
Register Transfer Level Workflow for Application
and Evaluation of Soft Error Mitigation Techniques

Filipe Sousa
CERN and Faculty of Engineering

University of Porto, Portugal

filipe.sousa@cern.ch

Francis Anghinolfi
CERN

Switzerland

João Canas Ferreira
INESC TEC and Faculty of Engineering

University of Porto, Portugal

jcf@fe.up.pt

Abstract—Digital circuits exposed to environments with high
levels of radiation, such as those found in High Energy Physics
experiments, are prone to Single Event Upsets. These upsets
impact the reliability of the circuit. In order to mitigate the effects
of the upsets, several well-known techniques for use with register
transfer level (RTL) circuit descriptions have been proposed
over the years. They typically have a large impact on circuit
size and power consumption. Therefore, they are often applied
only to the more critical modules of the system. Additionally,
the manual implementation of those techniques has a significant
cost in terms of time and design effort, involving both RTL
changes and tailoring of the synthesis flow to avoid optimizing
away the additional hardware. This paper describes an automated
workflow that reduces the time for implementing SEU mitigation
techniques, avoids the errors caused by manual alteration of the
RTL descriptions, and enables the designer to explore different
alternatives quickly. The paper describes the application of the
workflow to three digital circuits and discusses the data obtained
from the implementation of the different mitigation techniques.

I. INTRODUCTION

Digital integrated circuits fabricated in sub-micron tech-
nologies employ lower supply voltages than the ones used
with older technologies. In addition, circuit nodes have smaller
capacitance, and hence less critical charge. These two factors
lead to the increase of the number of soft errors (Single Event
Upsets) that occur due to radiation. Single Event Upsets (SEUs)
are generated when a charged particle hits the silicon and
changes the logic state of a single node [1]. For high energy
physics experiments, where the radiation level is expected to
be high the new generation of detectors and its electronics
must address the challenge of delivering circuits capable of
operating under high radiation levels without increasing the
overall power requirements.

In order to circumvent or mitigate SEU effects many
approaches have been described in the literature. One possibility
is to change the configuration of the storage cells (flip-flops)
by adding redundant paths [2], [3], [4] or by using ratioed
transistors with specific sizes and strength [5]. These approaches
are useful if the corresponding libraries are already developed
and available, but otherwise they are time consuming due to
the time spent on the design and characterization of such cells.
These approaches also have the limitation of being technology-
dependent: the cells need to be redesigned every time a new
technology node is used.

Mitigation techniques that can be applied at the register
transfer level (RTL) are generally technology independent.

Therefore the same technique can be used for different
technology nodes without any adaptation. Triple Modular
Redundancy (TMR) [6], [7], [8] and the use of Error Detection
and Correction (EDAC) codes, e.g. Hamming codes [9], are
two examples of techniques that can be implemented in RTL.

When working on RTL descriptions, the designer is mainly
concerned with implementing the desired functionality and,
therefore, should stay focused on that goal. The addition of
TMR to an already designed circuit can be difficult due to the
number of signals that need to be triplicated and connected. The
introduction of TMR, if made manually, is also time consuming,
and error prone. And if the errors can ultimately be detected
in a later stage they just add up to the time needed to finish
a design. The same observation applies to the introduction of
EDAC techniques to an already designed circuit.

Applying a single technique to increase SEU robustness to
the entire design is not a very efficient method, since the design
has several modules, and each has a different organization and
requirements. In order to study the SEU susceptibility of the
different modules in a design, a simulation tool capable of
inserting bit-flips in a given node can be used [10], [7].

This paper introduces a workflow for systematically adding
TMR and Hamming codes to an RTL design, and for evaluating
its SEU robustness. The objective of the work is to validate
a flow for introducing protective measures against SEUs in
a semi-autonomous way, in order to reduced the time that
a designer spends while protecting a digital circuit. For this
work flow, a tool capable of inserting bit flips in a digital
simulation was developed, in order to provide the designer
with information about individual module’s robustness to SEU
events. Specifically, the contributions of this work are:

• A complete workflow for systematically enhancing
RTL designs;

• Automatic application of SEU effects mitigation tech-
niques to existing RTL designs;

• An automatic fault injection procedure integrated in a
standard simulation environment, as a tool to support
SEU robustness evaluation.

