
Cone of Influence Analysis at the
Electronic System Level Using Machine Learning

Jannis Stoppe† Robert Wille∗† Rolf Drechsler∗†
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{stoppe,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Cone of influence analysis, i.e. determining the parts
of the circuit which are relevant to a considered circuit signal,
is an established methodology applied in several design tasks.
In abstractions like the Register Transfer Level (RTL) or the
gate level, cone of influence analysis is simple. However, the
introduction of higher levels of abstractions, particularly the
Electronic System Level (ESL), made it significantly harder to
reliably extract a cone of influence.

In this paper, we propose a methodology that enables cone of
influence analysis at the ESL. Instead of a structural analysis, a
behavioral scheme is proposed, i.e. stimuli representing different
system executions are analyzed. To this end, machine learning
techniques are exploited. This enables a very good approximation
of the desired cone of influence which is non-invasive, does not
rely on the availability of the source code, and performs fast.
Case studies confirm the applicability of the proposed approach.

I. INTRODUCTION

Knowing the dependencies within hardware systems has
always been a key issue in several design tasks. As a prominent
example, cone of influence analysis is an established method
which is heavily applied e.g. in design understanding [8],
debugging [1], verification [3], [4], [6], and more. The general
idea is thereby to take only those parts of the circuit into
consideration that are relevant to the respective design task. As
long as circuits and systems are designed and verified at the
Register Transfer Level (RTL) or the gate level, the extraction
of the cone of influence is simple.

However, due to the increasing complexity of circuits and
systems, designers strive for higher levels of abstraction.
This eventually led to the design at the Electronic System
Level (ESL) [2] with SystemC [15] being its de-facto standard
[13], [18]. Here, the desired system is no longer implemented
through a netlist description which is composed of signals
connected to components or gates. Instead, the system is
implemented in an algorithmic fashion from which, eventu-
ally, a binary to be executed is derived. As a consequence,
the “classical” structure of a hardware system is no longer
available leading to crucial obstacles for cone of influence
extraction.

In fact, SystemC incorporates the full expressive power
of C++ and, by this, allows for a significant amount of
different description means. Compared to the simple netlist,
this significantly complicates a cone of influence analyzer
following the “classical” scheme known from the RTL and
gate level. Moreover, at the ESL, the entire source code of
the considered system is not always available. As soon as pre-
compiled libraries, user inputs, multiple threads, or network

access are used, cone of influence determination cannot rely
on the actual netlist or code anymore. Finally, side effects
harden the analysis further. For example, if a (partial) cone
of influence includes a global variable, the number of further
components possibly also being part of the cone of influence
increases significantly. Because of reasons like this, cone of
influence analysis became significantly harder at the ESL.

In this work, we present an approach which addresses this
problem. Instead of a structural analysis as commonly applied
at RTL and gate level, a behavioral scheme is proposed. That
is, stimuli representing various executions of the system under
consideration are analyzed. From the results, eventually, the
desired information on the cone of influence for a considered
signal are derived. To this end, methods from the domain of
machine learning [17] are exploited.

Following this scheme leads to an approximation of the cone
of influence, i.e. exactness of the results is not guaranteed.
However, the proposed approach offers a promising alternative
to the “classical” cone of influence analysis which provides

1) a non-invasive methodology, i.e. no changes in the code
have to be performed,

2) a behavioral-based methodology that does not rely on
the source code of a system, but only on its simulated
behavior, and

3) a fast methodology, since the respective analyses can be
performed in negligible run-time.

Furthermore, case studies confirm that the quality of the
achieved approximations ranges from very good to sufficient.
In the majority of the cases, in fact, the exact cone of influence
can be obtained. But also if only an approximation returns, the
differences to the actual cone of influence remain small.

