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Abstract—A ‘natural’ way of describing an algorithm is
as a data flow. When synthesizing hardware a lot of design
effort can be expended on details of mapping this into clock
cycles. However there are several good reasons – not least the
maturity of Electronic Design Automation (EDA) tools – for
implementing circuits synchronously. This paper describes: a)
an approach to transform an asynchronous dataflow network
into a synchronous elastic implementation whilst retaining the
characteristic, relatively free, flow of data. b) work to translate
a synchronous elastic dataflow into a synchronous circuit whose
deterministic properties pave the road for further behavioural
analysis of the system. The results exhibit considerable benefit in
terms of area over an asynchronous dataflow realisation.

I. INTRODUCTION

The forward-looking trend in VLSI is System-on-Chip
(SoC). As SoCs expand one of the major problems encoun-
tered is designer productivity. To address this, it is becoming
necessary to abstract hardware design at a higher level, de-
scribing dataflows rather than Register Transfer Level (RTL)
interactions. Much like a software description, these high-
level flows neglect implementation details such as clocks and
are, naturally, asynchronous and elastic, i.e. there can be an
indeterminate number of data ‘tokens’ in a given place at any
instant. The clockless nature is potentially convenient in that
another problem with large SoCs is that synchronous clock
distribution is difficult and, as different units may want to
process at different rates, not always appropriate.

On the other hand, synchronous circuits are efficient, well
understood and well supported by modern Electronic Design
Automation (EDA) tools. It is unlikely that this paradigm will
be supplanted for most applications in the foreseeable future.

One approach to this problem which is gaining popularity
is BlueSpec [1] which abstracts the synchronous design flow
more than languages such as Verilog and VHDL. It exploits an
Atomic Rules and Interfaces model to realise parallelism at a
higher abstraction level. This model, in contrast to sequential
programming models (such as C++) which leverage an exten-
sion to model parallelism, is fundamentally parallel. BlueSpec
Verilog (BSV) uses Atomic Transactional Memories to handle
communication between modules/rules/processes which falls
in the line of a Latency-Tolerant Shared-Memory model [2].

A similar approach, predating this, and necessarily neglect-
ing clock cycles has been taken in the asynchronous logic
community with languages such as Balsa [3], Haste/TiDE
(formerly Tangram) [4] and CAST/CHP [5]. These languages

exploit a Communicating Sequential Processes (CSP) model to
implement concurrency. Here, processes communicate through
message passing which has to be realised with handshaking.
These languages have suffered from drawbacks in performance
– typically from the need for handshake communications
when transferring data rather than relying on evaluating within
a prescribed cycle time – and area overheads due to the
provision of the extra handshake circuitry. The community
has attempted to address performance issues by improving the
control flow [6], [7], [8]. Recently, Teak [9] and Click [10]
have been proposed as dataflow synthesis frameworks to tackle
the control overhead of Balsa and Haste, respectively.

A less radical approach to alleviating clocking problems
and reducing the handshake overhead is Globally Asyn-
chronous, Locally Synchronous (GALS) [11] design, where
synchronous ‘islands’ of logic run without synchronisation
between them. The main problems of GALS design are the
lack of methodology and tool support for partitioning the
system. Existing GALS methods are somewhat ad hoc; only
rudimentary design automation has been proposed [12] where
the top-level hierarchy determines the boundaries of the syn-
chronous islands.

This paper describes a method to automate GALS-like
implementation at a high-level of abstraction, independent
of technology, protocol, data encoding or other details of
circuit design. This starts from a high-level asynchronous
specification but first introduces a common timing discipline
by transforming it into synchronous elastic dataflows. These
are then clustered into blocks automatically, inside which the
fine grained elasticity can be eliminated to gain significant
area savings. The blocks are still linked by data flows with
elastic connections where a variable number of data tokens
may be queued on the communications channels. The resulting
network is reminiscent of macro-modules [13] with go and
done activation signals although modules could be clocked in-
ternally. The ability to partition the elastic circuit automatically
allows an exploration of many optimisation possibilities as the
elasticity is reduced.