Additionally, the paper reports data about the impact of
different techniques on power consumption for three benchmark
circuits synthesized for a 130 μm CMOS technology.

The work here develop is to be applied in tracker system
of the ATLAS (A Toroidal LHC ApparatuS) HEP experiment

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.92

829

SimVisionVerilog
functional
testbench
.v

Verilog
module

.v

SEU
insertion
parameters

SIT

Tool

.tcl

Analysis of

the SEU

vulnerabilities

in the tested

module

Verilog
module

.v

Python script for inserting

SEU protection

(example: TMR)

Verilog
module with

.v
protection

SimVisionVerilog
functional
testbench
.v

module

Functional
verification of
the protected
circuit

SimVisionVerilog
functional
testbench
.v

SEU
insertion
parameters

Analysis of

the SEU

vulnerabilities

in the

protected

module

Verilog
module with

.v
protection

module
Verilog
module with

.v
protection

1- Analysis of SEU sensitivity

2-inserting SEU protection

3-Functional verification

4-Analysis of SEU sensitivity of the protected design

SEU Injection

SIT

Tool

.tcl

SEU Injection

Fig. 1. Flowchart describing the supported workflow.

in the Large Hadron Collider (LHC) at CERN .

In the following section the flow for implementing SEU
protection is presented. In Sec. III the techniques for adding
robustness to the circuits are described. Section IV presents a
tool for inserting bit-flips in a digital circuit. Section V describe
the implementation of the flow presented in this paper, and
the results obtained are shown. Finally, Sec. VI presents the
conclusions.

II. WORKFLOW FOR IMPLEMENTING SEU PROTECTION

This section describes the workflow for adding SEU
protection to a already existing RTL module written in Verilog.
A representation of the flow can be seen in Fig. 1. The current
implementation is integrated in the commercial SimVision
graphical debugging environment.

The designer must have a working Verilog testbench, that is
used for functional validation of the design. The target Verilog
module must run in the provided testbench without error. The
designer must also define a set of parameters for introducing
SEU like bit-flips during the simulation. These parameters are
the number of SEUs that will be inserted, the minimum period
between two adjacent SEUs (important to avoid multiple bit
upsets), when they should be created (either randomly or in
moments specified by the designer), and in which nodes they
can be created.

In order to perform an evaluation of the SEU vulnerabilities
of the design, the SEU injection tool (SIT) is run. This tool,
written in TCL [11], reads the parameter file, and executes two
simulations. One simulation without SEUs that will be used as a
golden simulation, and a second simulation where the SEUs are
generated accordingly to the defined parameters. The designer
can check the output of the testbench for discrepancies or he
can use the SimVision compare tool to check the differences
between the golden simulation and the SEU simulation. If after
an SEU the circuit is not capable of returning to the same value
that was registered in the golden simulation, it means that the
affected nodes are not protected against SEUs. At this point the
designer should take a decision of which parts of the design
should be protected and which parts can be left unprotected.

In the second step of the flow the original design is protected
with a given technique, for example, TMR. The technique is
applied by a program written in Python. The output will be
another Verilog module with the same functionality of the
original but with added SEU protection.

In the third step, the functional validation of the protected
design is done by repeating the same simulations of step one.
Since the interfaces, input and output signals, of the module
are still the same as before, the initial testbench can be used
together with an instance of the new protected design instead
of the original one. This step confirms that the introduction
of the chosen mitigation technique did not affect the module’s
functionality.

The fourth and the last step is similar to the first step of
this flow. The protected design will now be simulated by using
the initial testbench and the SIT. This step is crucial for the
designer to verify the correct implementation of the protective
technique applied in step two. In this step the designer should
use the same parameters as before in order to verify that what
he has protected is now actually protected.