In the remainder of this paper, the proposed methodology
is described in detail. First, the problem is precisely defined
in Section II. Afterwards, the proposed approach is described
and discussed in detail in Section III. Section IV summarizes
the results obtained by the conducted case study. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

Cone of influence analysis is an established methodology
in the design of circuits and systems. The general idea is to
take only those parts of the circuit into consideration that are
relevant to the respective design task. Applications can e.g. be
found in the following domains:

i0

i1

i2

i3

i4

i5

g0

g1

g2

g3

g3

o0

o1

Cone of Influence Considered signal

s0

s1

s2

s3

(a) At the RTL or gate level

module_a
i0 o0

o1
o2

module_b
i1
i2

o3
o4
o5

(b) At the ESL

Fig. 1. Cone of influence analysis

• Design understanding [8]: If a designer wants to un-
derstand the purpose of a signal, only the components
triggering this signal need to be inspected.

• Debugging [1]: If an erroneous behavior occurs on a
signal, the reason for this error must be within the
components triggering this signal.

• Verification [3], [4], [6]: If the correctness of a signal shall
be verified, the verification engine only has to consider
the components triggering this signal.

At abstractions like RTL or gate level, a cone of influence of
a signal s in a circuit is the set of all signals as well as modules
and gates the considered signal s depends on. Here, these
components can easily be obtained by a backward traversal
starting from the currently considered signal.

Example 1. Consider the gate level circuit shown in Fig. 1(a)
and assume the cone of influence for the output signal o0
shall be determined. Since o0 depends on gate g2 and its two
inputs s0 and s1, these elements are added in the cone of
influence. Since, in turn, s0 and s1 depend on gates g0 and g1
with their inputs i0, i1, i2, and i3, also these components are
added. In contrast, o0 does neither depend on the gates g3
and g4 nor on their input signals. Hence, while the overall
circuit is composed of five gates in total, only three of them
need to be considered in order to observe o0.

While the cone of influence analysis is trivial for circuits
provided at the RT level or the gate level, new obstacles are
introduced if a circuit or system is available at the ESL.
Particularly if SystemC, the de-facto standard in ESL, is
applied, problems occur. Here, after the compilation, the re-
sulting binary is stripped of all meta information which leaves
the designer without proper analyzing capabilities. Moreover,
even if the source code is still available, a sufficient cone of
influence analysis is often not possible due to the following
reasons:

• SystemC allows for a significant amount of different
description means (the full expressive power of C++
including its dialects) which need to be supported by the
respective analyzer. This, of course, can be addressed by
altering the code so that it is composed of supported
constructs only. However, this might become a time-
consuming and, therefore, expensive task.

• The availability of source code usually stops at pre-
compiled libraries, user inputs, multiple threads, file or
network access, and all other possibilities of the program
interfacing with any other element other than source code.
For all these elements, it is unknown how to obtain the
respective cone of influence.

• Global variables could be changed by any function or
library call at any time. Consequently, if a (partial) cone
of influence includes a global variable, the number of
further components possibly also being part of the cone
of influence increases significantly. This results in the
accumulation of dependencies that might not be part of
the logic behind the source code.

• In order to reduce these overestimations, an analyzer
needs to decide whether it should act conservatively or
progressively, i.e. either taking all possible value changes
into account (and maybe end up discovering much more
dependencies than there are) or leaving out those that it
deems reasonable (and maybe end up not having the one
connection that is important for a certain case).

As a result, if source code is not or only partially available
(which might already be the case when using standard library
calls), the cone of influence analysis at ESL is restricted as
illustrated by means of Fig. 1(b): If available, the respective
connections between SystemC modules can be extracted via
an API (solid lines). In contrast, connections within a module
(dashed lines) cannot be derived if the implementation of
these modules is not available, if the corresponding description
means are not supported, or if their respective values might
be affected through side effects like global variables. Conse-
quently, e.g. the complete cone of influence of signal o0 of
module_b cannot exactly be determined yet.

Motivated by this, in the remainder of this paper we propose
an alternative to the “classical” approach of cone of influence
extraction which supports the new requirements at the ESL.

III. PROPOSED APPROACH

In this section, the proposed approach for cone of influence
analysis at the ESL is presented. First, the general idea is
outlined before the respective steps are described in detail.

