

P-SOCRATES: A parallel software framework
for time-critical many-core systems

Journal Paper

*CISTER Research Center

CISTER-TR-151002

2015/11

Luis Miguel Pinho*

Vincent Nélis*

Patrick Meumeu Yomsi*

Eduardo Quiñones

Marko Bertogna

Paolo Burgio

Andrea Marongiu

Claudio Scordino

Paolo Gai

Michele Ramponi

Michal Mardiak

Journal Paper CISTER-TR-151002 P-SOCRATES: A parallel software framework for time-critical ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

P-SOCRATES: A parallel software framework for time-critical many-core systems

Luis Miguel Pinho*, Vincent Nélis*, Patrick Meumeu Yomsi*, Eduardo Quiñones, Marko Bertogna,
Paolo Burgio, Andrea Marongiu, Claudio Scordino, Paolo Gai, Michele Ramponi, Michal Mardiak

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: lmp@isep.ipp.pt, nelis@isep.ipp.pt, pamyo@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Current generation of computing platforms is embracing multi-core and many-core processors to improve the
overall performance of the system, meeting at the same time the stringent energy budgets requested by the
market. Parallel programming languages are nowadays paramount to extracting the tremendous potential offered
by these platforms: parallel computing is no longer a niche in the high performance computing (HPC) field, but an
essential ingredient in all domains of computer science. The advent of next-generation many-core embedded
platforms has the chance of intercepting a converging need for predictable high-performance coming from both
the High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC
applications are being required by markets needing huge amounts of information to be processed within a
bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher
performance in real-time, challenging the performance capabilities of current architectures. This converging
demand raises the problem about how to guarantee timing requirements in presence of parallel execution.

The paper presents how the time-criticality and parallelisation challenges are addressed by merging techniques
coming from both HPC and EC domains, and provides an overview of the proposed framework to achieve these
objectives.

P-SOCRATES: A parallel software framework for time-critical many-core
systemsq

Luís Miguel Pinho a, Vincent Nélis a, Patrick Meumeu Yomsi a, Eduardo Quiñones b, Marko Bertogna c,⇑,
Paolo Burgio c, Andrea Marongiu d, Claudio Scordino e, Paolo Gai e, Michele Ramponi f, Michal Mardiak g

a ISEP, Porto, Portugal
bBarcelona Supercomputing Center, Spain
cUniversity of Modena, Italy
d ETH, Zurich, Switzerland
e Evidence Srl, Italy
fActive Technologies Srl, Ferrara, Italy
gATOS, Spain

a r t i c l e i n f o

Article history:

Available online 24 June 2015

Keywords:

Many-core systems

Real-time systems

Embedded systems

WCET analysis

Real-time scheduling

Parallel programming models

a b s t r a c t

Current generation of computing platforms is embracing multi-core and many-core processors to

improve the overall performance of the system, meeting at the same time the stringent energy budgets

requested by the market. Parallel programming languages are nowadays paramount to extracting the

tremendous potential offered by these platforms: parallel computing is no longer a niche in the high

performance computing (HPC) field, but an essential ingredient in all domains of computer science.

The advent of next-generation many-core embedded platforms has the chance of intercepting a

converging need for predictable high-performance coming from both the High-Performance Computing

(HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being

required by markets needing huge amounts of information to be processed within a bounded amount

of time. On the other side, EC systems are increasingly concerned with providing higher performance

in real-time, challenging the performance capabilities of current architectures. This converging demand

raises the problem about how to guarantee timing requirements in presence of parallel execution.

The paper presents how the time-criticality and parallelisation challenges are addressed by merging

techniques coming from both HPC and EC domains, and provides an overview of the proposed framework

to achieve these objectives.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

High-performance computing (HPC) and embedded computing

(EC) systems have been traditionally running in opposite direc-

tions. On one side, HPC systems are typically designed to make

the common case as fast as possible in the average case, without

concerning themselves for the timing behavior (in terms of

execution time) of the not-so-often cases. As a result, they are based

on complex hardware and software structures that make any reli-

able timing bound almost impossible to derive. On the other side,

real-time embedded systems implement energy-efficient and pre-

dictable solutions, without heavy performance requirements.

Instead of fast response times, they aim at having deterministically

bounded response times, in order to guarantee that deadlines are

met. For this reason, EC systems are typically based on simpler

architectures, using fixed-function hardware accelerators that are

strongly coupled with the application domain.

In the last years, multi-core processors hit both high-

performance and embedded computing markets [55]. The huge

computational necessities to satisfy the performance requirements

of HPC systems and the related exponential increments of power

requirements (typically referred to as the power-wall) exceeded

the technological limits of classic single-core architectures. For

http://dx.doi.org/10.1016/j.micpro.2015.06.004

0141-9331/� 2015 Elsevier B.V. All rights reserved.

q This work has been financially supported by the European Commission through

the P-SOCRATES project (FP7-ICT-2013-10).
⇑ Corresponding author.

E-mail addresses: lmp@isep.ipp.pt (L.M. Pinho), nelis@isep.ipp.pt (V. Nélis),

pamyo@isep.ipp.pt (P.M. Yomsi), eduardo.quinones@bsc.es (E. Quiñones), marko.

bertogna@unimore.it (M. Bertogna), paolo.burgio@unimore.it (P. Burgio),

a.marongiu@iis.ee.ethz.ch (A. Marongiu), claudio@evidence.eu.com (C. Scordino),

pj@evidence.eu.com (P. Gai), ramponi@activetechnologies.it (M. Ramponi), michal.

mardiak@atos.net (M. Mardiak).

Microprocessors and Microsystems 39 (2015) 1190–1203

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.06.004&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.06.004
mailto:lmp@isep.ipp.pt
mailto:nelis@isep.ipp.pt
mailto:pamyo@isep.ipp.pt
mailto:eduardo.quinones@bsc.es
mailto:marko.bertogna@unimore.it
mailto:marko.bertogna@unimore.it
mailto:paolo.burgio@unimore.it
mailto:a.marongiu@iis.ee.ethz.ch
mailto:claudio@evidence.eu.com
mailto:pj@evidence.eu.com
mailto:ramponi@activetechnologies.it
mailto:michal.mardiak@atos.net
mailto:michal.mardiak@atos.net
http://dx.doi.org/10.1016/j.micpro.2015.06.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

these reasons, the main hardware manufacturers are offering an

increasing number of computing platforms integrating multiple

cores within a chip, contributing to an unprecedented phe-

nomenon sometimes referred to as the multi-core revolution.

Multi-core processors provide a better energy efficiency and

performance-per-cost ratio, and performance scaling is achieved

via thread level parallelism (TLP). Applications are split into multi-

ple tasks that run in parallel on different cores, extending to

multi-core system level an important challenge already faced by

HPC designers at multi-processor system level: the extraction of

parallelism from applications.

In the embedded systems domain, the deed for more flexible

and powerful systems (e.g., from fixed function phones to smart

phones and tablets) have pushed the embedded market in the

same direction. Also in this market, multi-cores are increasingly

considered as the solution to cope with performance and cost

requirements [18]: the capability of scheduling multiple

application services on the same processor, maximizes the

utilization of hardware resources while reducing cost, size, weight

and power requirements. However, embedded applications with

time-critical (real-time) requirements are still executed on simple

architectures that guarantee a predictable execution pattern while

avoiding the appearance of timing anomalies [34]. For this reason,

real-time embedded platforms still rely on single-core or simple

multi-core CPUs, sometimes coupled to fixed-function hardware

accelerators into the same System-on-Chip (SoC).

The convergent need for energy-efficiency (in HPC) and for flex-

ibility (in EC), coming along with Moore’s law greedy demand for

performance and the advancements in the semiconductor technol-

ogy, have progressively paved the way for the introduction of

many-core systems, i.e., multi-core chips containing a high number

of cores (tens to hundreds) in both domains.

Examples of many-core architectures include the Tilera Tile

CPUs [59] (shipping versions feature 64 cores) in the embedded

domain and the Intel MIC [27] and Intel Xeon Phi [28] (features

60 cores) in the HPC domain. Many-core computing fabrics are

being integrated together with general-purpose multi-core proces-

sors to provide a heterogeneous architectural harness that eases

the integration of previously hard-wired accelerators into more

flexible software solutions. In recent years, the HPC computing

domain has seen the emergence of accelerated heterogeneous

architectures, most notably multi-core processors integrated with

General Purpose Graphic Processing Units (GPGPU), because

GPGPUs are a flexible and programmable accelerator for data par-

allel computations [54,62]. Similarly, in the real-time embedded

domain, STMicroelectronics P2012/STHORM [8] processor, which

includes a dual-core ARM-A9 CPU coupled with a many-core pro-

cessor (the STHORM fabric); the Kalray MPPA (Multi-Purpose

Processor Array) [29], which includes four quad-core CPUs coupled

with a many-core processor; and the Parallella board from

Adapteva[3], featuring a dual-core ARM-A9 coupled with the

Epiphany many-core system. In all cases, the many-core fabric acts

as a processing accelerator. A similar heterogeneous computing

system is given by the Keystone II from Texas Instrument [56], fea-

turing a host ARM15 quad-core coupled with eight DSP Very-Large

Instruction Word (VLIW) cores. The VLIW capabilities of the DSPs

allow simultaneously processing 64 instructions per cycle, as in

larger many-core systems.