SEU protection techniques can be applied at different levels
of a design. One of the approaches is to apply the technique to
the complete design. In this way the entire design is protected
against SEU. However, the overhead in power and area will
be very high when compared with other approaches.

In complex designs the reliability requirements are not the
same for all the parts of a design, so addressing the SEU
protection with a global solution may lead to an inefficient
usage of area, and power. A more efficient way of implementing
protection in a circuit is to apply it in a localized manner, that
is, applying specific techniques at the module level. This allows
the designer to choose which modules to protect and which
techniques to use on them. In this manner a block that does not
have a requirement for SEU protection can be left untouched
by the protective techniques. By taking into account that the

830

output
input

clk

verilog module

register

co
m

bi
na

to
ria

l l
og

ic

Fig. 2. Representation of a digital circuit

individual modules are designed with different structures (state
machines, combinational logic, register banks) a differentiated
approach for applying protection against SEUs can be used in
order to achieve an even better use of the resources (mainly,
power and area). This is the approach supported by the workflow
described here. In terms of the Verilog description, the designer
can specify different strategies for different modules and for
different processes (always blocks) in a given module.

The introduction of protective techniques against SEUs in
designs implies in most of the cases the systematic rewriting
of the RTL code. The introduction of such techniques should
be relatively fast in order to not increase the development time.
The manual rewriting of code by a designer can be a slow
process and, more importantly, it is prone to the introduction of
errors, either by missing some signals or by not implementing
the techniques correctly. Therefore, it is important to provide
a program or tool that performs the task automatically and as
transparently as possible.

III. SUPPORTED TECHNIQUES FOR SEU TOLERANCE

For this work two main techniques were implemented in
order to protect the digital logic against the effects of an SEU.
They were chosen as practical examples of how a circuit can be
protected in an advanced state of the design. The first technique
is triple modular redundancy, and it uses redundant logic in
order to filter out an SEU. The second technique uses parity
bits to protect the data that is stored in the registers. A detailed
explanation of the implementation of both techniques follows
next.

A. Hardware Triplication

Triple Modular Redundancy is used to implement SEUs
robustness in the design by triplicating the registers that store the
bits from one clock cycle to the next. Triplication is achieved by
creating three identical instances; the outputs of those instances
are then sent to a majority voter block that will have as output
the value that occurs in more than one signal (three if all
instances are working properly or two if one had an SEU).
Since the registers are inside the instances they need to be
loaded with the result from the voter. This implies that the
register signals that were previously just used internally in
the module (dashed line in Fig. 2) also have to be voted and
only this voted value must be used as an input for further
computations.

outputinput

clk

internal module 1

register

co
m

bi
na

to
ria

l l
og

ic

internal_reg

outputinput

clk

internal module 2

register

co
m

bi
na

to
ria

l l
og

ic

internal_reg

outputinput

clk

internal module 3

register

co
m

bi
na

to
ria

l l
og

ic

internal_reg

voter

output

input 1

clk 1

input 2

clk 2

input 3

clk 3

in 1

in 2

in 3

out

Fig. 3. Triple Modular Redundancy applied to a Verilog module with
combinational and sequential logic.

A digital circuit, as the one seen in Fig. 2, can be divided
in two domains, the combinational and the sequential logic
domains. An SEU can happen due to a transient upset occurring
in the combinational logic and propagating to the sequential
logic, which registers the wrong value. However, only a fraction
of the signals of a combinational logic block are observed at
the output at any given moment, thus the probability of an
SEU occurring due upsets in the combinational logic is low
but not zero. The sequential domain contains the memory
elements that store the circuit’s state, and that will then be
used together with the present input value to compute the
outputs of the combinational domain. The memory elements
are the most critical part regarding SEU sensitivity, because
the stored value is kept during a full clock period without an
external driver. Even if the impact of the combinational logic
on the SEU robustness is reduced compared to the impact of
the sequential part, it should not be neglected. Therefore the
triplication scheme should apply triplication not only to the
sequential logic, but also to the combinational logic that drives
the signals that are to be stored in registers. Due to this factor
the triplication that was implemented in this work was applied
to both parts of the design. The concept of this triplication
scheme can be seen in Fig. 3. In this figure three internal
modules are instantiated; these modules contain logic similar
to the original module. However all register outputs are routed
as outputs of the modules. These outputs are then connected to
the (majority) voter through the inputs in1 to in3. From the
voter all the signals are routed back (dashed lines) to the three
internal modules in order for them to load the correct value
into theirs registers. Only the signals that were already original
outputs are routed to the outside of the triplicated circuit. The
inputs to the triplicated circuit can be same signal for all the
three internal modules or, if they already exist independently
outside of the circuit, each input can be individual (as in the
case of the Fig. 3)