A. General Idea
The “classical” approach for cone of influence analysis

suffers from the obstacles discussed above when being applied
to ESL designs. Hence, instead of a structural analysis, a
behavioral scheme is proposed. To this end, a set of stimuli
is applied to the system with the intent of triggering various
behaviours. Afterwards, the relations between the respective
signal assignments are observed in order to deduce the desired
information. The following example illustrates the idea.

Example 2. Consider the abstract SystemC module as il-
lustrated in Fig. 2 and assume that the cone of influence
for the output signal o0 shall be determined by means of a
behavioral analysis. To this end, 19 input/output assignments
are provided. At a first glance, these assignments are merely
detached streams of Boolean values. However, at a second
glance, certain characteristic relations can be observed. For
example, each time input i3 is set to 0, the considered signal
o0 outputs 1. This may lead to the conclusion that the value
of o0 depends on the value of i3. In a similar fashion, further
conclusions can be drawn.

Obviously, relations like the one discussed in this example
are unintuitive and hard to grasp for human beings. Further-
more, the conducted implications might be premature and
misleading, i.e. wrong conclusions may be drawn. However,
considering a significant amount of stimuli and applying a
comprehensive analysis of such relations, quite reliable infor-
mation can be extracted. In fact, analyzing such relations and
deducing information from that has intensely been considered
in the past – forming the domain of machine learning [17].

In the following, a state-of-the-art technique of machine
learning is exploited to determine the desired cone of influ-
ence. Following this idea has the following advantages:

• It is non-invasive. As only the interfaces of a module are
utilized, the source code does not need to be adjusted or
changed – regardless of the existing code base. By this,
the proposed approach also does not rely on compiler-
specific additions and changes.

• Its results are based on observed correlations instead of
potentially unused connections in the source code. If, for
example, the output signal is defined by a∧b, a structural
analysis will assume that it depends on both inputs, a
and b. If, however, b can only be true if a is true as
well, b in fact does not actually affect the output. This is
especially important if the source code for a calculation
is not available.

• It is fast. Although the process of finding the optimal
signal to divide a given set based on the information gain
itself is complex, the data can be handled efficiently.

Due to these reasons and despite the disadvantages resulting
from its indeterminism, applying machine learning offers a
promising alternative for an efficient cone of influence extrac-
tion at the ESL. To this end, two major steps are needed to
be performed: First, a sufficient set of stimuli to be analyzed
is created. Afterwards, this set is analyzed through machine
learning leading to the desired results. In the following, both
steps are described in detail.

B. Stimuli Generation

The proposed approach determines the desired cone of
influence from a thorough analysis of certain assignments to
the signals of the considered system from which characteristics
of their relations are automatically deduced. Consequently, the
quality of the approach significantly relies on the set of stimuli
applied to the system. For the machine learning algorithm to
perform well, a number of “good” stimuli to be considered

0110010000111110001

1001000100101010000

0101111000101101110

0100011100101010101

0101010101010101010

1011101111010111111

i0

SystemC Module

i1
i2
i3
i4

o0
o1

Considered
signal

Single stimulus

In
pu

t
as

si
gn

m
en

ts

Fig. 2. Illustrating the general idea

need to be generated. To this end, different strategies may
solely or in parallel be applied (see e.g. [23]). They should
particularly incorporate the following two characteristics:

1) Diversity: An important indicator for a well-chosen set
of stimuli is the diversity of the assignments to the considered
signal that is supposed to be classified. If these assignments
rarely change, the machine learning algorithm will usually
have trouble drawing helpful conclusions. For example, con-
sider a simple system computing c = a ∧ b. If only stimuli
{a = 0, b = 0}, {a = 0, b = 1}, and{a = 1, b = 0} are
applied, a possible conclusion could be that signal c is always
set to 0. In order to avoid that, stimuli leading to c = 1
should also be considered. Following the same reasoning,
also the assignments to the respective input signals should
be diverse. Otherwise, it is harder to determine which input
signals actually triggered a change in the signal considered for
cone of influence analysis.