Many-core platforms offer a tremendous potential in terms of

parallelism and energy efficiency (Gops/Watt), but the task of turn-

ing it into actual performance is demanded at the software level,

and at programmers’ skills. To this aim, several languages/exten-

sions were proposed, that provide constructs (such as keywords

or code annotations) to enable parallel code development at a high

level of abstraction [47,48,39,26], that is, to let programmer explic-

itly creating parallelism in the code. The expressiveness of these

programming frontends is a good starting point for designing an

accurate and transparent methodology for timing analysis of

highly parallel application, based on the information captured

directly from within their source code.

The introduction of many-core systems has set up an interest-

ing trend wherein both the HPC and the real-time embedded

domain converge towards similar objectives and requirements.

New types of applications are challenging the performance capa-

bilities of hardware platforms, and the demand for increased com-

putational performance is even more challenging when large

amounts of data from multiple data sources must be processed

and aggregated with guaranteed processing response times. This is

the case of real-time complex event processing (CEP) systems

[33], a new area for HPC in which the data coming from multiple

event streams is correlated in order to extract and provide mean-

ingful information within a bounded amount of time. Examples

include cyber-physical systems (CPS), ranging from automotive

and aircrafts to smart grids and traffic management, and banking/

financial computing systems, where large amounts of real-time

information needs to be processed for detecting time-dependent

patterns, automatically triggering operations in a very specific

and tight time-frame [58].

The underlying commonality of the real-time systems described

above is that they are time-critical (whether business-critical or

mission-critical) and with high-performance requirements. In

other words, for such systems, the correctness of the result is

dependent on both performance and timing requirements, and

the failure to meet those is critical to the functioning of the system.

In this context, it is essential to guarantee the timing predictability

of the performed computations, meaning that arguments and anal-

ysis are needed to be able to make arguments of correctness – e.g.,

performing the required computations within well-specified

bounds.

In this current trend, challenges that were previously specific to

each computing domain, start to be common to both domains

(including energy-efficiency, parallelisation, compilation, software

programming) and are magnified by the ubiquity of many-cores

and heterogeneity across the whole computing spectrum. In that

context, cross-fertilization of expertise from both computing

domains is mandatory. Although some research in the embedded

computing domain has started investigating the use of parallel

execution models (by using customized hardware designs and

manually tuning applications by using specialized software paral-

lel patterns [49]), a real cross-fertilization of expertise between

HPC and embedded computing domains is still missing. FP7 project

P-SOCRATES [57] is bringing together the required expertise from

the HPC and EC domains to jointly address the challenge of provid-

ing timing criticality guarantees to systems with huge performance

requirements. As a result, P-SOCRATES will enable the adoption of

next-generation many-core embedded platforms in both the HPC

and the embedded computing domains. Fig. 1 summarizes the

ambitious target of the project.

The paper presents how the time-criticality and parallelization

challenges can be addressed with a holistic approach, from the pro-

gramming model to the underlying software stack, complemented

with analysis tools for timing predictability. The overall approach

and system stack is described, discussing how it allows tackling

the predictable performance challenge.

The paper is structured as follows. The next section presents the

main problems towards achieving time-predictable systems inte-

grating techniques from high-performance and embedded com-

puting domains. Section 3 shows the P-SOCRATES approach, the

programming model adopted, and how the predictability problem

is tackled. Section 4 describes how an application is structured

according to the P-SOCRATES framework and the chosen program-

ming model. It presents the vision and challenges of the proposed

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1191

real-time programming model, which builds upon HPC program-

ming models, augmented with dependencies and timing informa-

tion. Section 5 describes in details the target hardware platform,

and the specifications for P-SOCRATES software stack and tool

chain. Section 6 then provides a brief summary of related work,

while Section 7 summarizes the paper.

2. The predictability challenge

We believe that the next step towards the integration of

high-performance and embedded computing domains will be the

use of many-core embedded processors, which will provide the

required performance level, still being energy-efficient and time

predictable. An example towards this integration is provided by

Mont-Blanc and Mont-Blanc2 FP7 projects [40], which are develop-

ing a new hybrid supercomputer based on energy-efficient embed-

ded ARM CPUs coupled with high-performance NVIDIA GPU

many-core processors. However, there is still one fundamental

requirement that has not yet been considered: time predictability

as a mean to address the time criticality challenge when computation

is parallelised to increase the performance.

Industries with both high-performance and real-time require-

ments are eager to benefit from the immense computing capabili-

ties offered by new many-core embedded designs. However, these

industries are also highly unprepared for shifting their earlier sys-

tem designs to cope with this new technology, mainly because

such a shift requires adapting the applications, operating systems,

and programming models in order to exploit the capabilities of

many-core embedded computing systems. Real-time methods to

determine the timing behavior of an embedded system are not pre-

pared to be directly applied to the HPC domain and many-core

platforms, leading to a number of significant challenges.

Although customized processor designs could better fit real-time

requirements [49], the design of specialized processors for each

real-time system domain is unaffordable.

On one side, different parallel programming models and multi-

processor operating systems have been proposed and are increas-

ingly being adopted in today’s HPC computing systems. In recent

years, the emergence of accelerated heterogeneous architectures

such as GPGPUs, have introduced parallel programming models

such as OpenCL [46], the currently dominant open standard for

parallel programming of heterogeneous systems, or CUDA [44],

the dominant proprietary framework of NVIDIA. Unfortunately,

they are not easily applicable to systems with real-time require-

ments, since, by nature, many-core architectures are designed to

integrate as many functionalities as possible into a single chip,

harnessing predictability and the capability of providing timing

guarantees.

On the other side, modern embedded platforms include plenty

of application-specific accelerators in their designs, and applica-

tions are manually tuned to ensure predictable performance. This

limits the flexibility of the whole system, and complicates the soft-

ware development process. The fact that, in the near future, COTS

many-core components are likely to dominate the embedded com-

puting market, further exacerbates these problems. As a conse-

quence, migrating real-time applications to many-core execution

models with predictable performance guarantees will require a

complete redesign of current software architectures and design

approaches.

The main problem in applying classic real-time techniques to

many-core systems is related to the difficulties in deriving reliable

and tight upper bounds on the worst-case execution time (WCET)

and response time (WCRT) of real-time tasks. TheWCET represents

the maximum time needed to execute a real-time task when it

runs in isolation, e.g., without any interference from other tasks

or devices. Instead, the WCRT also accounts for the worst-case

interference that the task may suffer from other executing tasks.

Although different timing and schedulability analysis techniques

are available in the real-time literature to derive tight WCET and

WCRT bounds in single-core systems, such techniques cannot be

easily extended to many-core systems.

In a schedulability analysis, the objective is to check analyti-

cally, at design or run time, whether all the timing requirements

of the system will be met. In its simplest form, a schedulability test

is just a mathematical proof that the system is deemed schedula-

ble, i.e., all the deadlines of concurrent tasks will always be met

at run-time. Unfortunately, most of the current state-of-the-art

techniques for analysis and scheduling assume that the system

activities (tasks) are functionally independent and most of their

parameters are exactly known at design time. For example, most

of the schedulability tests proposed so far assume that the

worst-case execution time of an activity is known at design time

and invariant. However, when running on a real hardware plat-

form, tasks that are co-scheduled on different cores share hard-

ware resources, such as caches, communication buses and main

memory. This introduces implicit functional dependencies among

tasks, affecting their timing behavior. This effect is magnified when

scaling to a many-core. As a consequence, current analysis and

scheduling techniques cannot be applied to many-cores, but they

need to be augmented to factor in all the sources of contention

due to shared resources. Preliminary results toward this direction

have already been presented (e.g. [38,14]).

Fig. 2 shows a typical distribution of the execution times of a

real-time task running in isolation on a single core system [1]. As

shown, the range of possible execution times is typically large,

with a tail in the distribution that may be rather far from the

average-case behavior: since it is often quite difficult to exactly

compute the WCET of a task, currently we typically over-

estimate a safe upper bound for it, to ensure real-time guarantees.

This large variability in the spectrum of execution times, along

with the uncertainties in determining tasks WCET, causes a signif-

icant waste of computing resources. Real-time systems are often

(over) dimensioned to deal with worst, pathological ‘‘corner’’ cases,

and a considerable amount of computing resources is used to cor-

rectly deal with situations that are very unlikely to happen (at the

rightmost side of the spectrum in the figure). In many-core sys-

tems, this problem is even more magnified by the additional inter-

ferences due to the simultaneous execution of multiple cores, who

share the memory, I/O and communication resources. Therefore,

smarter analysis and scheduling algorithms must be devised in

order to efficiently and optimally using the resources available in

the system while meeting timing constraints.

Fig. 1. P-SOCRATES approach integrating HPC parallel programming models, high-

end embedded many-core platforms and real-time systems technology.

1192 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

3. P-SOCRATES approach

In order to tackle the predictable parallelization challenge,

P-SOCRATES specified a complete and coherent software system

stack, able to bridge the gap between application design and hard-

ware many-core platform. For this purpose, the project devised a

new programming framework to combine real-time embedded

mapping and scheduling techniques with high-performance paral-

lel programming models and associated tools, able to express par-

allelisation of applications. The programming model is being

extended to support real-time properties and timing information.

The software stack designed in the project (shown in Fig. 3)

extracts a task dependency graph from the application, statically

mapping these tasks to the threads of the operating system, which

are then dynamically scheduled on the many-core platform.