831

Internal 1

Internal 2

Internal 3

Voter

input

clk

input

clk

input

clk

output

output 1

output 2

output 3

internal_reg

internal_reg

internal_reginternal_reg

Fig. 4. Chain Triple Modular Redundancy

1) Simple Triplication : The first way of connecting the
signals from the output of the voter to the input of the triplicated
modules is to connect the voted signals to the inputs of all three
internal instances. In this way, the three instances will have the
same inputs at all time; therefore, if an SEU occurs in one of
the blocks it will be corrected in the following clock cycle as
the signal used in the next clock cycle is the voted, corrected,
signal. By using this connection scheme the effect of an SEU
will be corrected by design in one clock cycle and will not
propagate to other blocks. However, there is still one critical
node that can corrupt the design in the case of an SEU. The
critical node is output from the voting block which connects
to the triplicated instances. This node is small in comparision
to the size of the internal triplicated instances and the voting
block itself, and therefore the probability of occurrence of an
SEU on that node is small.

2) Chain Triplication: The other connection method imple-
mented avoids this single node problem by having the output
of the voting circuit connected to only one of the triplicated
instances. The other two triplicated instances have their inputs
connected to the non-voted output of the other triplicated
instance. Figure 4 shows the connection scheme. In this scheme
instance one has its inputs connected to the voter, instance two
has the inputs connected to the output of the instance one, and
finally instance three has the inputs connected to the outputs of
instance two. With this setup an SEU on the output signal of
the voter will not propagate to all three instances and corrupt
the following output of the design, as the other two instances
will have the correct value. However, instance number one will
have its output wrong and this wrong value will propagate in
the next clock cycle to the instance two, that is fed directly
from the output of instance one. Even in this case the output
of the design is still correct, as instance one and instance three
have now the correct value, with the error being present only
in instance two. The error will propagate in the same way
to instance three on the next clock cycle, but will then be
definitively eliminated from the system. In this scheme the

26 output26 input

clk

Hamming block

30 registers

en
co

de
r

lo
gi

c

de
co

de
r

lo
gi

c

31

Fig. 5. Hamming block diagram

circuit is robust even in the presence of an SEU in the output
of the voting block. The drawback is that the circuit becomes
sensitive to another SEU occurring in the three clock cycles
after the occurrence of the first SEU at the output of the voting
block.

B. Hamming Encoding

Instead of applying triplication to a design, encoding the
data to be stored can be used to reduce the area overhead of
the SEU protection. This technique has the disadvantage of
not protecting the circuit against those Single Event Transients
(SETs) that occur in the combinational logic and that are then
latched in the sequential logic, thus creating an SEU.

The implementation of this encoding scheme is composed
of three distinct blocks as shown in Fig. 5. The first block,
the encoder, has as input the data to be stored in a register.
This encoding is done by applying a Hamming encoding where
parity bits are added in order to detect and correct a single bit
flip in the data. The second block is a regular register, but it is
widened to include the parity bits. The third block is a decoder
that checks the data and is capable of correcting a single error.

This scheme has the advantages of a smaller area impact
due to the fact that there is no need for triplicating the registers.
The main disadvantage of this technique is that it is placed in
the datapath and therefore it may increase the critical path delay,
thus reducing the maximum frequency at which the circuit may
operate. For this work and to show how a pre-designed block
could be used to implement this technique a single module,
named Hamming Block, containing the three blocks (encoder,
register, decoder) was developed. This block can store up to
26 data bits with four additional parity bits. It can be easily
used by just instantiating it in the RTL code and connecting
the signals that need to be stored in a register. The output of
this block is comprised of the protected data signals.