Paper Organisation: Section II introduces our contribu-
tion in this work. Section III overviews the current problems
with GALS design. Section IV describes the properties of Teak
and Section V looks at them from a GALS perspective. Section
VI draws the advantages that synchronous elastic dataflow
has over its asynchronous realisation as the first contribution.
Section VII explains our second contribution. Finally, Section
VIII depicts the results and Section IX concludes this work.
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II. OUR APPROACH

Our approach exploits the fine-grained data-flow concur-
rency inherent from the asynchronous design rather than just
preserving the latency insensitivity. We aim at raising the
design abstraction level from RTL to algorithmic level to pro-
vide the designer with a flexible implementation of concurrent
hardware. At this level, system functionality is specified by
data flows, apart from timing constraints. In general, raising
the level of abstraction could have three major benefits:

1) The designer is able to specify the hardware in the form
of concurrent data flows rather than thinking in a sequential
manner and squeezing the tasks in time boundaries.

2) It provides traditional designers with an interface to
cover their unfamiliarity with asynchronous techniques, pro-
tocols or data-encoding in circuit implementation.

3) A higher level abstraction allows flexible exploration
of the design space based on formal models, e.g. Petri nets
[14] where it is possible to consider different analyses and
measurements.

Contributions:

a) Regarding the advantages of Teak, we exploit a syn-
chronous elastic flow (aka SELF protocol [15]) to introduce
a common timing discipline to the circuit which transforms it
into a clocked, latency insensitive system. A latency-insensitive
system is able to tolerate dynamic changes in the computation
and communication delays. This feature enables us to raise
the level of abstraction to the data-flow representation where
functionality is separated from timing details. Therefore, it is
possible for a designer to specify a large scale system by
concentrating only on its functionality and postpone timing
complexity to when synthesis takes place. Moreover it enables
the tool to exploit synchronous EDA for logic synthesis
whilst preserving the fine-grained concurrency and the network
properties. The details are discussed in section IV. Figure 1
(a) corresponds to the SELF-adapted components integrated
in Teak and (b) refers to buffers that are inserted to ensure
deadlock freedom in the dataflow context.

b) A transformation mechanism was derived to partially
convert Teak Dataflow Networks (TDNs) into Synchronous
Sequential State Machines (SSMs) [16] which reduces the
level of elasticity by partially removing the inter-component
communications (figure 1 (d)). The algorithm is described in
section VII. Following that, a heuristic is being developed
to automatically partition the network based on its functional
behaviour using ‘GALSification’ techniques [17] (figure 1 (c)).

III. OBSTACLES WITH TRADITIONAL GALS DESIGN

Three decades ago the GALS concept was introduced [11].
Since then academia and industry have attempted to exploit
this concept in SoC design which can, potentially, benefit from
its multi-clocked behaviour. Broadly speaking, all the efforts
to exploit GALS fall in the lines of ad hoc design where
synchronous blocks are glued together using trivial interfacing
logic and synchronisers [18]. The tremendous challenge with
the multi-clock design is the implementation of stable com-
munication between clock islands. To combat this issue many
techniques are proposed in the literature including pausible

Fig. 1. Extended Teak synthesis flow

clocks, asynchronous and loosely synchronous interfacing etc.
These techniques address the cross-timing issues through FIFO
insertion which needs accurate consideration of timing details
at circuit level and is survivable only by using the assemble-
and-verify technique.

We believe that the time has arrived to automate the build-
ing of GALS systems without reflecting the extreme timing
behaviour of the circuit to the designer. It is agreed that the
synchronous approach with the associated accuracy compli-
cates the design when it comes to SoC while the asynchronous
approach simplifies the design aspects by separating timing
from functionality [19]. Accordingly, we employ the asyn-
chronous design approach along with advanced communication
protocols to investigate the possibilities towards developing a
new synthesis paradigm for GALS design. Section V explains
our approach towards this objective.

IV. TEAK: A DATA-FLOW SYNTHESIS SYSTEM

We group the features of Teak into communication and
computation facets. From the communication perspective Teak
networks are synthesised in a syntax-directed compilation
manner from a CSP-like language. The primitives of the lan-
guage, including channels and processes, are preserved which
form point-to-point communication between the computation
blocks at hardware level which contributes to concurrency and
synchronous message passing.