Enhanced parallel programming models are being investigated,

incorporating new annotations and compiler techniques to auto-

matically generate an extended task dependency graph containing

not only the data dependencies among tasks, but also relevant

information to derive the impact on execution time due to sharing

resources when tasks communicate. This information is then used

by the mapping and scheduling algorithms to properly select the

most suitable resource allocation strategies. The mapping algo-

rithm we are currently designing, statically builds the required

run-time configuration, efficiently assigning tasks-to-threads in

order to guarantee timing requirements without performance

degradation. Then, the underlying scheduling algorithm, imple-

mented within the operating system, dynamically interprets the

task-to-thread mapping into an efficient thread-to-core allocation,

selecting which thread to execute on each core, and arbitrating the

access to other shared resources.

The proposed techniques will be implemented on open-source

real-time operating systems ported on the selected many-core

platform. A timing and schedulability analysis (including a

schedulability analysis integrated with an interference analysis)

and a module that the mapping will use to check response time

of the allocation, guarantee that the real-time requirements of

the application are met using the selected mapping and scheduling

algorithms. Finally, a general method to express the COTS

many-core processor design characteristics is being defined to

drive the allocation of tasks-to-threads and threads-to-cores, along

with the associated timing and schedulability analysis.

The approach will be benchmarked using a set of existing

applications: a complex event processing system (CEP) engine, part

of an Intelligent Transport Application; an application from the

aerospace domain which pre-processes samples of infra-red

H2RG detectors; and an online service for smart advertisement.

These applications will be used to assess the validity and effi-

ciency of the P-SOCRATES framework, using the following metrics:

(i) reduction of average and worst-case response time, (ii) percent-

age of tardy instances, and (iii) memory and code footprint.

3.1. Real-time parallel programming model

In this section we briefly describe OpenMP, which is the target

programming models chosen for P-SOCRATES.

Programming parallel architectures is a non-trivial task: in

2010, Blake et al. [9] highlighted that most of the existing desktop

applications are not able to exploit more than a few cores at the

same time. In the last 30 years, a number of programming model

were proposed to support parallel programming: most of them

provide abstractions for thread-based parallelism under shared

memory assumption. For instance, the PTHREADS API [41] is a suc-

cessful attempt of supporting and standardizing parallel program-

ming, by directly exposing the concept of thread to the high-level

source code. OpenMP [48] also follows a thread-centric program-

ming style, and evolved through the years to include the concepts

of task and processing device in the programming model (in 2008

and 2013 respectively). Due to its ease-of-use and its lightweight

pragma-based programming interface, OpenMP eventually became

one of the most known and widely adopted parallel programming

models, representing the de facto standard for shared-memory

systems.

In the last decade, GPUs became popular also outside the gam-

ing and image processing domain, and they were adopted to build

the most powerful and energy efficient HPC systems.1 As a conse-

quence, these platforms and the related programming models

evolved: the Compute Unified Device Architecture (CUDA [44]) is

now the reference model for programming NVIDIA architectures;

on another side, standardization efforts led to the OpenCL specifica-

tions, and to domain-specific programming extensions, such as the

OpenVX API (for image-processing and computer vision).

One of the goals of P-SOCRATES is to merge the tasking model

‘‘traditionally’’ used in the real-time domain and the programming

models coming from the HPC and EC domains, and to provide a

unique execution model that fits both needs and that is as much

as possible platform independent. The OpenMP specifications

already incorporate the concepts of threads and (regular and irreg-

ular) tasks in a shared memory model, hence being the perfect can-

didate for our purposes. Among the different programming styles

provided by OpenMP, we found tasking perfectly suits our needs,

for its flexibility and expressiveness.

OpenMP [48] was developed at the end of the 90s to support

loop-based, regular applications. The standard evolved during the

years to support a more irregular and multi-level parallelism

[47], and, recently, also architectural heterogeneity [48]. Thanks

Fig. 2. Typical distribution of execution times of a real-time task.

1 see, e.g., the Green500 list [13].

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1193

to this, it has also gained attention in the embedded domain, due to

its ease-of-use and straightforward pragma-based programming

interface.

OpenMP defines task annotations [47] to represent independent

units of work that can run concurrently. Recently, its specifications

evolved [48] with new directives, in, out and inout, that allow intro-

ducing asynchronous parallelism by defining dependencies among

task. Fig. 4 shows a source code example using the dependency

annotations. Each instance of task foo depends on data generated

in previous loop iterations – i.e., inout(A[i � 1]). Similarly, the task

bar depends on foo outcome – i.e., outðB½i�Þ.

This extension increases the freedom of task scheduling: tasks

are scheduled for execution as soon as all depend tasks finished

and there are available processor resources. In [60], we performed

a detailed analysis on how information given by the OpenMP task

dependencies can be used to support application timing analysis,

proving the applicability of OpenMP also in a real-time domain.

OpenMP 4.0 specifications also introduce the so-called offload-

ing extensions, with a target pragma for annotating portions of

code to run on a specific accelerator device.

Current implementations of OpenMP include the GNU GCC,

which incorporates a run-time, Libgomp [20], compatible with

OpenMP 4.0.

In P-SOCRATES we employ OmpSs [17], a parallel programming

framework developed by Barcelona Supercomputing Center (BSC)

whose effectiveness has been widely demonstrated in the HPC

domain [12]. In OmpSs, the data-dependencies annotations are

interpreted by a compiler, Mercurium, that emits calls to the run-

time system Nanos++. Nanos++ is a parallel run-time system that

dynamically generates the task dependency graph (TDG) at

run-time. Each time a new task is created its in and out dependen-

cies are matched against those of existing tasks. If a dependency

(read-after-write, write-after-write or write-after-read) is found, the

task becomes a successor of the corresponding tasks. Tasks are

scheduled for execution as soon as all their predecessor in the graph

have finished and there are available processor resources. Fig. 5

shows the complete system stack of OmpSs. For this reason, we

choose OmpSs as the official OpenMP support for this project.

3.2. Tackling the predictability challenge

Current parallel frameworks base scheduling decisions on infor-

mation available at run-time – i.e., the task dependency graph and

processor resources availability (see Fig. 5) – which makes it diffi-

cult to provide real-time guarantees. The reason is that the way

tasks use shared processor resources determines the interferences

that different tasks will suffer when accessing them, affecting the

overall execution time of the application. A different usage of pro-

cessor resources will result in a different execution.

In order to provide real-time guarantees without suffering any

performance degradation, it is required to statically identify at

design time which run-time configuration is needed, so the usage

of shared processor resources is fixed and time guarantees can be

provided. Therefore, it is of paramount importance to recover, at

design time, relevant information to fix the usage of processor

resources and so provide timing guarantees.

This challenge is addressed by extending parallelism annotations,

which are extracted by the compiler, to identify portions of the

application (tasks) that can run in parallel as well as relevant infor-

mation to derive the impact on execution time due to sharing

resources when tasks communicate. The compiler generates an

extended task dependency graph (eTDG) containing the information

required by the mapping and scheduling tool and the timing anal-

ysis method to allocate tasks to the different processor resources,

guaranteeing that the real-time constraints of the application are

accomplished. In other words, in order to provide timing guaran-

tees, there is a necessity to fix the usage of shared processor

resources.

Fig. 6 shows the envisioned real-time parallel programming

framework in which relevant information for task scheduling and

timing analysis is recovered at compile- and design-time to fix

the usage of processor resources.

The P-SOCRATES approach presents multiple research chal-

lenges – both at compile-time and at design-time – that involve

timing analysis and scheduling for predictability. This section sum-

marizes the most important ones, and how we tackled each of

them.

Fig. 3. P-SOCRATES approach integrating HPC parallel programming models, high-end embedded many-core platforms and real-time systems technology.

1194 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

3.2.1. Timing analysis

When performing the timing analysis of an application, tight

execution bounds may be provided only if the details of all tasks

are completely known. Unfortunately, some of this information is

available only at run-time. This is the case, for instance, of data

dependencies based on pointers, variable values or loop bound-

aries. In Fig. 4, if the number of iterations (N) is not known, we can-

not determine how many task instances of foo and bar will be

executed and so we cannot generate a complete eTDG. Similarly,

in Fig. 7, if i and j values are not known at compile-time, it is not

possible to determine if a data-dependency among tasks produce

and consume exists.

In case the data-dependency cannot be solved, or loop bound-

aries are not known at compile-time, it is required to consider con-

servative approaches in order to guarantee the functional

correctness of the program. Thus, if there is an unknown

data-dependency, the construction of the eTDG must assume that

this data-dependency exists. Similarly, if a loop boundary is

unknown, it is required to determine an upper bound of the max-

imum number of loop iterations [2]. Needless to say that following

a conservative approach will affect the average performance of the

application. That is, false data-dependencies in the eTDG will force

tasks to be executed sequentially. Similarly, assuming loop bound-

aries with higher number of iterations will make the eTDG to

contain a higher number of task instances than the ones actually

created, over-dimensioning the system due to tasks that are never

executed.

Fig. 8 shows the expected trends in the average and guaranteed

performance when following conservative approaches. X-axis rep-

resents different levels of data recovered at compile-time, so the

usage of processor resources can be fixed. As more information is

extracted at compile-time, a more precise eTDG can be built and

so higher guaranteed performance can be provided (light blue

curve on the bottom). However, due to the conservative

approaches, the eTDG can differ from the TDG created at

run-time, so that the average performance can be degraded (dark

Fig. 5. OmpSs parallel programming framework.

Fig. 6. Envisioned real-time parallel programming framework to provide timing guarantees.

Fig. 7. The value of i and j must be known to determine the dependency among

tasks producer and consumer.

Fig. 4. OpenMP 4.0 code sample showing the data-flow dependencies among tasks.