The implementation of the Hamming encoding is the
following. First, all single-bit signals and buses that are used
as register inputs are identified. These signals to be stored are
routed to the Hamming block and the signals that are to be
“retrieved” are connected to the output of the same Hamming
block. The signals are collected in groups of 26 bits, since that
is the size if the pre-designed block. The Hamming block is
then instantiated for each group of 26 bits. The clock and reset

832

signals are also connected as to the Hamming Block control
signals.

IV. SEU INJECTION TOOL

In order to test and validate the correct implementation and
the robustness of the supported techniques, an SEU injection
tool was developed. This tool was designed to work on top
of the SimVision software, and follows the same principles
as similar tools developed for a different platform [12], [13].
This tool generates a command script for the simulator that
mimics the effect of an SEU occurring in the design. The tool
is capable of inserting SEUs in Verilog RTL descriptions and
in Verilog gate netlists, this it can be used before and after
synthesis. Using the SIT, instead of a specific testbench with
explicit SEU bit flip commands, allows the designer to maintain
just one testbench, the one used for functional validation. And
by using the same testbench for functional verification and to
check SEU robustness the designer is sure that the exactly the
same stimulus are applied during the tests. And so the detection
of an SEU propagating through a design is simplified, since
a golden simulation is already available from the functional
verification.

The tool developed is to be used in the SimVision simula-
tion/debugging environment. It uses SimVision commands to
search for register definitions (in the case of RTL code being
simulated) or flip-flop definitions (when doing post synthesis
simulation) and creates a list with them all. This list is then
used by the tool to generate a sequence of commands in order
to mimic an SEU during the simulation. This list can be edited
by the designer in order to define which specific registers/nodes
should be upset while running the tool. Information about when,
in the simulation, the SEU should occur can be also added in
the list. The designer is also able to select different modes of
SEU injection, by specifying the number of SEUs, the time
between SEUs, and if the SEU should be inserted randomly or
as defined on the list. After setting all the parameters, the SIT
can be executed, and the SEU injection is performed according
to the pseudo-code presented in Algorithm 1.

Algorithm 1 Pseudo-code of the SEU injection procedure in
SimVision
list reg ← Register list

N ← number of SEU ocurrences

while N > 0 do
N ← N − 1;
RUN some defined time;
Selected Reg ← random element from list list reg;
DEPOSIT Selected Reg ← !value.Selected Reg;

end while
RUN until the end

The tool collects information about the registers that are to
be upset, and also the time when the event should occur from
the parameter files, and then runs the simulation until the time
for the first SEU. At that moment, it deposits the complement
of the current value in the register that is to be upset. The same
procedure is repeated until the total number of SEUs has been
reached or the simulation ends.

The tool creates a log file with information about when
SEU injection has occurred, in which register and to which
value the register was upset. A TCL command file is also
generated, which contains the commands used to simulate the
SEU injection. This command file allows the designer to run
the same stimulus later, applying the same SEU bit flips. This
is useful to debug any SEU robustness issue that was found in
the first run and to confirm later that it has indeed been solved.

V. IMPLEMENTATION AND EVALUATION

The techniques previously presented were applied to several
Verilog modules, namely two filters and a command decoder.
The first filter,Filter 1, is a Finite Impulse Response filter with
an input of 9 bits and a output of 18 bits width[14]. It has
a latency of five clock cycles due to the internal stages. The
filter has also a reset signal that places the output and all
the internal registers at zero. The second filter, Filter 2, is
based on the one presented in[15], which is a tail cancellation
filter used as a component in a front-end electronic system in
the ALICE detector at CERN. This filter receives an 18-bits
input and produces an 18-bit output. The filter has three stages
where multipliers and adders are used to compute the output.
The command decoder, is used to interpret variable-length
commands that are received in serialized form through a 1-bit
input port. The decoded command is then used to control the
behaviour of 50 output signals. This block is also responsible
for reading some internal registers of a system; for that it has
additional 22 input signals and three 16-bit parallel bus inputs.
A reset input signal is also present.