The networks are slack elastic [20] which means the
communication channels are capable of storing a bounded
number of tokens. This feature enables us to modify the level
of pipelining over the channels without affecting the behaviour
of the circuit.

From the computational perspective the network is built
based on the macro-module style [13] with separate go
and done activation signals. These modules are chained in
sequence or parallel according to the source level directives.
The macro-module architecture contributes to a distributed
control mechanism where the datapath and the corresponding
control are enclosed within a macro-module.

Accordingly, modules are controlled locally through hand-
shaking so whenever data becomes available computation can
start. This concept has already been introduced in data-flow
systems [21]. Based on this concept data-dependent compu-
tation becomes possible which means that independent data
streaming could exist within a module which can significantly
influence the performance of the circuit. In addition, it allows
the tool to perform functional decomposition over a module
and define new boundaries.
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V. TEAK TOWARDS GALSification

We explain how the features of Teak are exploitable
towards automating the GALSification process and multi-
clocked SoC design.

1) Point-to-Point Communication: Point-to-Point (PTP)
communication enables a module to have independent rates
of data streaming from different sources which contribute
to a higher level of concurrency and accordingly effective
throughput. Let’s assume that module A with the input set
{a,b,c,d} and the output set {x,y} is capable of performing
two functions {f,g} which are not necessarily independent
internally. The function f takes {a,b} as input and g takes
{c,d}. Assume that input values are supplied with different
bounded rates of a’, b’,c’ and d’ where a’ is the slowest
rate with one token/cycle and the rest with three tokens/cycle.
Therefore g can operate and produce output independent from
a’ which results in higher throughout of module A. This
technique is well-known in data-streaming and multimedia
system design where it resolves the rate mismatch issue. The
PTP communication is closely compatible with the data-flow
computation style of the modules which is discussed later.

2) Slack Elasticity: A Slack Elastic system can be pipelined
with any degree of storage on its communication channels.
This behaviour was first formalised for the distributed compu-
tation systems which were described in a CSP-like language,
CHP [20]. Slack Elasticity provides a flexible communication
environment for the computational blocks in the system. We
take advantage of this feature in Teak to optimise the processes
without affecting the overall functionality of the system. Com-
position and decomposition of modules towards GALSification
benefit from elastic communication which is not available
in the synchronous domain where rigid timing controls the
communications. The elastic behaviour is preserved when the
SELF protocol is employed. In section VIII we demonstrate a
synchronous elastic processor which follows this concept.

3) Macromodule Style: The Macromodule logic was in-
troduced to enable designers to implement complex circuits
using simple data processing building blocks [13]. Later,
this concept was used to simplify the asynchronous control
design [22]. Teak employs this technique to perform control
interactions locally instead of using a separate central control
unit which has significant performance implications. We ex-
ploit distributed control behaviour to perform functional com-
position and decomposition of Macromodules which results
in defining new boundaries within the network. Moreover,
the Macromodules allow us to optimise one module without
affecting the behaviour of the network.

4) Dataflow Architecture: Dataflow machines emerged as
an alternative design style to reduce the centralised control
effect and speed up the computation by prioritising the data
[21]. In Teak networks dataflow architecture joins with PTP
communication, realises concurrency and eases the modules’
decomposition process. Decomposing the modules towards
GALSification based on their functionality, rather than struc-
tural properties, is our main objective.

Teak extracts parallel entities from the high-level Balsa
code, produces a Control-Data Flow Graph (CDFG) and then
maps it onto Macromodules with local control handshaking
through the go-done channels. Therefore the resulting circuit

Fig. 2. SELF adapted Teak component set

benefits from a distributed control scheme. This feature al-
lows us to explore different architectures by replacing the
communication-heavy asynchronous designs with Finite State
Machines (FSMs) which would trade off the elasticity and the
concurrency level inherent in the asynchronous design.