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1195

blue curve on the top). Although counter-intuitive, it may happen

that, in order to increase the guaranteed performance, a core is

kept idle even when there is some pending workload to execute.

3.2.2. Scheduling

At design-time, it is necessary to provide the system with appro-

priate means to map the task dependency graphs to the underlying

operating system threads (mapping), and dynamically schedule

these threads to achieve both predictability and high-

performance (scheduling). Although previous works [51,24] have

shown that run-time characterization and management of locality

has more potential than static locality analysis, dynamic informa-

tion usage is a stopper to provide the timing guarantees for parallel

applications on a many-core. As a consequence, we are performing

research about how to allocate tasks to processor resources, which

accounts for inter-task interference when accessing shared

resources. To that end, the programming model must be extended

so that the responsibility for managing locality is shared among the

programmer and the mapping tool. This allows providing timing

guarantees to application customers, and maximum performance.

Data annotations with in/out clauses provide a reasonable balance

between the programmer and the system in managing locality

[17], but further research is needed to minimize the interferences

when accessing shared resources.

3.2.3. Sources of interference and the memory problem

There are multiple sources of interference that may affect the

timing behavior of the system activities, including contention for

the cores (by higher priority workloads/tasks), contention on the

buses and interconnection networks, concurrent accesses to cache

memory, main memory bottleneck, etc. The P-SOCRATES project

investigates the impact of such interference on the timing behavior

of the tasks in the targeted many-core platforms. To characterize

this impact new timing analysis techniques and tools are being

devised. These tools are essentially based on runtime measure-

ments and have for objective to assign a maximum execution time

to every node of the activity dependency graphs. These maximum

execution times are calculated to factor in all possible run-time

interferences between the nodes (activities) and the hardware

architecture. That is, they provide for all possible contention delays

due to concurrent accesses to all the shared resources, except for

the cores. The interference between the activities at the

core-level is analyzed and upper-bounded at a later stage, during

the schedulability analysis.

The challenge of characterizing the system timing behavior

must be tackled in a holistic, integrated perspective, identifying

the main scheduling bottlenecks of the considered hardware archi-

tectures. Our proposal is to construct the extended task depen-

dency graph (eTDG) in synergy with the mapping and scheduling

algorithms, with feedback from the timing and schedulability anal-

ysis. Smart scheduling solutions are being devised, which consider

not only the cores, but also other kind of resources, such as mem-

ories, communication and synchronization mechanisms, to limit

the variability in the task execution times when running on

many-core systems. The proposed scheduling solutions lend them-

selves to a tight timing and schedulability analysis for extracting

worst-case upper bounds that are sufficiently close to the exact

response times of each task. The strategy cannot be to search for

all possible combinations in the whole design space. A guided pro-

cess needs to be introduced, which is able to reason on the best

mapping for a particular result.

The shift towards multi- and many-core architectures gave

birth to a huge number of platforms and architectural templates,

where hundreds of cores are connected and communicate each

other. In these platforms, communication is often implemented

via shared memory banks, under NUMA2 or non-NUMA scheme.

We believe that the growth of computing units, together with the

increasing performance gap between memories and cores (known

as memory-wall) will soon bring us to a scenario where the memory,

and not the computing cores, will be the scarce resource in the system,

hence the resource to schedule to provide timing guarantees. This is in

contrast with ‘‘traditional’’ approaches, where one or few processing

cores must be shared – and scheduled – among multiple threads. In

the EC and HPC world there are several techniques were already pro-

posed to speedup performance by scheduling wisely the memory

transfers, for instance, to enable data prefetching or to increase data

locality. Strangely, not much work was performed in this direction

by the real-time community (Pellizzoni et al. [50] are the first one

moving in this direction), and we are also exploring this research

path, and to propose a memory-centric scheduling approach to

real-time many-core systems.

4. Application architecture

In the P-SOCRATES view, the application comprises all the soft-

ware parts of the systems that operate at the user-level and that

have been explicitly defined by the user. The application is the soft-

ware implementation (i.e., the code) of the functionality that the

system must deliver to the end-user. It is organized as a collection

of real-time tasks.

A real-time (RT) task is a recurrent activity that is a part of the

overall system functionality to be delivered to the end-user.

Every RT task is implemented and rendered parallelizable using

OpenMP 4.0 [48], which supports very sophisticated types of

dynamic, fine-grained and irregular parallelism.

An RT task is characterized by a software procedure that must

carry out a specific operation such as processing data, computing

a specific value, sampling a sensor, etc. It is also characterized by

a few (user-defined or computed) parameters related to its timing

behavior such as its worst-case execution time, its period, and its

deadline. In P-SOCRATES, every RT task comprises a collection of

task regions whose inter-dependencies are captured and modeled

by a graph called the extended task dependency graph (eTDG).

A task region is defined at run-time by the syntactic boundaries

of an OpenMP task construct, as shown in Fig. 7.

Fig. 8. On the left side, highly dynamic systems (e.g., HPC) can achieve a higher

observed peak performance than static hard-real time systems (on the right), but

lower guaranteed/worst-case performance.

2 Non-Uniform Memory Access: the time spent by a core for accessing a specific

memory item depends on the locality of the corresponding memory bank to the core

itself.

1196 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

Since the task regions are defined in the code through the

OpenMP task constructs, we will henceforth refer to them as

OpenMP tasks.

An OpenMP task part (or simply, a task part) is a

non-pre-emptible (as defined by the OpenMP tasking execution

model) portion of an OpenMP task. Specifically, consecutive task

scheduling points (TSP) such as the beginning/end of a task con-

struct, the synchronization directives, etc., identify the boundaries

of an OpenMP task part. In the plain OpenMP task scheduler a run-

ning OpenMP task can be suspended at each TSP (not between any

two TSPs), and the thread previously running that OpenMP task

can be re-scheduled to a different OpenMP task (subject to the task

scheduling constraints).

5. Overview of the P-SOCRATES stack

This section provides the execution model and software stack of

the P-SOCRATES framework. The model itself is independent of a

particular platform architecture, nevertheless its instantiation

needs to take in consideration the specific structure of the under-

lying many-core. Therefore, the section will first provide a brief

description of the reference architecture being used, before detail-

ing the software stack.

5.1. Overview of the many-core architecture

In the scope of the project, the Kalray MPPA-255 [29] is the ref-

erence architecture, since it is a representative state-of-the-art

many-core platform, tailored for several application domains,

varying from HPC calculus to embedded image processing, com-

puter vision and so on. The software ecosystems is extremely rich,

and several programming models are supported. The software

development kit (SDK) and runtime libraries shipped with the

board provide native support for programming OpenMP tasks on

the computing clusters.

Recently, Kalray performed a study on the possible applicability

of the board in a real-time scenario [15], showing a great potential

and a promising research path, but still many real-time challenges

need to be addressed, and there is still the need for a complete

real-time framework for this platform.

The Kalray MPPA many-core chip features a total of 288 identi-

cal Very Long Instruction Word (VLIW) cores on a single die. More

precisely, it is composed of 256 user cores referred to as Processing

Elements (PEs) and dedicated to the execution of the user applica-

tions and 32 system cores referred to as Resource Managers (RM)

and dedicated to the management of the software and processing

resources. The cores are organized in 16 compute clusters and 4

I/O subsystems. In Fig. 9, the 16 inner nodes (blue boxes) corre-

spond to the 16 compute clusters holding 17 cores each: 16 PEs

and 1 RM. Then, there are 4 I/O subsystems located at the periph-

ery of the chip, each holding 4 RMs.

The 4 I/O subsystems (also denoted as IOS) are referenced as the

North, South, East, and West IOS. They are responsible for commu-

nications with elements outside the Kalray MPPA processor. Each

IOS contains 4 RM cores, which operate as controllers for the

MPPA clusters. Each RM core: (i) runs a RTEMS operating system,

(ii) is connected to a shared 16-banked parallel memory of

512 KB, (iii) has its own private instruction cache of 32 KB and

(iv) share a data cache of 128 KB, which ensures data coherency

between the cores. Programs written for the Kalray MPPA start

their execution on the I/O cores, which in turn offloads computa-

tion to the compute clusters via the NoC. Communication to and

from the ‘‘external word’’ is supported via a number of standard

interfaces such as DDR3 channels; PCIe Gen3 X8; and NoC

eXpress interfaces (NoCX).

The on-chip NoC holds a key role in the performance of the

Kalray MPPA processor, especially when different clusters need

to exchange messages at run-time. The 16 compute clusters and

the 4 IOS are connected by two explicitly addressed NoCs – the

data NoC (D-NoC) and the control NoC (C-NoC)3 – with

bi-directional links providing a full duplex bandwidth between

two adjacent nodes. The two NoC are identical with respect to the

nodes, their 2D-wrapped-around torus topology, and the wormhole

route encoding. However, they differ at their device interfaces by the

amount of packet buffering in routers and by the flow regulation at

the source available on the D-NoC.

Each compute cluster and IOS owns a private address space,

while communication and synchronization between them is

ensured by the D-NoC and the C-NoC. We recall that each cluster

contains 16 PE and one RM core.

Every core is equipped with private instruction and data L1

caches. It runs a lightwight micro-kernel called NodeOS, and com-

municates with other cores in the cluster through shared memory.

The RM core is in charge of scheduling the threads on the PEs, and

of managing the communication between the clusters, and

between the clusters and the main memory.

The shared memory (SMEM) has a total capacity of 2 MB and

comprises 16-banked independent memory of 128 kB per bank,

enabling low latency access. A direct memory access (DMA) engine

is responsible for transferring data between the shared memory

and the NoC or within the shared memory. A Debug Support Unit

(DSU) is also available.