The development of these circuits and theirs testbenches
is outside the scope of this paper. For each circuit, both the
description and the testbench are provided by the respective
design teams. In fact the goal of this workflow is to work with
already developed circuits. The modules were simulated and
validated before the implementation of the protective techniques
was added. The circuits were then tested with the SIT in order
to verify the susceptibility of the circuit to SEU bit-flips. This
procedure may be used to identify which parts of a design
should be better protected, or not protected at all.

In these cases the same protective technique was applied to
the entire Verilog module and all the modules where protected
independently with the three protective techniques presented
earlier. The reasons for this choice are: (i) these modules belong
to a low level of the system’s module hierarchy, and (ii) this
choice enables a better extraction of meaningful comparative
values for each technique. The triplication and the Hamming
code implementation were done by running the scripts that
introduce the protective techniques in each circuit. Next the
circuits were simulated again using the same testbenches as
before, in order to verify that the functionality was preserved.
After verifying the functionality, one more simulation done
with the SIT was executed to verify the robustness of the circuit
against SEU bit-flips.

Table I presents the results for all of the implementations
under evaluation after RTL synthesis and mapping to a 130 nm
CMOS library. The table presents the power consumption
estimates for each implementation of the circuit. The number
of logic gates used is presented as well as the leakage, dynamic
and total power consumption. Comparative percentage from the

833

TABLE I. POWER USAGE BY TECHNIQUE AND RELATIVE PERCENTAGE

Module
name

Logic
gates

Leakage
power (μW)

Dynamic
power (μW)

Total
power (μW)

Filter 1 Original 1928 308 1079 1387

Filter 1 Hamming 5531 (187%) 703 (128%) 4142 (284%) 4845 (249%)

Filter 1 TMR1 7528 (290%) 1038 (237%) 4095 (280%) 5134 (270%)

Filter 1 TMR2 6870 (256%) 1005 (226%) 3471 (222%) 4476 (223%)

CD Original 648 108 310 419

CD Hamming 1684 (160%) 245 (127%) 991 (220%) 1236 (195%)

CD TMR1 2524 (290%) 343 (218%) 789 (155%) 1133 (170%)

CD TMR2 2528 (290%) 334 (209%) 754 (143%) 1088 (160%)

Filter 2 Original 1489 178 1217 1395

Filter 2 Hamming 2592 (74%) 304 (70%) 1970 (62%) 2275 (63%)

Filter 2 TMR1 5105 (243%) 571 (221%) 4063 (233%) 4635 (232%)

Filter 2 TMR2 4977 (234%) 555 (212%) 3395 (179%) 3950 (183%)

original implementation is also added for a better understanding
of the overhead introduced by each technique.

From the table is possible to conclude that the Hamming
approach requires a smaller number of logic gates (minimum
increase of 74% and a maximum of 187%) when compared
with the triplication (minimum 234% to maximum 290%).
On the other hand the dynamic power of the Hamming
technique increases more than in the case of triplication. 284%
(Hamming) against 250% (triplication) of increase in dynamic
power for benchmark Filter 1 and 220% (Hamming) against
155% (triplication) of increase in dynamic power for benchmark
CD. This increase in dynamic power has to do with the fact
that the combinational part of the encoder and decoder of
the Hamming technique add a significant number of logic
gates to the design, which are active in every clock cycle (in
order to compute the parity bits). The comparative analysis
between the technique TMR 1 (simple triplication) and TMR 2
(chain triplication), shows that chain triplication has a smaller
impact in the number of logic gates used (15% less), as well
as smaller power consumption (35% less), when compared
with the simple triplication approach. However not all the
data follow the same trend and for instance the data from the
Hamming implementation for benchmark Filter 2 has actually
a lower increase in both number of logic gates and as well
in the dynamic power (74% for logic gates, and only 62%
for dynamic power overhead) when compared with the same
technique on a different benchmark. This is an evidence that a
one-solution approach to protect a complex system may not
be very efficient in terms of are and power consumption.