VI. SYNCHRONOUS ELASTIC TEAK DATAFLOW

NETWORKS

From the above mentioned features of Teak, it was consid-
ered as a desirable framework to investigate high-performance
synchronous elasticity from a high-level perspective. To in-
corporate synchrony in Teak, the existing component library
was adapted to the SELF protocol and buffers are converted
to time decoupling controllers to govern the flow of control
and data based on the elastic protocol [23]. An asynchronous
buffer stage comprises a transparent latch with its associated
controller whereas a synchronous buffer will be an edge
triggered register. The component set is depicted in Figure 2
and the associated functionality of each is described in sec-
tion VII. Since the new component set does not imply any
combinational feedback loops within the network, conventional
EDA can be used for optimisation purposes. Moreover, SELF
is beneficial for the computation blocks as it simplifies the
deadlock issue with loops according to its simple interlocking
behaviour.

By incorporating SELF in the Teak flow, the CSP-based
networks of Teak are transformed to synchronous dataflow ma-
chines whose properties are potentially beneficial for hardware
modelling and synthesis as their behaviour is comparatively
deterministic. The following are the advantages these machines
have over their asynchronous counterparts. The corresponding
results are proposed in section VIII for a case study.

1) Simplified loop structures regarding correctness: In
an asynchronous loop each cycle must have always enough
buffering for a lead token to move forward and leave space
for the following token. Consequently, at least three latches are
required in a cycle to ensure correctness. In a SELF adapted
loop one master-slave register is enough as tokens’ movements
are synchronised with the clock. Figure 3 depicts a simple loop
structure in Teak to realise iterative operations.

2) Reduced dynamic power due to lower switching activity:
The SELF protocol uses forward-interlocking to transfer data.
The backward path goes active occasionally when data gets
blocked. Therefore, full-interlocking for each transfer using
Request and Acknowledge (aka handshake signals) is not
required which contributes to lower switching activity between
the sender and receiver stages. Moreover, time-decoupling
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Fig. 3. Top Structure: an An asynchronous loop (ring) needs at least 3 latches
to ensure correctness. Bottom Structure: a SELF adapted loop needs only one
Elastic Block with a pair of latches to work properly

controllers in SELF employ clock-gating which reduces the
switching activity of the storage elements in the datapath.

3) Datapath improvement using a synchronous EDA li-
brary: Data manipulation components generated by Teak use
QDI encoding for computation which is necessary as the
environment uses the same encoding for communication. By
adapting SELF, exploiting synchrony in the computation units
becomes possible as the communication fabric follows the
same timing behaviour. This concept triggers the idea proposed
in section VII.

4) Cell area reduction: The Teak back-end generates 1-of-
2 4-phase QDI circuits with no need for timing assumptions.
This class of circuits occupy almost four times more area than
bundled-data circuits [22] which assume bounded delay for
signal transfer. SELF employs bundled-data encoding for the
clocked circuits which removes the necessity for considering
additional timing assumptions. Therefore, our SELF adapted
dataflows are four times smaller than Teak circuits.

VII. TRANSFORMING TDN TO RTL INTERFACING WITH

SYNCHRONOUS EDA

Introducing synchronous locality to the network for remov-
ing the unnecessary communication overhead is the motivation
for this section. Figure 4 shows the cycle-accurate switching
activity of the links in a SELF-adapted processor. It is obvious
that the communication overhead of the system due to fine-
grained handshaking could be prohibitive in terms of power
and performance. The triangle symbols in the figure belong to
the Retry state of SELF in which the associated link is stopped
and is not allowed to transfer data. In an ideal system, for
the sake of performance, Retry should not happen at all. To
tackle this issue we need to insert several buffers to balance
the pipelines in the system and avoid Retry-ing. Moreover,
due to the fine-grained combinational communication between
components, several glitches trigger in each link before they
stabilise and clear for the next cycle. Although the same as
any synchronous system, the glitches get resolved as the next
clock edge comes up, they would be potentially influential
on dynamic power. Regarding these problems, we believe
that moving towards coarser granularity will be beneficial for
synchronous elastic TDNs.

Fig. 4. The communication states associated with each link in a synchronous
elastic dataflow processor is monitored. Due to the fine-grained combinational
nature of the network, several glitches occur within each clock cycle.

To alleviate the handshake overhead, we introduce syn-
chrony to the network to let synchronous EDA re-synthesise
the system locally to reduce the fine-grained communication
overhead whilst the environment enjoys the inherent properties
of asynchrony. In this work we propose an RTL transformer
which acts as an interface with synchronous EDA. The follow-
ing explains the transformation algorithm and section VII-D
discusses the details of binding a synthesised synchronous
machine into the Teak dataflow network.