5.2. Software stack

Fig. 10 gives an overview of the P-SOCRATES runtime method-

ology. The following explanation is organized as a list of

bullet-points that traces the execution of a real-time task (using

Fig. 10 as reference), from its initial partial execution on the I/O

subsystem (IOS) to its offload onto the accelerator, explaining

along the way the cluster assignment, the OpenMP task depen-

dency checks, the mapping to the OS threads and the scheduling

of the threads on the cores. As previously introduced, the IOS is

composed of four clusters located at the boundaries of the chip,

each of which embeds four processing cores.

r On the IOS side

As illustrated in the box in the top-left corner of Fig. 10, all the

real-time tasks start their execution on the IOS to which they have

been assigned and are scheduled on that quad-core by a parti-

tioned or global scheduling algorithm. The RT tasks do not migrate

from one IOS to another at run-time. In this example we have

depicted four real-time tasks RT1, RT2, RT3 and RT4, all running

on the same IOS. Note that each IOS runs on Linux, as we envision

a fully open-source software stack.

As mentioned in Section 4, each RT task is modeled as a graph of

OpenMP tasks. Some of these OpenMP tasks will be executed ‘‘lo-

cally’’ on the IOS to which their RT task has been assigned while

others will be offloaded onto the accelerator, i.e. the many-core

fabric. In a system with full OpenMP 4 support, the standard mech-

anism for doing that are the so-called offloading extensions, more

specifically using target pragma for specifying the code to accel-

erate. The software ecosystem of MPPA currently supports

OpenMP specifications till 3.1, and only in the cluster subsystem,

so there are no the offloading extensions in the IOS. We are cur-

rently implementing OpenMP 4.0 offloading for IOS clusters, and

we will build the necessary runtime support on top of the native

3 The D-NoC is optimized for bulk data transfers, while the C-NoC is optimized for

small messages at low latency.

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1197

Fig. 9. Overview of the Kalray MPPA platform.

Fig. 10. Illustration of the software stack. Note that all the components depicted outside of the box in the top-left corner are part of a compute cluster.

1198 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

mppa_spawn() routine. In the current version of P-SOCRATES

stack, we offload (RT-)tasks to the many-core accelerators directly

invoking the mppa_spawn(), and specifying which parts of RT

tasks (i.e., the subset of OpenMP tasks) will be executed on the

IOS, and which ones will be sent to the accelerator.

As a consequence, each RT task can be seen as a collection of

logical segments, where each segment is a collection of OpenMP

tasks that execute either locally or on the accelerator. Although

in the figure we have drawn only tasks composed of three consec-

utive segments (one local – one to be offloaded – one local), RT

tasks can actually comprise an arbitrary number of segment, each

containing an arbitrary number of OpenMP tasks.

s Offloading OpenMP tasks to the accelerator

Each time a logical segment is sent to the accelerator, a sched-

uler must select the cluster on which its OpenMP tasks will exe-

cute. This assignment will first be done via a simple bin-packing

strategy such as next-fit and first-fit, but later in the project, more

elaborated techniques will be investigated in order to optimize, for

example, the memory traffic between clusters and between the

clusters and the main memory. As a first step, we will also impose

that all the OpenMP tasks issued from the same RT task can only be

offloaded to the same cluster in order to avoid the need for

inter-cluster synchronization mechanism and potentially reduce

the communication traffic between clusters. The restriction could

be relaxed, i.e., we can let RT tasks migrate from one cluster to

another (or from IOS to another), but this would increasing the

complexity of the timing analysis due to inter-cluster communica-

tion. For this reason, we are currently consider a simple model

where RT tasks are confined within a cluster/IOS.

t The task dependency graph

In Fig. 10, consider that all the OpenMP tasks of the offloaded

segment of RT1 have been sent to cluster 1. When a segment is off-

loaded to a cluster of the many-core, the essential OpenMP task

dependency information is captured within a streamlined data

structure hosted in the on-cluster shared memory. This data struc-

ture is a graph of OpenMP tasks called the task dependency graph

(TDG), whose edges represent the inter-dependencies between

them. Note that the size of TDG exponentially grows with the num-

ber of nodes and edges, hence its storage becomes a ‘‘practical’’

problem. For this reason, we are implementing a lightweight

OpenMP run-time library (see alsov); preliminary results indicate

a significant reducing of the memory consumption compared to

current implementations.

u The runtime queues

The cluster also defines and maintains a ready-queue and a

waiting-queue for that real-time task RT1. As seen in Fig. 10, the

offloaded segment of RT1 comprises 9 OpenMP tasks whose depen-

dencies are captured by the TDG stored in the shared memory of

the cluster. Among these 9 OpenMP tasks, three are ready to exe-

cute as they have no predecessor in their dependency graph while

the remaining six must wait not to violate their precedence

constraints.

v The OpenMP runtime library/environment

At runtime, upon reaching an OpenMP task scheduling point like

a task creation/completion/synchronization point, an OpenMP

runtime library/environment (RTE) is responsible for updating

the dependency graph and flagging the next OpenMP task[s] that

become now ready to execute as a result of this update, i.e. all their

predecessor nodes in the graph have finished their execution.

Those OpenMP tasks that became ready are moved from the wait-

ing queue to the ready queue, thereby indicating to the system that

they are ready to be mapped to the OS threads.

There are multiple run-time libraries for the OpenMP program-

ming model and in P-SOCRATES we have evaluated two of them,

namely Nanos++ (that comes with OmpSs [17]) and Libgomp (that

comes with GCC [20]). As the Kalray MPPA only supports Libgomp

3.0 and so cannot handle the dependencies, we will extend this

Kalray-supported Libgomp 3.0 run-time library to incorporate

mechanisms that handle dependencies.

w The OpenMP tasks to OS threads mapping

In each cluster to which an OpenMP task of an RT task is

assigned, there is a pool of 16 OS threads (one thread per PE) ded-

icated to the execution of the set of OpenMP tasks belonging to

that RT task. The OpenMP run-time environment schedules every

OpenMP task which is ready for execution on a specific thread,

and enforces the run-after dependencies among OpenMP tasks

which are defined in the TDG. This mapping between the

OpenMP tasks and the threads considers all the potential

inter-thread conflicts when accessing the on-cluster shared mem-

ory. Also the timing analysis of the RT tasks takes this into account.

Our initial idea was to run the mapper on a dedicated PE but we

are currently considering running it in a more distributed fashion.

Note that the scheduler (see next bullet-point) could also benefit

from running on a dedicated core as it would allow a higher runtime

complexity and thus a higher precision when taking the scheduling

decisions. This is because scheduling decisions may be based on

heavy computations if for example, the objective is to minimize

the traffic between the cores and the memory at runtime.

The OpenMP runtime environment internally holds the

required data structures to dispatch the OpenMP tasks to the avail-

able ‘‘workers’’ and to properly synchronize among them. A worker

is an OpenMP thread and those are the entities that are actually

mapped to the OS threads, which we simply refer to as threads.

For simplicity, we have overlooked in Fig. 2 this additional concep-

tual layer of OpenMP threads and pretended that the OpenMP

tasks are the entities to be mapped directly to the OS threads by

the RTE.

We have struggled to keep the implementation of such infras-

tructure as lightweight as possible, to reduce to a minimum the

library overhead and its final impact on parallelization effective-

ness. In particular, data dependency checking is known to be

among the principal contributors to this overhead. We are thus

designing a lightweight lookup mechanism to support this feature

at a low cost. Parallel updates to a simple look-up table are syn-

chronized among multiple OpenMP threads. The look-up table

placement leverages the multi-banked nature of the on-cluster

shared memory to minimize the probability of conflicts.

x The scheduling of the OS threads on the PEs

While the OpenMP tasks-to-threads mapping is entirely man-

aged within the OpenMP RTE, as we mentioned in r, multiple

RT tasks can be assigned to the same cluster and thus their 16

assigned OS threads may compete for the same cores. The schedul-

ing of these threads is managed within the RTOS, Erika. To mini-

mize the overheads for OpenMP to RTOS interaction, we have

also designed a minimal support layer for fork-join parallelism,

which tightly integrates OS threads and OpenMP threads.

As RTOS for the many-core fabric we have chosen Erika

Enterprise [19,21,22], a free and open-source RTOS certified for

the automotive market. This RTOS has a very small footprint

(2 KB) and already implements several scheduling algorithms

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1199

known in the real-time literature. Thus, it is a very good candidate

for our software stack onto the Kalray architecture, as the OS ker-

nel for the computing clusters subsystem that comes with MPPA

package does not provide real-time capabilities. Note that a

real-time operating system (RTEMS) already runs on the IOS, so

there is no need to port Erika also on it. Nevertheless, we are cur-

rently investigating the use of real-time variants of Linux in the

IOS.

The first version of scheduling algorithm is simple: the 16

threads of every RT tasks are indexed from 1 to 16 and thread num-

ber kwill be executed on PE number k. That is, it implements a par-

titioned scheduling where a thread, say k, cannot migrate from one

PE to another at run-time. In fact, it cannot even execute on a PE

j– k. Note that this partitioned scheduling paradigm may lead to

an important waste of processing resources as it is possible for a

PE to be idle while other threads await their respective PEs to finish

their current workload. Later in the project, we intend to extend

the scheduling to global in order to overcome this limitation.