Table II shows the distribution of the leakage power
consumption and relative area usage by the type of gates,
either sequential or combinational gates. In this table it is
possible to observe the changes in the amount of gates in each
domain. For instance, in the case of Hamming encoding, the
balance between sequential and combinational gates is altered
considerably from almost 50% to 76% of area occupied with
combinational logic. While for the triplication the difference
between the original and the triplicated version did not change
as much, it changed from as little as 52% of area occupied
by combinational gates to only to a maximum of 62% for the
benchmark Filter 1. Filter 2 benchmark has almost no change
on the balance between combinational and sequential when

comparing the original and the triplication. Still for the same
table is possible to observe that an increase in the relative area
occupation of the combinational part for a given circuit has
also an increase the the leakage power consumption. However
the percentage for the relative area occupation may not be
precisely the same as the one for leakage power due to the
combinational part. For example, the benchmark Filter 1 for the
TMR2 implementation has 61% for relative area occupation
but the impact of the combinatorial logic in the overall leakage
power consumption is only of 36%.

VI. CONCLUSION AND FUTURE WORK

This paper presented a workflow for improving the SEU
robustness of digital circuits described at the register transfer
level. A description of each procedure was discussed and
the objectives of each were explained. The advantages and
disadvantages of each SEU protection technique supported
by the tools were also presented and discussed. Finally, the
implementation of those techniques was applied to several
digital modules, and the usability of the flow was evaluated.

The evaluation shows that the implementation of SEU
robustness can be made in an early stage of the design flow
(before logic synthesis), and it can be applied directly to a
digital module that was not designed taking into account the
SEU robustness. However the flow can also be used for designs
presented as Verilog gate netlist. The time that it takes to go
through the described work flow is reduced when compared
to the approach where the SEU protection is implemented
during the design of the module itself (at the same time as
the main functionality). The SEU injection tool (SIT) together
with the reuse of the functional testbench proved to be a good
combination that allows the designer to check which parts of
the circuit are critically affected by SEU bit flips. By reusing
the testbench that validates the functional aspect of the design,
the designer is also reassured that the functionality of the final
circuit is intact.

Future work will expand the workflow in order to support
other protective techniques against SEUs. For example, one
addition would be to support the automated recoding of the state
variables of a state machine. A preliminary analysis has shown
that encoding the state variables in order to reduced the SEU
sensitivity and to lower the power consumption may be a useful

834

TABLE II. AREA AND POWER DISTRIBUTION AMONGST TECHNIQUES

Sequential Gates Combinational Gates

Number of
instances

Relative area
occupation %

Leakage
power %

Number of
instances

Relative area
occupation %

Leakage
power %Circuit Technique

Filter 1 Original 496 40.3 64 1010 52.6 31.1
CD Original 165 46 70.8 419 49.8 26.3

Filter 2 Original 162 16.7 42.8 1040 77.4 52.1

Filter 1 Hamming 644 19.6 36.4 4085 75.4 59.7
CD Hamming 205 20.7 33.2 1330 76 64.4

Filter 2 Hamming 207 12.8 27.1 2030 82.5 69

Filter 1 TMR1 1488 31.1 56.9 4649 62.7 38
CD TMR1 495 34 57.2 1604 58.1 32.9

Filter 2 TMR1 486 14.5 33.8 3666 79.5 59.9

Filter 1 TMR2 1488 32.7 58.8 3984 60.9 36.4
CD TMR2 495 33.9 59 1613 58.3 31.4

Filter 2 TMR2 486 14.6 35.2 3565 79.4 58.4

technique to support. Another planned improvement is the
determination of area and power consumption information from
post-layout data. A more precise and accurate data regarding the
overhead caused by adding protection against SEUs might prove
very usefull for increase the efficiency of the techniques used in
a project. The efficiency is gained in the sense that the designer
with proper and acurate data can choose the best protection
technique to its needs. As for now the extraction of the data
regarding the sensitivity of a design to SEU, data produced with
the SIT, needs to be done manually by inspecting the testbench
result or by using the SimVision compare tool. Another planned
improvement is to produce a summary containing the most
sensitive nodes, the ones that if hit by an SEU will propagate
the error through the design.