A. The Algorithm

Our approach performs state-space exploration of the net-
work which is essentially the same as executing the graph.
We extract all possible data manipulation scenarios from the
graph by traversing the control flow. Our technique takes out
the operations and squeezes them into clocked states where
dataflow is implicitly governed by clock and data assignments,
explicitly done by evaluating the expressions and moving the
value into the variables.

The algorithm, shown in Figure 5, starts traversing the
CDFG from a given component (source) using a Depth-
First Search (DFS) policy by invoking the top-level function,
ExtractFSM(). The function terminates when it reaches an
output link or a given arbitrary component (sink). In this
way, all possible data paths get detected. Whilst searching,
the visitComp() function visits the components in the path and
translates the associated functionality to Verilog expressions.
Thereafter, addToStateGraph() does processing and inserting
them into the state graph. After traversing the network re-
cursively by DFS(), lines 9-17, the runFSM() function in line
2 outputs the detected states with associated data expressions
and variable assignments considering the order of the states.

Definition 1. [State Graph] is a directed graph denoted
by a triple SG = (S,C,L), where S is a finite set of states
representing expressions, assignments and statements with a
finite set of arcs denoting input and output links. C holds the
number of the states in the graph and L is the label given to
each graph associated with the procedure label in the Teak
network.

Definition 2. [Execution Scenario] is a sequence of compo-
nents that the search function extracts from a source to a sink
in a macromodule. A source/sink can be either a component
or an input/output port.
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1: procedure EXTRACTFSM(part)
2: runFSM . DFS (visited, comp)
3: where
4: inputComps = GetInputComps(part)
5: outputComps = GetOutputComps(part)
6: visited← ∅
7: comp← inputComps
8:

9: DFS (visited, comp)
10: if CheckVisited(visited, comp) then
11: return visited
12: else
13: nextComps = GetNextComps(part, comp)
14: addToStateGraph . visitComps (nextComps)
15: visited′ =foldl markJoin(part) visited comps
16: foldl DFS visited′ comps
17: end if
18: end procedure
Fig. 5. Teak Dataflow Network to RTL Transformation algorithm

A linear system (Choice-free) is a singleton execution
scenario that receives a set of data from its input ports,
manipulates the data, and finally writes to the output FIFO.
Due to presence of Steer (Choice) and Fork in the network the
control flow is not linear. Therefore, the extracted scenarios for
a non-linear network might encounter state explosion. To avoid
this problem we choose target sub-networks with a limited
number of components for the transformation (figure 6).

We next explain the RTL implementation of some Teak
primitives. It should be noticed that the RTL transformer does
not preserve the handshake property of the primitives. In this
regard, to ensure the correct functionality additional buffering
would be required.

1) Steer: chooses the output path based on the incoming
data value, so it functions as a data driven de-multiplexer.
Therefore it is able to change the control flow which is similar
to ‘if/else’ or ‘case’ statement in RTL.

2) Fork: introduces concurrency to the circuit which: a)
activates two or more macro-modules at the same time or
b) supplies them with data. Therefore it is a parametrisable
component capable of carrying any number of bits from
input to outputs. In case (a) as long as macro-modules are
independent they will function in parallel. The example in
Figure 7 shows blocks A and B activated by a control Fork.
However, due to data dependency of B on A, the control Fork
is redundant and our method will consider them in sequence.
The markJoin function in figure 5 at line 15 checks for this
sort of structure in the design. In case (b), Fork gets translated
to data assignments from input link to the output links.

3) Merge: multiplex input links based on first-come-first-
served policy, so inputs should be mutually exclusive. This
component is also parametrisable, meaning that Merge could
act as a data or control multiplexer. In the RTL context, a
data Merge is where several scenarios come together. There-
fore their successor components are the same. ExtractFSM()
considers this into account to detect the overlapping scenarios
and remove the redundant states. A control Merge will get
removed since it is not a part of the dataflow.