In general, the machine learning algorithm attempts to
“tidy up” a given set of cluttered signal assignments and,
by doing this, extracts the desired information. Therefore,
the provided set of data should be as “untidy” or as diverse
as possible. For the considered signal, this is not easy to
achieve since its values are determined by the module’s inner,
unknown structure. However, many approaches for stimuli
generation have been proposed in the past, which can be
exploited to satisfy these requirements including approaches
for simple random simulation or directed simulation [23], or
more elaborated methods like e.g. constraint-based random
simulation [21], [22].

2) Quantity: Apart from the assignments to be applied to
the signals, the amount of different assignments is also an
important factor to the quality of the result. In general, the
more stimuli are generated, the better results can be achieved.
However, when using machine learning algorithms to classify
a given signal, the algorithms tend to suffer from overfitting
when they are exposed to too much information (see e.g. [10]).
But when deterministic behavior is considered (as it is the case
for systems specified in ESL), the applied machine learning
approaches are usually hardly affected by this.

Example 3. Consider again the abstract SystemC module as
illustrated in Fig. 2. The depicted assignments already satisfy
the characteristics discussed above very well. The assignments
to both, the considered signal as well as the inputs, are
rather diverse. Furthermore, an adequate number of stimuli
is available. As shown in the next section, this set leads to
very precise conclusions on the cone of influence.

C. Machine Learning
Using the assignments generated in the first step, relations

between them from which the desired information can be
deduced are determined next. To this end, a machine learning
approach is utilized. Basically, the idea of machine learning
is to locate those patterns in the given set that provide the
simplest explanation possible of the given phenomenon. This
follows Occam’s razor which states that, if there are several
theories that explain a given phenomenon, the one making
the least assumptions probably is the right one [10]. This
idea of mere correlation implying causation usually should
be applied carefully. However, especially in discrete and
manageable environments like system designs, the assumption
that correlating signals are somehow connected certainly is
legitimate.

While there are many algorithms that can be used to classify
data sets (see e.g. [11]), we applied the C4.5 algorithm intro-
duced in [16] for the purpose of cone of influence analysis.
This approach is widely used and has been proven efficient
in many applications as computer vision [7], language pro-
cessing [12], medical diagnosis [24], financial analysis [14],
general game playing [19], robotics [5] and others.

C4.5 takes a given data set and recursively splits this set
into more “tidy” sub-sets. To this end, all possible splits
are previously evaluated by means of the entropy func-
tion −(p0 log2(p0) + p1 log2(p1)), where p0 (p1) denotes
the probability of the considered signal being set to 0 (1)
according to the data set. If no progress can be obtained
from further splitting anymore, the algorithm terminates. Then,
from the resulting tree, conclusions concerning the cone of
influence can be drawn. More precisely, the following steps
are performed:

1) Determine the entropy of the currently considered set.
2) Determine an input signal on which the currently consid-

ered data set shall be split. To this end, apply the entropy
function, i.e. chose the input signal which would lead to
two sub-sets whose entropy (i.e. “tidiness”) is better than
in the currently considered set.

3) In case no such input signal could be determined, add
a leaf node to the decision tree and terminate. This
happens if all available stimuli (i.e. the given data set)

• always lead to a constant assignment for the con-
sidered signal or

• cannot further be refined through splitting.
4) Split the currently considered data set with respect to the

chosen signal. Afterwards create a decision node whose
successors pin-point to the newly created sub-sets.

5) Recursively start over at Step 1 using the newly created
sub-sets.

From the resulting decision tree, the cone of influence of the
considered signal can be deduced. In fact, each decision node
actually represents an input signal which mostly refined the
values of the considered signal. From this, it can be concluded
that the respectively chosen signal actually influences the
considered signal and, hence, is likely be a part of the cone
of influence.