The scheduler is priority-based, and every RT task is assigned a

constant priority level. Since the execution model of OpenMP has

no notion of ‘‘task priority’’, the runtime propagates this informa-

tion directly to the worker threads at the OS layer, at the point

where the specifications allow execution to be pre-empted (e.g.,

at task scheduling points – TSPs). We are considering implement-

ing different scheduling policies, starting with a fixed priority algo-

rithm and then extend it to dynamic priorities such as EDF. Note

that Rate Monotonic (RM) and other priority assignments that have

good performance on a single core system may not be suitable for

the case under consideration for different reasons. First, a

well-known constraining factor on the achievable utilization of

RM and EDF is given by Dhall’s effect [16]. Therefore, hybrid sched-

ulers and priority assignments which are not uniquely based on

the rate (or the deadline) of each task may achieve better perfor-

mance than classic solutions. Second, the overhead related to

pre-emptions and migrations need to be properly considered

before adopting a preemptive scheduler, and/or when enforcing a

particular schedule. To this end, we are investigating more refined

models such as ‘‘limited-preemptive’’ scheduling solutions which

reduce the cache-related overhead without affecting the overall

schedulability [37,36] as well as more dynamic techniques which

try to balance those same effects against the load (e.g.

work-stealing approaches [35,23,43]).

On an orthogonal dimension, the accesses to main memory for

delivering fresh data to the cluster needs to be taken into account

whenever a new task is scheduled. Access to main memory repre-

sents a significant bottleneck for data-intensive applications that

perform a limited number of operations to large sets of data. This

has a significant impact on the schedulability, so that properly

scheduling memory and communication bandwidth could result

in a greater increase in the systems schedulability than overly

focusing on the scheduling of the processing elements, as long as

the applications programming model is amenable to this. We are

therefore also investigating and design memory-aware schedulers

that jointly consider the allocation of processing and memory

bandwidth inside each cluster. One of the possible options we

are currently exploring is to use the (previously introduced) pre-

dictable execution model (PREM) [50] that divides the execution

of each task between a memory phase, when all data and instruc-

tions are fetched from shared memory to the local memory of each

PE, and an execution phase, where each PE executes without con-

flicts on the shared bus. We are investigating the tradeoffs

obtained against the requirements imposed to the program code.

As a final remark, note that we do not make any restrictive

assumption on the semantics of the supported OpenMP programs.

Thus, it is allowed to dynamically create new tasks, possibly within

conditional execution patterns, as shown by y in Fig. 10. These

newly created OpenMP task are directly handled by the OpenMP

RTE (the TDG and the queues are updated accordingly).

6. Related work

The end of Dennard scaling enabled a shift to massively paral-
lel architectures, both in the HPC and EC domains. And a promis-

ing design choice for next-generation computing systems is to

couple a powerful, general-purpose host processor to massively

parallel accelerators featuring tens-to-hundreds of simple and

energy efficient cores [29,8,3]. Kalray MPPA [29], the platform tar-

geted in P-SOCRATES, is an example of how such a technology can

be successfully adopted in the EC domain, while Intel MIC [27] and

Intel Xeon Phi [28] are well-known examples of platforms for HPC.

To enable architectural scalability, many-cores accelerators are

organized as a fabric of tightly coupled clusters, with complex hier-

archical memory systems. To meet the low energy budget typical

of embedded systems, data caches are partially replaced with more

energy-efficient scratchpad memories. This is for instance the case

of STMicroelectronics’ STHORM/P2012 [8]. General purpose com-

putation on graphics processing units (GPGPU) has also received

a lot of attention, as it delivers high performance computing at a

rather low cost. This approach is however efficient only for data

parallel computations, programmed in frameworks such as

OpenCL [46] or CUDA [44], and it does not allow supporting

time-predictability.

In what concerns programming models, the HPC world has

seen a plethora of proposals for data or task parallelism (e.g.

[5,61,25]). Furthermore, approaches such as [51] or [48,17] also

allow expressing dependencies among tasks, being the run-time

system responsible of the dependencies to be satisfied before

spawning dependent tasks. Task-based models can be dynamically

managed by mapping the tasks to threads in a thread pool, e.g.,

using the popular Work-Stealing algorithm [10]. Yet, sources of

non-determinism at run-time cause timing divergences among

threads. Dynamic schedulers try to compensate by detecting them

at run-time [11,45] and either (i) ‘‘re-molding’’ into more threads

on-the-fly; (ii) boosting relative priorities, or (iii) adapting the

mapping and number of allocated processing units. Since perfor-

mance is the major goal, mapping strategies are mostly dynamic

in nature, and, although being able to provide better average

behavior, they may allow for unpredictable unbounded delays.

OpenMP has been already considered as a convenient interface

to describe real-time applications [30,4]. However, the easy-to-

use and well-known OpenMP directives have been used as a mere

programming frontend to describe a taskgraph. Traditional

timing-analysis and scheduling techniques are then applied to this

graph, neglecting the semantics of the OpenMP execution model

and bypassing the functionality of the runtime system. Moreover,

the focus has typically been on the most traditional loop-centric

OpenMP specification v2.5, which is limited to a standard

fork-join type of parallelism and does not take advantage of the

way more expressive tasking interface [47].

Agrawal et al. [4] proposed the RT-OpenMP framework as a

means to provide timing guarantees within the OpenMP

programming model [47], introducing a scheduler of (RT-) tasks

for a generic multi-core system. P-SOCRATES has a more ‘‘general’’

approach to timing analyzability and schedulability, taking a holis-

tic view of the whole system, analyzing the contribution of each

system component, either hardware (cores, memory) or software

(task, RT-task) and composing them together to build a fully inte-

grated technological stack to provide timing guarantees in a generic

many-core system.

1200 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

In the real-time community, scheduling techniques have been

the subject of extensive research. Traditional techniques have been

extended for the multiprocessor case and more recently for parallel

execution (e.g. [31,53,6,42]). After the majority of the works con-

sidering 1-to-1 mappings, where each parallel execution is mapped

to a thread, new models are appearing with more complex map-

ping approaches. Different mappings of parallel tasks to threads

can be done, mostly statically [53,6] but also dynamically [42], in

order to increase system utilization while maintaining predictabil-

ity. These strategies need however to be extended for exploiting

the dependency graphs from compiler generated parallel task

graphs.

Static approaches for timing analysis typically infer timing

properties from mathematical models and logical abstractions

(e.g., [2]), while measurement-based techniques exploit the

results of extensive simulations to derive worst-case estimations.

Hybrid techniques combine features from both static and

measurement-based approaches while avoiding (as much as possi-

ble) their respective pitfalls (e.g. [52]). In what concerns schedula-

bility analysis, different tests have been proposed for various kinds

of workload and platform models, and for different scheduling

algorithms. In its simplest form, a schedulability test is just a math-

ematical condition such that, if the condition is satisfied, then the

system is deemed schedulable, i.e., all the deadlines will always be

met at run-time. Unfortunately, there are still many open problems

and NP-hard issues in the schedulability analysis of multi-core sys-

tems [7]. Furthermore, timing and schedulability analysis cannot

be taken in isolation from the mapping approach, since the map-

ping of tasks to particular cores clearly impacts the timing analysis.

The idea of holistically orchestrating memory transfers in a

multi- or many-core platform is not completely new in the

domains targeted by P-SOCSATES. However, traditionally, memory

transfers are used to improved average performance of the system,

rather than improving its worst-case behavior and making it more

predictable. These data prefetching techniques are well known both

in HPC and embedded computing domains, but also in the general

purpose world. Data caches are a nice example where prefetching

is automatically driven in hardware: a full set of data (a cache line)

is loaded as a single data item contained in it is explicitly accessed.

A very interesting recent study [32] tries to draw some ‘‘guiding

lines’’ on the usage of prefetching to achieve an actual performance

gain. However, no timing guarantees are provided, nor timing pre-

dictability is among the goals of the most advanced prefetching

techniques. Some works by Pellizzoni et al.[50] are – to the best

of our knowledge – the unique trying to schedule real-time tasks

in a multi-core environment using a ‘‘memory-centric approach’’.

Up to now, they targeted cache-based systems, with a single or

limited set of general purpose cores, in some cases including ad

hoc hardware controllers for controlling the accesses to memory

banks.

7. Conclusions

There is currently an increasing interest in the convergence of

high-performance and embedded computing domains. Not only

new high-performance applications are being required by markets

needing huge amounts of information to be processed within a

bounded amount of time, but also embedded systems are increas-

ingly concerned with providing higher performance in real-time,

challenging the performance capabilities of current architectures.

Meeting this dual challenge can only be provided by

next-generation many-core embedded platforms, guaranteeing

that real-time high-performance applications can be executed on

efficient and powerful heterogeneous architectures integrating

general-purpose processors with many-core computing fabrics.

This paper proposes a novel approach to address time-criticality

and parallelisation by an integrated framework for executing

workload-intensive applications with real-time requirements on

top of next-generation COTS platforms based on many-core accel-

erated architectures. The framework devised in the P-SOCRATES

FP7 project [57], addresses the problem from both the HPC and

real-time computing domains, integrating the extraction of task

dependency graphs with timing information from the applications

code, with real-time mapping and scheduling algorithms, along

with the associated timing and schedulability analysis. The main

outcome of P-SOCRATES is a software stack that will enable appli-

cations to run in parallel, by using a parallel programming model

from the HPC world, on a many-core architecture coming from

the embedded computing world. We consider the unification of

these two worlds as a necessity as modern applications have

started sharing requirements from both.

References

[1] J. Engblom, A. Ermedahl, Execution time analysis for embedded real-time
systems, Handb. Real-Time Embed. Syst. (January) (2007).