4) Join: synchronises data of arriving inputs. A two-way
join of n and 0 bits can be used as a conjunction of data

Fig. 6. a) A typical TDN graph b) The grey area is a random cut consisting
of an arbitrary number of SELF adapted components c) The selected part is
transformed into a SSM with additional buffering at its input and output arcs
to resolve hazards

and control. When the input links are not control signals,
the translation is a simple concatenation followed by an
assignment, but when at least a link is a 0 bit signal, it implies
control dependency which means that other data links should
wait for a task to complete. ExtractFSM() considers this join
after making sure that the associated scenario with the 0 bit
signal is already extracted. markJoin() function takes care of
it. This kind of Join acts as a sequencer [3] in Balsa. Later,
buffering will be required to ensure that data arrive to the join
at the same time.

5) Variable: stores data permanently. A variable in the
Teak dataflow network has a single write port and multiple
parametrisable read ports. The read-after-write (RAW) and
write-after-read (WAR) links in the control flow allows us to
distinguish reads and writes and put them into separate states.
In the RTL context, initially all the variables are defined as
multi-bit registers in the beginning. A read from a variable is
translated as assigning the content of the register to the output
wire. Similarly, a write to a variable is translated as assigning
the current value of the input wire to the register.

A Pseudo-code of our approach is shown in Figure 5.

B. An example: Sparkler Shifter Unit

To test our method several small-scale designs have been
exercised. The shifter example is a pipeline-like structure that
allows us explain the flow clearly. It is a two-stage 32-bit
shifter unit from Sparkler processor which is a cut-off version
of SPARC v8 architecture [24] implemented in Balsa. The
shifter is capable of shifting at most two bits per iteration.
For the sake of simplicity, the number of stages is reduced
from five to two yet preserving the same control flow. The
corresponding Balsa code is depicted in Figure 8 and the Teak

Fig. 7. A macromodule consist of two blocks. The control Fork initiates
both to realise parallelism which is inherent in specification. The dotted link
represents data dependency between A and B.
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Fig. 8. The sparkler shifter unit written in Balsa a) Case statement on Shift
value for data manipulation in Shift-body procedure b) shows the main body
of the Shifter procedure written recursively

implementation of this unit using Teak primitives is shown
in Figure 9. Due to the syntax-directed translation, one-to-
one binding exists between the statements in the code and the
generated structures for variables (V), operations (O), Steer
(S), Merge (M), etc.

The code is written in a recursive way to demonstrate the
power provided by the language. The case statement within the
local shift-body procedure determines the core functionality
of the circuit. In this example shift-body is called twice so
the Teak compiler unfolds them and creates a separate stage
for each in the form of macromodules, MM1 and MM2. The
distance-shift variable captures the input values from distance
and shift input ports upon which the number of bits for shifting
the data at each stage gets decided.

C. RTL for the shifter example

The RTL code generated for the shifter example is depicted
in Figure 10. The code is in the form of an FSM in which
the state flow is extracted from the CDFG of the shifter unit.
By considering the graph as a macromodule with separate
go and done (implicit) signals, it is possible to analyse the
behaviour in terms of the rates associated with reads/writes
from/to output/input FIFOs.

The grey route in Figure 9 shows a possible scenario
in the dataflow whose associated states 1-19 are depicted in
Figure 10. The wide coloured links are for data and narrow
black ones are for control tokens. After receiving a go, the
data provided by shifter,distanceI input ports flows into the
network and gets captured by the distanceI-shift variable (C3).
Thereafter, a read-after-write (RAW) link allows the arg port

Fig. 9. Sparkler shifter graph with two stages of data manipulation which is
simplified to depict the control and the dataflow separately.

inject its data into the circuit which gets stored in i variable
(C6). Then, the associated RAW link becomes active which
informs the control flow (C7) that the data is available and
processing data can start.

In this example, the RAW link from the distanceI-shift
variable (C3) gets distributed by a control Fork (C4) which
means that more than one macromodule (MM1 and MM2)
is allowed to start computation by reading data from this
variable which implies concurrency. Due to a data dependency
between MM1 and MM2 it is not possible to implement them
as concurrent FSMs. Therefore the algorithm ignores (C4) and
puts the corresponding states with each macromdule into the
state graph in sequential order. In Figure 10 states 7-11 are for
MM1 and 12-19 are connected with MM2.

