Dl = 3 in this
example.

For investigating the behavior of a circuit under timing
variations, the Variation Logic (VL) is inserted in the TAM.
The VL models the slowdown of a signal by d time units.
The slowdown is modeled for each gate independently by
activating the select line of the variation multiplexer of the
corresponding gate. Therefore, in addition to the value of a
signal in the corresponding time, the value of the signal d

(a)

t

 t-1

 t-2

 t-3

 t-4

1d

2d

(b)

 t+2

 t+1

 t

 t-1

 t-2

1s

2s

(c)

 t+1

 t

 t-1

 t-2

 t-3

Miter

Miter

Miter

1d

2d

2s
1s

1d

1s
1d

1s0d

2d

0s

2s

i

i

i

Fig. 6. (a) Slowdown (b) Speedup (c) Slowdown and Speedup

1 f u n c t i o n TAM + V L()
2 time = 0
3 SIG = PO
4 whi le SIG 6= ∅ do
5 {
6 SIG_temp = ∅
7 foreach sig ∈ SIG do
8 {
9 gate = predecessor(sig)

10 f o r 0 ≤ d ≤ D do
11 copy(gated, it−time−1−d, ot−time−d)
12
13 i f sig is Original_Gate_Output then
14 f o r 0 ≤ d < D do
15 Insert_V ariation_Muxd(in : gated, · · · , gateD)
16
17 foreach input ∈ I(gate) do
18 i f input /∈ SIG_temp and input /∈ PI then
19 SIG_temp = SIG_temp ∪ input
20 }
21 SIG = SIG_temp
22 time + +
23 }
24 end f u n c t i o n

Fig. 7. TAM + VL

time steps ago is also needed. Figure 7 describes this algorithm
which extends the algorithm of Figure 5.

In lines 10-11 of Figure 7, when d = 0, the gate related
to the corresponding time is copied. This gate is called
TAM gate. After that, the behavior of the gate up to d time
steps ago is also copied (lines 10-11, when d 6= 0). These
gates are called slowdown gates. Parameter d is limited by
a maximum timing variation D specified by the user. Given
a TAM gate (gate0) and its corresponding slowdown gates
(gate1, · · · , gateD), a variation multiplexer is added (lines 14-
15). The variation multiplexer can skew the normal behavior of
a gate by a slowdown up to D time units. The timing variation
of each original gate is modeled by its corresponding variation
multiplexers (line 13). Additional slowdown in the input cone
of slowdown gates may accumulate to an overall slowdown
up to D time units (lines 14-15, when d 6= 0).

Figure 4(d) shows the circuit generated by the algorithm
where D = 1. The dashed gates are the slowdown gates. For
each original gate, one variation multiplexer is inserted at the
output of its corresponding TAM gate. A variation multiplexer
either selects the normal behavior of a signal or the signal
value one time step ago.

Overall, the generated circuit is formulated as follows:

Φ = C(IN(t)) ·
D∏

d=1

Cd(IN(t− d)) · S (2)

IN(t) : It−Ds
, It−Ds−1, . . . , It−Dl

Φ has three main parts: TAM circuit (C), slowdown circuit

(Cd), and variation multiplexers (S). The parts S and Cd

together are called variation logic.
The size of the TAM depends on the topology and the delay

of reconverging paths of the original circuit. In the worst case,
the size of the TAM may be exponentially larger than the
original circuit.

B. Time Control (TC) and Variation Control (VC)
Frequency and clock period are denoted by f and T ,

respectively (f = 1/T). The task of the TC is applying a
clock period T on the inputs with the accuracy of one time
unit. According to Formula 1, inputs are constrained to have
a constant value throughout each clock cycle.

The task of the VC is controlling the select lines of the
variation multiplexers. The VC applies the maximum timing
variation by the following constraint:

n∑
i=1

si ≤ D (3)

where si denotes the integer value of the select lines related
to one variation multiplexer.

Alternative constraints can also be added to model more
complex variations. For example to apply and to control block-
based variation models [1], variations of each region can
be controlled by a constraint. In a hierarchical manner, the
variations of different regions in each level of hierarchy (like
quadtree partitioning [21]) can be correlated by additional
constraints in each level.

Our approach can also be extended to consider clock skew.
This can be done by adding some units for the delay of the
clock network and the sequential elements.