0110010000111110001
1001000100101010000
0101111000101101110
0100011100101010101
0101010101010101010

1011101111010111111

0100001100
1010000000
0011000111
0000000000
0010011111

1111111111

110011101
000111100
111011010
111111111
110100000

001100111

011
110
000
111
100

111

110110
000110
111111
111111
110000

001001

00
00
11
11
00

11

1111
0011
1111
1111
1100

0000

Inputs

Considered signal

i0
i1
i2
i3
i4

o0

S
pl

it
ti

n
g

w
rt

 i
3

S
pl

it
ti

n
g

w
rt

 i
2

S
pl

it
ti

n
g

w
rt

 i
0

i0
i1
i2
i3
i4

o0

i0
i1
i2
i3
i4

o0

i0
i1
i2
i3
i4

o0

i0
i1
i2
i3
i4

o0

i0
i1
i2
i3
i4

o0

i0
i1
i2
i3
i4

o0

Fig. 3. Applying machine learning

Example 4. The described scheme is applied to the example
from Fig. 2. First, the entropy of the given set is calculated.
To this end, the entropy function −(p0 log2(p0)+p1 log2(p1))
is applied. That is, using all stimuli from Fig. 2, an entropy
of − 4

19 log2(
4
19)−

15
19 log2(

15
19) ≈ 0, 742 results. Based on this,

it is determined which splitting on what signal would lead to
sub-sets with the best entropy. For example, if the data set
from Fig. 2 would be split with respect to input i0, a sub-set
of 10 stimuli and entropy of 0 (considered signal is always 0)
and a sub-set of 9 stimuli and entropy of 0.991 would result
leading to an average entropy of 10

19 · 0 +
9
19 · 0.991 = 0.469.

Overall, splitting with respect to the available inputs would
lead to the following average entropies:

• i0: 10
19 · 0 +

9
19 · 0, 991 = 0, 469

• i1: 12
19 · 0.619 +

6
19 · 0.918 = 0.681

• i2: 9
19 · 0.619 +

11
19 · 0.946 = 0.547

• i3: 10
19 · 0 +

9
19 · 0.991 = 0.469

• i4: 10
19 · 0.722 +

9
19 · 0.764 = 0.742

Hence, splitting with respect to i0 and i3 would lead to the
most tidy sub-sets. Assume the algorithm decides for i3. Then,
a decision node and two new sub-sets as shown in Fig. 3 result.
Here, it can be seen that the first sub-set is only composed of
stimuli setting the considered signal to 1, i.e. the entropy is 0
and this sub-set is not further split. In contrast, the second
sub-set can further be refined. This is done in the remaining
iterations eventually leading to the complete decision tree as
shown in Fig. 3.

From this decision tree, it can now be deduced that the
considered signal very likely depends on the inputs i0, i2, and
i3, i.e. the input signals that had the most possible effect to
it. In contrast, inputs i1 and i4 are not part of this tree and,
hence, probably do not influence the considered signal.

IV. CASE STUDIES

As discussed in Section III-A, the proposed approach ap-
proximates the actual cone of influence. To determine how far
the approximation differs from the actual cone of influence,
i.e. to evaluate the quality of the approach, several case studies
have been conducted. To this end, the proposed approach has
been implemented in C++. For stimuli generation, a random
scheme has been applied. For machine learning, the C4.5

implementation provided by the WEKA framework (J48) [9]
was utilized. All case studies have been conducted on a AMD
Phenom II X4 machine with 3.4 GHz and 8 GB of memory
running Windows 7. In this section, the results of the case
studies are summarized and discussed.

A. Considered Benchmarks

In order to ensure a precise analysis, we evaluated the
proposed approach using specifically generated SystemC mod-
els that realize arbitrary logic operations. More precisely,
SystemC programs have been generated that instantiated a
module with n inputs and a single output (representing the
considered signal for which a cone of influence shall be
determined). The output value was thereby triggered by a
randomly generated functional polynom based on an arbitrarily
chosen set of inputs. By this, we were able to easily track the
exact cone of influence (which simply was constituted by the
applied monoms of the polynom), while, at the same time,
providing a realistic scenario in which the proposed approach
can be evaluated.