ACKNOWLEDGMENT

This work is supported by CERN and the ATLAS Ex-
periment doctoral student program, and by the ERDF –
European Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness) and
by National Funds through the FCT – Fundao para a Ciłncia e a
Tecnologia (Portuguese Foundation for Science and Technology)
within project ”FCOMP - 01-0124-FEDER-022701”.

REFERENCES

[1] F. Faccio, “Design hardening methodologies for ASICs,” in Radiation
Effects on Embedded Systems, R. Velazco, P. Fouillat, and R. Reis, Eds.
Springer Netherlands, Jan. 2007, pp. 143 – 160.

[2] R. Naseer and J. Draper, “DF-DICE: a scalable solution for soft error
tolerant circuit design,” in Proc. 2006 IEEE Intl. Symposium on Circuits
and Systems, 2006, p. 4 pp.

[3] S. Jahinuzzaman and R. Islam, “TSPC-DICE: a single phase clock
high performance SEU hardened flip-flop,” in 53rd IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS), 2010, Aug.
2010, pp. 73 – 76.

[4] M. Fazeli, A. Patooghy, S. Miremadi, and A. Ejlali, “Feedback
redundancy: A power efficient SEU-Tolerant latch design for deep
sub-micron technologies,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2007., Jun. 2007, pp.
276 – 285.

[5] J. Rockett, L.R., “An SEU-hardened CMOS data latch design,” IEEE
Transactions on Nuclear Science, vol. 35, no. 6, pp. 1682 – 1687, 1988.

[6] R. Oliveira, A. Jagirdar, and T. J. Chakraborty, “A TMR scheme for
SEU mitigation in scan flip-flops,” in 8th International Symposium on
Quality Electronic Design, 2007. ISQED ’07, Mar. 2007, pp. 905 –910.

[7] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp.
2957 – 2969, Oct. 2004.

[8] W. Chen, R. Gong, K. Dai, F. Liu, and Z. Wang, “Two new space-time
triple modular redundancy techniques for improving fault tolerance of
computer systems,” In IEEE International Conference on Computer and
Information Technology, p. 175, 2006.

[9] S.-F. Liu, P. Reviriego, and J. Maestro, “Fault tolerant FIR filters using
hamming codes,” in 2009 European Conference on Radiation and Its
Effects on Components and Systems (RADECS),, Sep. 2009, pp. 493
–496.

[10] J. A. M. O. Ruano, “A methodology for automatic insertion of selective
TMR in digital circuits affected by SEUs,” IEEE Transactions on Nuclear
Science, no. 4, pp. 2091 – 2102, 2009.

[11] J. K. Ousterhout, “Tcl: An embeddable command language,” 1990, pp.
133 – 146.

[12] Electronic Design and Space Technology group at Universidad
Antonio de Nebrija. (2005) SEUs simulation tool. [Online]. Available:
http://www.nebrija.es/∼jmaestro/esa/sst.htm

[13] A. Benso, S. Martinetto, P. Prinetto, and R. Mariani, “A SEU injection
tool to evaluate DSP-based architectures for space applications,” in
Proceedings 2000 International Conference on Computer Design,, 2000,
pp. 537–538.

[14] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal
design of triple modular redundancy logic for SRAM-based FPGAs,” in
Proceedings on Design, Automation and Test in Europe, 2005., 2005,
pp. 1290 – 1295 Vol. 2.

[15] B. Mota and D. Mlynek, “Time-domain signal processing algorithms
and their implementation in the ALTRO chip for the ALICE TPC,” Ph.D.
dissertation, Ecole Polytechnique, Lausanne, Geneva, 2003, presented
on 26 May 2003.

835