Our model is a conservative model in the sense that it
overapproximates slowdown induced under timing variations.
The model allows timing variations to be activated indepen-
dently in every location of a circuit. The model can be used to
evaluate the worst case of a circuit functional deviation under
timing variations. Here, a SAT solver is used to compute the
maximum or the worst-case error under induced variations.

C. Slowdown versus Speedup
In the previous sections, we showed how the slowdown

induced under timing variations is modeled. Here, we discuss
how to analyze a circuit under slowdown, speedup or both.

We consider an original gate g having a specified delay n
where its maximum slowdown and maximum speedup are y
and x, respectively. The total timing variation is D = x + y.
Therefore, the delay value of an original gate is bounded: n−
x ≤ Gate_Delay ≤ n + y.

When x = 0 and y > 0, the algorithm of Figure 7 is invoked
to apply the slowdowns. Figure 6(a) shows an example path

Fig. 8. Transition monitoring

and a gate with x = 0 and y = 2 such that the paths including
the slowdown gates are denoted by d1 and d2. The variation
multiplexer can skew the normal behavior (d0) by selecting a
slowdown of one time unit (d1) or a slowdown of two time
units (d2). Also the variation multiplexer on the delay path d1

can skew the gate behavior by another time unit such that the
overall applied skew is at most 2. Here, the reference time is
t, and the TC controls the frequency of previous times (t −
1, t− 2, . . .).

When we evaluate the effect of speedup (x > 0 and y = 0),
again the algorithm of Figure 7 can be reused with a minor
modification. Firstly, the position of the variation multiplexer
changes. Figure 6(b) shows this case by an example when
x = 2 and y = 0. Now the variation multiplexer can skew the
normal behavior (s0) by selecting a speedup of one time unit
(s1) or a speedup of two time units (s2). Also the variation
multiplexer on the speedup path s1 can skew the gate behavior
by another one time unit such that the overall applied skew is at
most 2. Here, also the position of the reference time t changes.
In this case, TC controls the frequency of the previous times
(t−1, t−2, . . .) as well as the next times (t, t+1, t+2, . . .).

When x > 0 and y > 0, there are both slowdown and
speedup. In this case, the algorithm of Figure 7 is invoked with
the input D = x+y. For example, when x = 1 and y = 1, the
algorithm of Figure 7 is invoked with D = 1+1 = 2. Here, the
position of the variation multiplexer as well as the reference
time t change. Figure 6(c) shows this example. In this case,
the variation multiplexer can skew the normal behavior (i) by
a delay of one time unit (d1) or by a speedup of one time
unit (s1). Also the variation multiplexer on the delay path d1

can skew the gate behavior by a speedup of one time unit (i).
The variation multiplexer on the speedup path s1 can skew the
gate behavior by a delay of one time unit (i).

Using VC, more complex delay models can also be handled.
For modeling the behavior of a gate where the gate delay
depends on the transitions of its inputs, additional constraints
are needed to monitor the input’s transitions and to activate
the corresponding slowdown or speedup. In this case again,
we consider each gate having a specified delay. But this delay
may increase or decrease dependent on the input’s transitions.
To monitor a transition, the behavior of each gate during two
consecutive time steps is needed. Therefore, in addition to the
normal behavior of a gate, another copy of the gate one time
step ago is created. As Figure 8 shows, one additional gate is
copied. Then, the transition constraint C activates the select
lines of the multiplexer (slowdown or speedup) dependent on
the transitions.

IV. EXPERIMENTAL RESULTS

We apply the proposed approach to analyze arithmetic cir-
cuits under timing variations. The experiments are carried out
on a Quad-Core AMD Phenom(tm) II X4 965 Processor (3.4
GHz, 8 GB main memory) running Linux. We synthesize our
circuits using Synopsys Design Compiler with Nangate 45nm

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0.496

0.497

0.498

0.499

0.500

0.501

BKA32+ LFA32+ RCA32+ CLA32+

Clock Period

M
a

x
E

rr
o

r

Fig. 9. Maximum error for 32-bit adders when D = 0

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0.496

0.497

0.498

0.499

0.500

0.501

BKA32+ LFA32+ RCA32+ CLA32+

Clock Period

M
a

x
E

rr
o

r

Fig. 10. Maximum error for 32-bit adders when D = 1

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0.496

0.497

0.498

0.499

0.500

0.501

BKA32+ LFA32+ RCA32+ CLA32+

Clock Period

M
a

x
E

rr
o

r

Fig. 11. Maximum error for 32-bit adders when D = 2

Open Cell Library [22]. The techniques described in this paper
are implemented using C++ in the WoLFram environment
[23]. For the experiments, one time unit is 0.01 ns. MiniSAT
is used as underlying SAT solver [24].