B. Results

Table I summarizes the results obtained in the case studies.
The first two columns provide the number of inputs of the
considered SystemC modules as well as the number of their
operations. Afterwards, the results of the proposed cone of
influence analysis are presented which have been obtained
when either 10, 20, 50, 100, 200, 500, 1,000, 5,000, or
10,000 stimuli were applied. Column X respectively denotes
thereby the number of input signals which have correctly been
identified as being part of the cone of influence. Column fp
respectively denotes the number of incorrectly classified input
signals (i.e. the false positives), while column fn respectively
denotes the number of missed input signals (i.e. the false
negatives). That is, in all cases with fp = 0 and fn = 0,
the exact cone of influence has been determined. In all
other cases, either too many (if fp > 0) and/or too few
(if fn > 0) input signals have been classified to be in the
cone of influence, i.e. either an over-approximation and/or and
under-approximation resulted. The last two columns provide
the number of incorrectly classified input signals (fp

Inp.) and
missed input signals (fn

Inp.) as a percentage of the total number
of inputs. All results reported in Table I have been obtained
in less than one CPU minute, i.e. in negligible run-time.

The results confirm the discussions from the previous sec-
tions. The following conclusions can be drawn:

• Applying machine learning indeed enables an efficient
cone of influence approximation for system descriptions
at the ESL. All results have been determined in negligible
run-time.

• The quality of the approximations ranges from very good
to sufficient. In fact, in more than two Thirds of the cases,
the exact cone of influence was determined (all entries
with fn = 0 and fp = 0).

• In the remaining cases, the results should be distin-
guished between false positives and false negatives. A

large number of false positives (fp � 0) represents an
over-approximation, i.e. more signals than necessary are
considered. This is unwanted, but not crucial. Much more
relevant is a large number of false negatives (fn � 0)
as they represent missed signals, i.e. signals which are
entirely not considered although they influence the con-
sidered signal. As can be seen in Table I, in the few cases
where no exact result has been achieved, this number of
false negatives usually is small. That is, even if it was
not possible to determine an exact result, a sufficient
approximation was obtained.

• Finally, the effect of the number of applied stimuli on the
quality of the approximations can be observed. The more
stimuli are applied, the closer the approximated cone on
influence is to the exact one. This particularly holds for
larger designs which, obviously, require more stimuli to
get better approximations.

Overall, the proposed approach provides good approxima-
tions, in many cases even the exact determination, of the
desired cone of influence in SystemC designs.

In order to test the behaviour of the algorithm if some of
the variables remain hidden (e.g. because they are internal
states of a library and cannot be logged), the same test runs
were also executed with min(inp5 · 2,

op
3 · 2) of the used

variables remaining hidden to the ML algorithm. While the
results suffer from an increasing number of false positives as
the amount of applied stimuli increases, the false negatives
remain unaffected (according to the Wilcoxon signed-rank test
[20]). This complies with the aim to keep the amount of missed
signals low.

V. CONCLUSION

In this work, we presented a methodology for cone of
influence analysis at the ESL. For this purpose, techniques for
machine learning have been exploited. The resulting approach
is non-invasive, does not rely on the availability of the code,
and performs fast, but does not guarantee exactness of the
results. However, case studies confirmed that, in many cases,
the exact cone of influence can be achieved. Moreover, even
if this was not possible, a sufficient approximation could be
obtained. The method could be applied for design understand-
ing, speeding up tests and verification tasks and visualizing an
approximation of a module’s interior structure.

For future work, a more detailed evaluation of the available
machine learning methods is left. Furthermore, dedicated
stimuli generation for the sake of cone of influence analysis
seem to be a promising direction which may help to further
improve the reported results.

VI. ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
project VisES under contract no. 16M3197B and the German
Research Foundation (DFG) within the Reinhart Koselleck
project under contract no. DR 287/23-1.