[2] AbsInt Corp, aiT WCET Analyser <http://www.absint.com/ait/>.
[3] Adapteva, Inc., Epiphany-IV 64-core 28 nm Microprocessor, 2013.
[4] Kunal Agrawal, Christopher Gill, Jing Li, Mahesh Mahadevan, David Ferry,

Chenyang Lu, A real-time scheduling service for parallel tasks, in: Proceedings
of the 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), RTAS ’13, IEEE Computer Society, Washington, DC, USA,
2013, pp. 261–272.

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, Pierre-André Wacrenier,
Starpu: a unified platform for task scheduling on heterogeneous multicore
architectures, Concurr. Comput.: Pract. Exper. 23 (2) (2011) 187–198.

[6] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, A. Wiese, A
generalized parallel task model for recurrent real-time processes, in: 2012
IEEE 33rd Real-Time Systems Symposium (RTSS), 2012, pp. 63–72.

[7] Sanjoy Baruah, Kirk Pruhs, Open problems in real-time scheduling, J. Schedul.
13 (6) (2010) 577–582.

[8] Luca Benini, Eric Flamand, Didier Fuin, Diego Melpignano, P2012: building an
ecosystem for a scalable, modular and high-efficiency embedded computing
accelerator, in: EDA Consortium on the Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’12, San Jose, CA, USA, 2012,
pages 983–987.

[9] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, Krisztián Flautner,
Evolution of thread-level parallelism in desktop applications, in: Proceedings
of the 37th Annual International Symposium on Computer Architecture, ISCA
’10, ACM, New York, NY, USA, 2010, pp. 302–313.

[10] Robert D. Blumofe, Charles E. Leiserson, Scheduling multithreaded
computations by work stealing, J. ACM 46 (5) (1999) 720–748.

[11] Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla, Mateo Valero, A dynamic
scheduler for balancing HPC applications, in: Proceedings of the 2008 ACM/
IEEE Conference on Supercomputing, SC ’08, IEEE Press, Piscataway, NJ, USA,
2008, pp. 41:1–41:12.

[12] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier
Martorell, Rosa M. Badia, Eduard Ayguade, Jesús Labarta, Productive cluster
programming with ompss, in: Proceedings of the 17th International
Conference on Parallel Processing – Volume Part I, Euro-Par’11, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 555–566.

[13] CompuGreen, LLC, The Green500 List.
[14] Dakshina Dasari, Bjorn Andersson, Vincent Nelis, Stefan M. Petters, Arvind

Easwaran, Jinkyu Lee, Response time analysis of cots-based multicores
considering the contention on the shared memory bus, in: Proceedings of
the 2011 IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications, TRUSTCOM ’11, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 1068–1075.

[15] B.D. de Dinechin, D. van Amstel, M. Poulhies, G. Lager, Time-critical computing
on a single-chip massively parallel processor, in: Design, Automation and Test
in Europe Conference and Exhibition (DATE), March 2014, 2014, pp. 1–6.

[16] S.K. Dhall, C.L. Liu, On a real-time scheduling problem, Operations Res. 26 (1)
(1978) 127–140.

[17] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, Judit Planas, Ompss: a proposal for programming
heterogeneous multi-core architectures, Parall. Process. Lett. 21 (2011) 173–
193 (2011-03-01).

[18] T. Ungerer, et al., Merasa: Multi-core execution of hard real-time applications
supporting analysability, IEEE Micro 2010, Spec. Iss. Euro. Multi. Process. Proj.
30(5) (2010).

[19] Evidence Srl, Erika Enterprise.
[20] FSF – The GNU Project. GOMP – An OpenMP implementation for GCC.
[21] P. Gai, E. Bini, G. Lipari, M. Di Natale, L. Abeni, Architecture for a portable open

source real-time kernal environment, in: 2nd Real-Time Linux Workshop,
2000.

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1201

http://refhub.elsevier.com/S0141-9331(15)00083-6/h0005
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0005
http://www.absint.com/ait/
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0020
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0025
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0025
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0025
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0035
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0035
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0045
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0045
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0045
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0045
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0045
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0050
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0050
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0055
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0055
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0055
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0055
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0055
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0060
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0070
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0080
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0085
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0085
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0085
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0085

[22] P. Gai, F. Esposito, R. Schiavi, M. Di Natale, C. Diglio, M. Pagano, C. Camicia, L.
Carmignani, Towards an open source framework for small engine controls
development, in: SAE/JSAE 2014 Small Engine Technology Conference &
Exhibition, 2014.

[23] Ricardo Garibay-Martínez, Luis Lino Ferreira, Cláudio Maia, Luis Miguel Pinho,
Towards transparent parallel/distributed support for real-time embedded
applications, in: 8th IEEE International Symposium on Industrial Embedded
Systems, 2013.

[24] Mike Houston, Ji-Young Park, Manman Ren, Timothy Knight, Kayvon
Fatahalian, Alex Aiken, William Dally, Pat Hanrahan, A portable runtime
interface for multi-level memory hierarchies, in: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming,
PPoPP ’08, ACM, New York, NY, USA, 2008, pp. 143–152.

[25] Intel Corp, Array Building Blocks <http://software.intel.com/en-us/articles/
intel-array-buildingblocks>.

[26] Intel Corporation, Threading Building Blocks, 2006.
[27] Intel Corporation, Intel Many Integrated Core (MIC) Architecture <http://www.

intel.com/content/www/us/en/architecture-and-technology/many-
integratedcore/intel-many-integrated-core-architecture.html> (access
November 2013).

[28] Intel Corporation, Intel Xeon Phi <http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-detail.html> (access November 2013).

[29] Kalray Corporation, Kalray MPPA 256 <http://www.kalray.eu/products/mppa-
manycore/> (access November 2013).

[30] K. Lakshmanan, S. Kato, R. Rajkumar, Scheduling parallel real-time tasks on
multi-core processors, in: 2010 IEEE 31st Real-Time Systems Symposium
(RTSS), November 2010, pp. 259–268.

[31] K. Lakshmanan, S. Kato, R. Rajkumar, Scheduling parallel real-time tasks on
multi-core processors, in: 2010 IEEE 31st Real-Time Systems Symposium
(RTSS), 2010, pp. 259–268.

[32] Jaekyu Lee, Hyesoon Kim, Richard Vuduc, When prefetching works, when it
doesn’t, and why, ACM Trans. Archit. Code Optim. 9 (1) (2012) 2:1–2:29.

[33] David C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA, 2001.

[34] T. Lundqvist, P. Stenstrom, Timing anomalies in dynamically scheduled
microprocessors, in: Proceedings of the 20th IEEE Real-Time Systems
Symposium, 1999, pp. 12–21.

[35] Cláudio Maia, Luis Miguel Nogueira, Luis Miguel Pinho, Scheduling parallel
real-time tasks using a fixed-priority work-stealing algorithm on
multiprocessors, in: 8th IEEE International Symposium on Industrial
Embedded Systems, 2013.

[36] José Marinho, Vincent Nélis, Stefan M. Petters, Marko Bertogna, Robert Davis,
Limited pre-emptive global fixed task priority, in: 34th IEEE Real-Time
Systems Symposium, 2013.

[37] José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut, Preemption
delay analysis for floating non-preemptive region scheduling, in: Design,
Automation and Test in Europe Conference and Exhibition, 2012, pp. 497–502.

[38] José Manuel Marinho, Stefan M. Petters, Marko Bertogna, Extending fixed task-
priority schedulability by interference limitation, in: Proceedings of the 20th
International Conference on Real-Time and Network Systems, RTNS ’12, ACM,
New York, NY, USA, 2012, pp. 191–200.

[39] Massachusets Institute of Technology, The Cilk Project, 1998.
[40] Mont-Blanc FP7 European Project, grant agreement 288777, 2011–2014

<http://www.montblanc-project.eu/>.
[41] Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell, Pthreads

Programming, O’Reilly & Associates Inc., Sebastopol, CA, USA, 1996.
[42] L. Nogueira, J.C. Fonseca, C. Maia, L.M. Pinho, Dynamic global scheduling of

parallel real-time tasks, in: 2012 IEEE 15th International Conference on
Computational Science and Engineering (CSE), 2012, pp. 500–507.

[43] Luis Miguel Nogueira, Luis Miguel Pinho, José Fonseca, Cláudio Maia, On the
use of work-stealing strategies in real-time systems, in: High-Performance and
Real-Time Embedded Systems (HiRES), 2013.

[44] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture,
Version 2.0, 2008.

[45] Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, Michael Spiegel, Jan F.
Prins, Openmp task scheduling strategies for multicore numa systems, Int. J.
High Perform. Comput. Appl. 26 (2) (2012) 110–124.

[46] OpenCL, The Open Standard for Parallel Programming of Heterogeneous
Systems, 2013 <http://www.khronos.org/opencl/>.

[47] OpenMP Architecture Review Board (ARB), OpenMP Architectural Review
Board, OpenMP Application Program Interface, Version 3.1, July 2011 <http://
www.openmp.org>.

[48] OpenMP Architecture Review Board (ARB), OpenMP Architectural Review
Board, OpenMP Application Program Interface, Version 4.0, July 2013 <http://
www.openmp.org>.

[49] parMERASA FP7 European Project – grant agreement 287519. Multi-Core
Execution of Parallelised Hard Real-Time Applications Supporting
Analysability, 2011–2014 <http://www.parmerasa.eu>.

[50] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A
predictable execution model for cots-based embedded systems, in:
Proceedings of the 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2011.