We evaluate Ripple Carry Adder (RCA), Carry Look-ahead
Adder (CLA), Brent-Kung Adder (BKA), and Ladner-Fischer
Adder (LFA) benchmarks.

As Figure 2 showed, our framework includes two side
components: spec and miter. In the experiments, the original
circuit is considered as a specification. The inputs of the
most recent clock cycle are applied to the specification. For
arithmetic circuits, we use a miter on the outputs of the
specification and the TAM to measure the output deviation as
the numerical difference. This miter is an integer subtractor
followed by a comparison operation. In order to measure the
maximum positive error, the miter subtracts the specification
output (O) from the TAM output (Ot): (Ot − O ≥ L). To
compute the maximum negative error, the following miter is
used: (O −Ot ≥ L).

Here, a binary search is used to determine the maximum
error. First an interval [a, b) is selected such that when L = a,
the CNF is satisfiable and when L = b, the CNF is unsatis-
fiable, i.e., the maximum error is more equal than a and less
than b. In this case, the interval is divided into two smaller
intervals by selecting c = a + ((b− a)/2) as the middle point
of the last interval. If the CNF is satisfiable with L = c, the
next interval will be [c, b), otherwise the next interval will be

TABLE I
SIZE AND TIME

T ime (s)

BKA32 136 637 7561 747

LFA32 135 634 7982 1428

RCA32 128 608 7712 868

CLA32 153 710 9154 1402

Circ Name Size when T ime Unit = 0.01 ns T ime when D = 2

 Original Circ Untimed Circ T AM Circ

[a, c). This procedure is repeated until a sufficient accuracy is
obtained. Considering [a, b) as the final interval, The accuracy
k is specified by the length of the final interval i divided by
maximum 2n (n = number of output bits), i.e, k = i/2n. In
this case, b is considered as an upper bound for the maximum
error.

Figure 9, 10, and 11 show the maximum positive error
computed for 32-bit adders when D = 0, D = 1, and
D = 2. For 32-bit adders, the accuracy is k = 0.0007
and the maximum observed error in the diagrams is 0.500.
Among the 32-bit adders, CLA has the shortest delay. After
CLA; BKA, LFA, and RCA have the shortest delay. Figure 9
shows the maximum error computed along overclocking. In the
determined clock periods, the maximum error of LFA is 0.500,
while the maximum error of BKA is 0.497. At T = 270 and
T = 180, the maximum error of RCA decreases. For CLA,
at T = 180 and T = 160, a decreased error is observed.
While the clock period decreases, sometimes the maximum
error also decreases. This is due to failing output bits that are
functionally correlated as they may share certain paths.

In Figure 10, the timing variation is activated (D = 1). In
Figure 10, at the clock period T = 180, CLA maximum error
increases in comparison to the non-varied CLA of Figure 9.
When D = 1, RCA maximum error increases at the clock
period T = 270 and T = 180. But the errors of LFA do not
increase. For BKA, at the clock period T = 230, T = 190,
and T = 180, an increased error is observed.

When D = 2 (Figure 11), at the clock period T = 190,
the CLA error increases. Also, at the clock period T = 240,
T = 200, and T = 150, the BKA error increases. In this
case, the maximum errors of RCA and LFA do not change
in comparison to their errors in Figure 10 (when D = 1).
There is always an increase if there is at least one path "about
to become critical". But this may not always be the case
and we have a measurement error of k = 0.0007. Therefore
if an error increase is less than k, it is not visible in the
results. As the diagrams showed, the used adders are not
resilient against overclocking and timing variations. To have
an improved robustness, other kinds of approximate circuits
can be utilized to bound the error [25] [26].

The number of gates in the original circuit, the untimed
circuit, and the TAM circuit as well as the average run times
required to compute the maximum error at one clock period
for 32-bit adders are shown in Table I. The number of original
gates for BKA is 136, while the number of untimed gates is
637. It indicates that 501 (637 - 136) additional buffers have
been added to the original circuit to create the untimed circuit.
CLA has the largest number of TAM gates. This shows that in
CLA there are more paths than in others which consequently
increase the size of the TAM.