TABLE I
EXPERIMENTAL EVALUATION

RESULTS FOR A NUMBER k OF APPLIED STIMULI INACCURACY
k=10 k=20 k=50 k=100 k=200 k=500 k=1,000 k=5,000 k=10,000 WRT. INPUTS

INP. OP. X fp fn X fp fn X fp fn X fp fn X fp fn X fp fn X fp fn X fp fn X fp fn
fp

Inp.
fn

Inp.

5 3 1 1 1 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0% 0%
6 0 0 3 0 0 3 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0% 0%

15 1 0 3 2 0 2 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0% 0%
30 0 0 5 4 0 1 3 0 2 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0% 0%
60 0 0 5 3 0 2 4 0 1 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0% 0%

10 3 1 0 1 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0% 0%
6 1 1 3 2 2 2 4 1 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0% 0%

15 1 0 7 3 0 5 5 0 3 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0% 0%
30 2 0 7 2 0 7 5 1 4 7 1 2 7 0 2 9 1 0 9 1 0 9 1 0 9 1 0 10% 0%
60 0 0 10 0 0 10 5 0 5 0 0 10 10 0 0 8 0 2 10 0 0 10 0 0 10 0 0 0% 0%

20 3 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0% 0%
6 0 1 5 1 1 4 5 0 0 5 1 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0% 0%

15 1 0 9 2 2 8 4 0 6 9 3 1 9 6 1 10 4 0 10 4 0 10 0 0 10 0 0 0% 0%
30 1 0 15 3 0 13 6 0 10 11 2 5 12 3 4 16 3 0 16 4 0 16 4 0 16 4 0 20% 0%
60 2 0 18 3 0 17 3 0 17 5 0 15 11 0 9 13 0 7 17 0 3 17 0 3 17 0 3 0% 15%

50 3 0 0 3 0 0 3 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0% 0%
6 0 0 5 2 0 3 3 2 2 5 4 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0% 0%

15 1 0 13 2 0 12 3 3 11 8 11 6 10 8 4 13 23 1 14 25 0 14 23 0 14 18 0 36% 0%
30 1 0 22 2 0 21 5 2 18 7 3 16 8 8 15 16 9 7 16 13 7 16 17 7 16 17 7 34% 14%
60 0 0 36 0 0 36 2 1 34 3 2 33 6 5 30 11 6 25 19 5 17 22 9 14 22 9 14 18% 28%

100 3 0 0 3 0 0 3 1 2 2 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0% 0%
6 0 1 6 1 2 5 2 5 4 6 2 0 6 2 0 6 0 0 6 0 0 6 0 0 6 0 0 0% 0%

15 1 0 13 0 2 14 1 2 13 4 6 10 9 15 5 13 24 1 13 30 1 13 34 1 13 29 1 29% 1%
30 0 1 26 1 1 25 2 6 24 5 3 21 9 14 17 17 18 9 18 35 8 21 59 5 21 60 5 60% 5%
60 0 1 48 2 0 46 3 1 45 7 0 41 8 8 40 15 12 33 21 15 27 39 31 9 40 38 8 38% 8%

INP.: Number of inputs OP.: Number of operations X: Number of correctly classified input signals
fp: Number of incorrectly classified input signals (i.e. false positives) fn: Number of missed input signals (i.e. false negatives)

INACCURACY WRT. INPUTS: Incorrectly classified input signals (
fp

Inp.) and missed input signals (fn
Inp.) as a percentage of the total number of inputs

All results have been determined in less than one CPU minute.

REFERENCES

[1] Moayad Fahim Ali, Sean Safarpour, Andreas G. Veneris, Magdy S.
Abadir, and Rolf Drechsler. Post-verification debugging of hierarchical
designs. In ICCAD, pages 871–876, 2005.

[2] Brian Bailey. ESL Design and Verification: A Prescription for Electronic
System Level Methodology. Elsevier, San Diego, CA, 2007.

[3] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional
reasoning in model checking. In Willem-Paul Roever, Hans Langmaack,
and Amir Pnueli, editors, Compositionality: The Significant Difference,
volume 1536 of Lecture Notes in Computer Science, pages 81–102.
Springer Berlin Heidelberg, 1998.