[51] J.M. Perez, P. Bellens, R.M. Badia, J. Labarta, Cellss: Making it easier to program
the cell broadband engine processor, IBM J. Res. Develop. 51 (5) (2007) 593–
604.

[52] Rapita Systems Corp, RapiTime <http://www.rapitasystems.com>.
[53] A. Saifullah, K. Agrawal, Chenyang Lu, C. Gill, Multi-core real-time scheduling

for generalized parallel task models, in: 2011 IEEE 32nd Real-Time Systems
Symposium (RTSS), 2011, pp. 217–226.

[54] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,
Roger Espasa, Ed Grochowski, Toni Juan, Pat Hanrahan, Larrabee: a many-core
x86 architecture for visual computing, ACM Trans. Graph. 27 (3) (2008)
18:1–18:15.

[55] Herb Sutter, Welcome to the Jungle <http://herbsutter.com/welcome-to-the-
jungle/>.

[56] Texas Instrument Inc., The Keystone Processor.
[57] The P-SOCRATES Consortium, P-SOCRATES (Parallel Software Framework for

Time-Critical Many-core Systems) <http://p-socrates.eu>.
[58] R. Tieman, Algo Trading: The Dog That Bit its Master, Financial Times, 2008.

March.
[59] Tilera Corporation, Tile Processor, User Architecture Manual, release 2.4,

DOC.NO. UG101, May 2011.
[60] R. Vargas, E. Quiñones, A. Marongiu, OpenMP and timing predictability: a

possible union? in: Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE ’15, pp. 617–620.

[61] Sandra Wienke, Paul Springer, Christian Terboven, Dieter an Mey, Openacc:
first experiences with real-world applications, in: Proceedings of the 18th
International Conference on Parallel Processing, Euro-Par’12, 2012, pp. 859–
870.

[62] Henry Wong, Anne Bracy, Ethan Schuchman, Tor M. Aamodt, Jamison D.
Collins, Perry H. Wang, Gautham Chinya, Ankur Khandelwal Groen, Hong Jiang,
Hong Wang, Pangaea: a tightly-coupled ia32 heterogeneous chip
multiprocessor, in: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, 2008, pp. 52–61.

Luís Miguel Pinho, Ph.D. (2001), is Professor at the

Polytechnic Institute of Porto, and Vice-Director and

Research Associate at the Research Centre in Real-Time

and Embedded Computing Systems (CISTER), where he

currently leads activities in, among others, real-time

parallel models. He has participated in more than 15

R&D projects, being Coordinator of the FP7 R&D

European Project and CISTER coordinator and work

package leader in several other European projects. He

has published more than 100 papers in international

venues and journals in the area. He was Keynote

Speaker at RTCSA 2010, Conference Chair and Program

Co-Chair of Ada-Europe 2006, Program Co-Chair of Ada-Europe 2012 and General

Co-Chair of ARCS 2015.

Vincent Nélis received his Ph.D. degree in Computer

Science at the University of Brussels (ULB) in 2010.

Since then, he has been working as a Research Associate

at CISTER-ISEP Research Unit in Porto, Portugal. His

research is centered around the real-time scheduling

theory, with a focus on multiprocessor/multicore sys-

tems, and in execution time and interference analysis.

Patrick Meumeu Yomsi received his Ph.D. in 2009 from

the Paris-Sud University, Orsay in France. Prior to join-

ing the CISTER Research Center as a Research Associate

in 2012 in Porto, Portugal, he was successively a mem-

ber of the AOSTE research unit at the French National

Institute in Computer Science and Control (INRIA) in

Paris Rocquencourt, France, the PARTS Research Unit at

the University of Brussels (ULB) in Brussels, Belgium,

and finally a member of the TRIO Research Unit at INRIA

in Nancy, France. His research interests include

real-time scheduling theory, real-time communication

and real-time operating systems.

1202 L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203

http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0120
http://software.intel.com/en-us/articles/intel-array-buildingblocks
http://software.intel.com/en-us/articles/intel-array-buildingblocks
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integratedcore/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integratedcore/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integratedcore/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.kalray.eu/products/mppa-manycore/
http://www.kalray.eu/products/mppa-manycore/
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0160
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0160
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0165
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0165
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0165
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0165
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0190
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0190
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0190
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0190
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0190
http://www.montblanc-project.eu/
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0205
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0205
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0205
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0225
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0225
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0225
http://www.khronos.org/opencl/
http://www.openmp.org
http://www.openmp.org
http://www.openmp.org
http://www.openmp.org
http://www.parmerasa.eu
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0255
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0255
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0255
http://www.rapitasystems.com
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0270
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0270
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0270
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0270
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0270
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://p-socrates.eu
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0290
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0290
http://refhub.elsevier.com/S0141-9331(15)00083-6/h0290

Eduardo Quiñones is a senior researcher in the

Department of Computer Science at the Barcelona

Supercomputing Center (BSC). He received his Ph.D. in

computer science from the Universitat Politècnica de

Catalunya (UPC) in Barcelona in 2008. His research

interests are strongly tied to next generation industry

requirements for critical real-time systems spanning

future many-core processor architecture, operating

system and compiler designs.

Marko Bertogna is Associate at the University of

Modena, Italy. He previously was Assistant Professor at

the Scuola Superiore Sant’Anna of Pisa, Italy, where he

also received (cum laude) a Ph.D. in Computer

Engineering.

He has authored over 60 papers in international con-

ferences and journals in the field of real-time and

multiprocessor systems, receiving six Best Paper

Awards and one Best Dissertation Award. He served in

the Program Committees of the major international

conferences on real-time systems.

Paolo Burgio got a M.S. degree in Computer

Engineering from the University of Bologna in 2007, and

a Ph.D. in Electronics Engineering jointly between the

University of Bologna and the University of

Southern-Brittany, in 2013. He now holds a post-doc

position at University of Modena and Reggio Emilia. His

main research interests are embedded many-core

architectures and programming models, heteroge-

neous architectures, HLS, virtual platforms, and

real-time systems.

He published several papers in top-level conferences

and journals. He took part at the development of the

VirtualSoC many-core simulator, and was involved in FP7 projects PREDATOR,

Pro3D, vIrtical, and (currently) P-SOCRATES. He is currently performing research on

predictable many-core architectures for next-generation real-time systems.

Andrea Marongiu received the Ph.D. degree in elec-

tronic engineering from the University of Bologna, Italy,

in 2010. He currently is a postdoc researcher at ETHZ,

Zurich. He also holds a postdoc position at University of

Bologna. His research interests concern parallel pro-

gramming model and architecture design in the

single-chip multiprocessors domain, with special

emphasis on compilation for heterogeneous architec-

tures, efficient usage of on-chip memory hierarchies and

SoC virtualization.

Claudio Scordino obtained Master Degree and Ph.D. in

Computer Engineering from the University of Pisa in

2003. In 2007 he obtained the Ph.D. from the same

university, with a thesis about power-aware real-time

scheduling. His research activities include operating

systems, real-time scheduling, energy saving and

embedded devices. He collaborates with the Linux ker-

nel community since 2008, having several patches

integrated in the official Linux kernel. He currently

works as Project Manager at Evidence Srl.

Dr. Paolo Gai, CEO, graduated (cum laude) in Computer

Engineering at University of Pisa in 2000 with a grad-

uation thesis developed at the ReTiS Laboratory of the

Scuola Superiore Sant’Anna on the development of the

modular real-time kernel SHaRK. He obtained the Ph.D.

from Scuola Superiore Sant’Anna in 2004. Since 2000, he

founded the ERIKA Enterprise project, an open-source

RTOS which recently reached the OSEK/VDX certifica-

tion, and which is currently used by various industries

and universities. Since 2002 he is CEO and founder of

Evidence Srl, a SME working on operating systems and

code generation for Linux- and ERIKA- based industrial

products in the automotive and white goods market. His research interests include

development of hard real-time architectures for embedded control systems,

multi-processor systems, object-oriented programming, real-time operating sys-

tems, scheduling algorithms and multimedia applications.

Michele Ramponi did his master degree (Ing.) in 2000

at Universita Degli Studi di Ferrara – Italy, Faculty of

Electronic Engineering. In 2003 he founded Active

Technologies in cooperation with other two business

partners and the company was focused in since the

beginning in high performance test and measurement

development, signing contracts with the most impor-

tant players on the market.

In Active Technologies Michele has been involved in

several FP7 R&D European Project in semiconductor

domain as well as high performance parallel computing

hardware development.

Michal Mardiak did his master degree (Ing.) in 2009

and Ph.D. in 2012 in Slovak University of Technology in

Bratislava, Faculty of Electrical Engineering and

Information Technology. He has joined the ATOS SA in

2013 after several years working in mobile netwrok

research focusing on LTE. In ATOS SA he has been

involved in several FP7 R&D European Project in IoT

domain as well as parallel programming area.

L.M. Pinho et al. /Microprocessors and Microsystems 39 (2015) 1190–1203 1203

	P-SOCRATES: A parallel software framework for time-critical many-core systems
	1 Introduction
	2 The predictability challenge
	3 P-SOCRATES approach
	3.1 Real-time parallel programming model
	3.2 Tackling the predictability challenge
	3.2.1 Timing analysis
	3.2.2 Scheduling
	3.2.3 Sources of interference and the memory problem

	4 Application architecture
	5 Overview of the P-SOCRATES stack
	5.1 Overview of the many-core architecture
	5.2 Software stack

	6 Related work
	7 Conclusions
	References