V. CONCLUSION

This paper introduced a methodology to model and to ana-
lyze the functional behavior of circuits under timing variations.
The framework includes the following main components:
Time Accurate Model (TAM) and Variation Logic (VL), Time

Control (TC), and Variation Control (VC). Our framework is
utilized to analyze a circuit under timing variations as well as
an approximate circuit under timing-induced errors.

REFERENCES

[1] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: From basic principles to state of the art,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 27, no. 4, pp. 589–607, 2008.

[2] M. Alioto, G. Palumbo, and M. Pennisi, “Understanding the effect of
process variations on the delay of static and domino logic,” IEEE Trans.
VLSI Syst, vol. 18, no. 5, pp. 697–710, 2010.

[3] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas, “VARIUS: A model of process variation and resulting timing
errors for microarchitects,” IEEE Trans. Semiconductor Manufacturing,
vol. 21, no. 1, pp. 3–13, 2008.

[4] L. Xie and A. Davoodi, “Bound-based statistically-critical path ex-
traction under process variations,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 30, no. 1, pp. 59–71, 2011.

[5] M. Gao, Z. Ye, Y. Peng, Y. Wang, and Z. Yu, “A comprehensive model
for gate delay under process variation and different driving and loading
conditions,” in Int’l Symp. on Quality Electronic Design, 2010, pp. 406–
412.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler,
D. Blaauw, T. M. Austin, K. Flautner, and T. N. Mudge, “Razor: A
low-power pipeline based on circuit-level timing speculation,” in Int’l
Symposium on Microarchitecture, 2003, pp. 7–18.

[7] J. Tschanz, K. A. Bowman, C. Wilkerson, S.-L. Lu, and T. Karnik, “Re-
silient circuits - enabling energy-efficient performance and reliability,”
in Int’l Conf. on CAD, 2009, pp. 71–73.

[8] S. R. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL: Utiliz-
ing processors with variation-induced timing errors,” in Int’l Symposium
on Microarchitecture, 2008, pp. 423–434.

[9] M. A. Breuer, “Hardware that produces bounded rather than exact
results,” in Design Automation Conf., 2010, pp. 871–876.

[10] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic
computation,” in Design Automation Conf., 2010, pp. 859–864.

[11] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: re-
thinking parallel software and hardware,” in Design Automation Conf.,
2010, pp. 865–870.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and analysis of circuits for approximate computing,” in Int’l
Conf. on CAD, 2011, pp. 667–673.

[13] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Design, Automation and Test in Europe, 2010, pp. 957–
960.

[14] ——, “A new circuit simplification method for error tolerant applica-
tions,” in Design, Automation and Test in Europe, 2011, pp. 1566–1571.

[15] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet, “Energy
parsimonious circuit design through probabilistic pruning,” in Design,
Automation and Test in Europe, 2011, pp. 764–769.

[16] L. Wan and D. Chen, “Dynatune: Circuit-level optimization for timing
speculation considering dynamic path behavior,” in Int’l Conf. on CAD,
2009, pp. 172–179.

[17] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” in ASP Design
Automation Conf., 2010, pp. 825–831.

[18] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in Design,
Automation and Test in Europe, 2010, pp. 1560–1565.

[19] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar, “Scalable effort hardware design: exploiting algorithmic
resilience for energy efficiency,” in Design Automation Conf., 2010, pp.
555–560.

[20] K. P. Ganeshpure and S. Kundu, “On ATPG for multiple aggressor
crosstalk faults,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 29, no. 5, pp. 774–787, 2010.

[21] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Int’l Conf. on
CAD, 2003, pp. 900–907.

[22] Nangate 45nm Open Cell Library, http://www.nangate.com.
[23] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler, “WoLFram

– a word level framework for formal verification,” in IEEE/IFIP Int’l
Symposium on Rapid System Prototyping, 2009, pp. 11–17.

[24] N. Eén and N. Sörensson, “An extensible SAT solver,” in SAT 2003, ser.
LNCS, vol. 2919, 2004, pp. 502–518.

[25] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in Design,
Automation and Test in Europe, 2011, pp. 950–955.

[26] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: imprecise adders for low-power approximate computing,” in
ISLPED, 2011, pp. 409–414.