[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs. pages 193–207, March 1999.

[5] James Brusey and Lin Padgham. Techniques for obtaining robust,
real-time, colour-based vision for robotics. In Manuela Veloso, Enrico
Pagello, and Hiroaki Kitano, editors, RoboCup-99: Robot Soccer World
Cup III, volume 1856 of Lecture Notes in Computer Science, pages
63–73. Springer Berlin / Heidelberg, 2000.

[6] Alessandro Cimatti, Enrico Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani, and Armando Tacchella. Integrating bdd-based and
sat-based symbolic model checking. In Alessandro Armando, editor,
Frontiers of Combining Systems, volume 2309 of Lecture Notes in
Computer Science, pages 265–276. Springer Berlin / Heidelberg, 2002.

[7] Mark A. Friedl, Douglas K. McIver, John C.F. Hodges, X.Y. Zhang,
D. Muchoney, Alan H. Strahler, Curtis E. Woodcock, Sucharita Gopal,
Annemarie Schneider, Amanda Cooper, Alessandro Baccini, Feng. Gao,
and Crystal Barker Schaaf. Global land cover mapping from modis:
algorithms and early results. Remote Sensing of Environment, 83(1-
2):287–302, 2002.

[8] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst.
Efficient automatic visualization of systemc designs. In Forum on
Specification & Design Languages, pages 646–658, 2003.

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: an
update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[10] Douglas M. Hawkins. The problem of overfitting. Journal of Chemical
Information and Computer Sciences, 35(19):1–12, 2004.

[11] S. B. Kotsiantis. Supervised machine learning: A review of classification
techniques. In Proceedings of the 2007 conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word

AI Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies, pages 3–24, Amsterdam, The Netherlands, The
Netherlands, 2007. IOS Press.

[12] Inderjeet Mani and George Wilson. Robust temporal processing of
news. In Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, ACL ’00, pages 69–76, Stroudsburg, PA,
USA, 2000. Association for Computational Linguistics.

[13] Kevin Marquet, Matthieu Moy, and Bageshri Karkare. A theoretical and
experimental review of SystemC front-ends. In Forum on Specification
and Design Languages, pages 124–129, 2010.

[14] Edmar Martinelli, André de Carvalho, Solange Rezende, and Alberto
Matias. Rules extractions from banks’ bankrupt data using connec-
tionist and symbolic learning algorithms. In Proceedings of the Sixth
International Conference on Computational Finance, pages 515–533,
1999.

[15] O.S.C. Initiative. IEEE Standard SystemC Language Reference Manual.
IEEE Computer Society, 2006.

[16] J. Ross Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[17] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach (3. internat. ed.). Pearson Education, 2010.

[18] Carsten Schulz-Key, Markus Winterholer, Thomas Schweizer, Tommy
Kuhn, and Wolfgang Rosentiel. Object-oriented modeling and synthesis
of SystemC specifications. In Asia and South Pacific Design Automation
Conference, pages 238–243, 2004.

[19] Xinxin Sheng and David Thuente. Using decision trees for state
evaluation in general game playing. KI - Künstliche Intelligenz, 25:53–
56, 2011.

[20] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[21] Robert Wille, Daniel Große, Finn Haedicke, and Rolf Drechsler. Smt-
based stimuli generation in the systemc verification library. In FDL,
pages 1–6, 2009.

[22] Jun Yuan, A. Aziz, C. Pixley, and K. Albin. Simplifying boolean
constraint solving for random simulation-vector generation. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 23(3):412–420, November 2006.

[23] Jun Yuan, Carl Pixley, and Adnan Aziz. Constraint-Based Verification.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[24] Zhi-Hua Zhou and Yuan Jiang. Medical diagnosis with c4.5 rule
preceded by artificial neural network ensemble. Information Technology
in Biomedicine, IEEE Transactions on, 7(1):37 –42, march 2003.