Another possible scenario may take place when Steer (C9)
chooses the second option which transfers the control to state
20 where data is read from (C3) and fed to (C17), a three-
choice Steer, which is pointing at (C12) with four read ports.
Each branch is able to take the data from the variable and
carry it to the output (sink).

The algorithm described in this paper is implemented in
Haskell and incorporated in the Teak flow. The software is
able to partially transform TDN to FSM. For this example it
extracts 16 execution scenarios with 56 states. Figure 10 shows
the output for this process.

D. Synchronous Sequential Machine (SSM) Transformation

So far we explained a method to transform macromodules
in a TDN into an intermediate HDL representation which is
in FSM format extracted from CDFG with enclosed expres-
sions within the states to realise the datapath components.
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module teak_Shifter (go, shift, distanceI, result, arg, clk, reset);

input go;
input [1:0] shift;
input [4:0] distanceI;
output [31:0] result;
input [31:0] arg;
input clk;
input reset;

//internal links defined as wires
//variables defined as registers

always @ (posedge clk) begin : FSM_SEQ

if (reset == 1’b1) begin
state <= #1 1;

end else begin
state <= #1 next_state;

end
end

always@(*) begin : FSM_COMB

case(state)
0: next_state = 1; //go
1: L128 = {shift,distanceI}; next_state = 2;
2: L150 = L128[6:0];L151 = L128[2:2];L147 = L128[1:1];next_state = 3;
3: distanceI-shift = L150; next_state = 4;
4: next_state = 5;
5: L72 = {arg}; next_state = 6;
6: i1 = L72; next_state = 7;
7: L187 = {L151}; next_state = 8;
8: L188 = L187[0:0]; next_state = 9;
9: case (L188): 0: next_state = 10; 1: next_state = 20;
10: L78 = i1; next_state = 11;
11: L87 = L78; next_state = 12;
12: L35 = {L87}; next_state = 13;
13: i2 = L35; next_state = 14;
14: L184 = {L147}; next_state = 15;
15: L185 = L184[0:0]; next_state = 16;
16: case (L185): 0: next_state = 17; 1: next_state = 34;
17: L105 = i2; next_state = 18;
18: L112 = L105; next_state = 19;
19: result = L112[31:0]; next_state = 1;
20: L174 = distanceI-shift; next_state = 21;
21: case (L174): 3: next_state = 22; 0: next_state = 26; 1: next_state = 30;
22: L138 = i2[30:0];
23: temp = 1; L111 = {L138[30:0],temp[0:0]}; next_state = 24;
24: L112 = L111; next_state = 25;
25: result = L112[31:0]; next_state = 1;
26: L136 = i2[30:0];
27: temp = 0; L107 = {temp[0:0],L136[30:0]}; next_state = 28;
28: L112 = L107; next_state = 29;
29: result = L112[31:0]; next_state = 1;
30: L137 = i2[30:0];
31: temp = 0; L109 = {L137[30:0],temp[0:0]}; next_state = 32;
32: L112 = L109; next_state = 33;
33: result = L112[31:0]; next_state = 1;
//...
default : $display("ERROR in FSM_COMB");

endcase
end
endmodule

Fig. 10. The RTL output for the shifter example

Considering this method, it is possible to use synchronous
EDA to synthesise and optimise TDNs partially. EDA takes
the extracted FSM and synthesises it into an SSM.

Definition 3. An SSM is a network of combinational logic
such as binary gates and sequential logic such as registers.
In an SSM a cycle consisting only of combinational elements
is not allowed [16]. Synchronous EDA is able to synthesise
SSMs from behavioural or structural HDL specifications.

After generating the SSM for the corresponding partition,
the machine is transformed to a patient system [16] whose
clock is controlled by a synchronous elastic block [15].

Definition 4. A patient SSM is a latency-insensitive ma-
chine [25] whose registers are controlled by a global enable
signal. When this signal is low, the state of the sequential
elements freezes; no state updates occur. Any SSM is trans-
formable into a patient SSM [16].

According to the slack elastic property of TDN, buffering
the input and output ports for any degree does not affect the
functionality. We have used Synopsis’ Design Compiler to
synthesise the datapath elements of our case study [26] and
transform them into the patient systems. The corresponding
results are shown in the next section. There is no reason
why this method cannot be applied to more complicated
synchronous machines. Figure 6(c) shows an abstract view of
the hierarchical transformation where a random cut of a TDN
is implemented as a SSM and inserted into the graph.

VIII. RESULTS

This section shows the results for the benefits achieved
through the extended Teak flow, discussed in VI.

A. Synchronous Elastic Sparkler Shifter

Basically, the shifter example discussed in section VII-B
consists of two pipeline stages which are wrapped in a single
feedback loop (aka algorithmic loop). To ensure deadlock
freedom (see section VI), the async. version of this 32-bit
shifter needs a 3-stage latch whilst the sync. version run-
ning at 550MHz works with only one elastic buffer whose
overall latency is 7.2ns which shows 15% improvement. This
experiment depicts that the forward-interlocked behaviour of
SELF can potentially dominate the performance of the full-
interlocked async. protocol in the context of the pipelined
architectures.

B. Synchronous Elastic SSEM Processor

As another case study the Manchester Small-Scale Exper-
imental Machine (SSEM) is exercised [26]. The high level
specification of this computer is developed in Balsa and has
been synthesised onto hardware using the Balsa synthesis
system [27]. This machine comprises three stages, which
resembles commodity processors. Due to its simplicity, it is
chosen as a case study to practise synchronous elasticity on a
general purpose processor. Its Balsa description is synthesised
using Teak and the new flow to generate asynchronous and
synchronous elastic versions with the same level of granularity.

In Figure 11 the area cost associated with truly asyn-
chronous and synchronous elastic design styles is depicted.
The results demonstrate that our flow achieves a substantial
impact on area: up to 4.5x improvement.

This experiment also confirmed that SELF preserves slack
elasticity which is the key property for our further investiga-
tions. The first pair of columns in Figure 12 shows the results
in terms of area and performance for a fully buffered SSEM
in which each link has storage (200 buffers). A GCD program
with 30 iterations was run in this experiment. According to
the results, although the fully buffered synchronous SSEM
has shorter critical path delay, its throughput is 3.7x degraded
relative to the asynchronous dataflow.

As expected, fine-grained buffering the asynchronous
dataflow can improve the overall throughput as it reduces the
cycle time (Trequest + Tacknowledge), but this buffering policy
can be extremely prohibitive for throughput in the synchronous
domain as each buffer consumes one clock cycle. Especially in
a processor architecture where data and control dependencies
prevent efficient pipelining.

As discussed in section VI, SELF simplifies the loop
structures in the dataflow network and allows the use of
synchronous CAD tools to optimise the circuit, particularly
computation-heavy data manipulation units and detects the
combinational loops for the sake of deadlock freedom. The
second pair of columns in figure 12 demonstrate results with a
necessary amount of buffering to ensure deadlock freedom.
In this experiment the asynchronous SSEM has 65 buffers
based on an algorithm for deadlock detection [28], whilst the
synchronous elastic version has only 6 buffers.
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Fig. 11. The asynchronous dual-rail SSEM vs. its synchronous elastic
counterpart in terms of cell area (UMC 130nm technology). Each column
is fragmented based on the existing entities in the circuit. Buffers are used to
remove deadlock.

Although our approach results in a significant reduction
in area, there are costs associated with this improvement. In
terms of throughput, the synchronous elastic SSEM degrades
by a factor of 1.3x. To tackle this, further slack matching
[20] is required to balance pipelines towards performance
improvement which is under development.

IX. CONCLUSION AND FUTURE WORK

This work successfully proposes an extension to Teak flow
enabling it to synthesise synchronous elastic dataflow from
fully asynchronous concurrent specification. This approach not
only preserves the properties of asynchronous dataflows, but
also it allows exploitations to be performed using mature
CAD tools for further transformations in the synchronous
domain. Based on the analysis, elasticity at component level
suffers from prohibitive costs in terms of performance as com-
munication overhead dominates computation. A reasonable
alternative is to replace these with Synchronous Sequential
Machines (SSMs) in which rigid timing removes elasticity.
Accordingly, this work also presents an approach towards de-
elasticising handshake based macromodules using synchronous
EDA. As future work, we will focus on composing/grouping
the macromodules based on their timing behaviour to form
clocked islands.
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