
Green Computing: Power Optimisation of VFI-based
Real-time Multiprocessor Dataflow Applications

Waheed Ahmad∗, Philip K.F. Hölzenspies†, Mariëlle Stoelinga∗, Jaco van de Pol∗
∗University of Twente, Netherlands

Email: {w.ahmad, m.i.a.stoelinga, j.c.vandepol}@utwente.nl
†Facebook Inc. Email: drphil@fb.com

Abstract—Execution time is no longer the only performance
metric for computer systems. In fact, a trend is emerging
to trade raw performance for energy savings. Techniques like
Dynamic Power Management (DPM, switching to low power
state) and Dynamic Voltage and Frequency Scaling (DVFS, throt-
tling processor frequency) help modern systems to reduce their
power consumption while adhering to performance requirements.
To balance flexibility and design complexity, the concept of
Voltage and Frequency Islands (VFIs) was recently introduced for
power optimisation. It achieves fine-grained system-level power
management, by operating all processors in the same VFI at a
common frequency/voltage.
This paper presents a novel approach to compute a power man-
agement strategy combining DPM and DVFS. In our approach,
applications (modelled in full synchronous dataflow, SDF) are
mapped on heterogeneous multiprocessor platforms (partitioned
in voltage and frequency islands). We compute an energy-
optimal schedule, meeting minimal throughput requirements. We
demonstrate that the combination of DPM and DVFS provides an
energy reduction beyond considering DVFS or DMP separately.
Moreover, we show that by clustering processors in VFIs, DPM
can be combined with any granularity of DVFS. Our approach
uses model checking, by encoding the optimisation problem as a
query over priced timed automata. The model-checker UPPAAL

Cora extracts a cost minimal trace, representing a power minimal
schedule. We illustrate our approach with several case studies on
commercially available hardware.

I. INTRODUCTION

The power consumption of computing systems has in-
creased exponentially [11]. Techniques like Dynamic Power
Management (switching to low power state) (DPM) [5] and
Dynamic Voltage and Frequency Scaling (throttling proces-
sor frequency) (DVFS) [19] help modern systems to reduce
their power consumption while adhering to the performance
requirements. However, in case of DVFS, distributing a single
global frequency to all processors does not prove to be
energy efficient. Similarly, assigning single local frequency per
processor adds up to the design complexity.

To balance energy optimisation and design complexity, the
concept of voltage-frequency islands (VFIs) [10] was intro-
duced to achieve fine-grain system-level power management.
A VFI consist of a group of processors clustered together,
and each VFI runs on a common clock frequency/voltage. The
clock frequencies/voltage supplies of a VFI may differ from
other VFIs. Furthermore, different VFI partitions represent
DVFS policies of different granularity.

While DPM and DVFS are popular power minimisation
techniques, the earlier state-of-the-art work [13][15][20] fo-
cusses on DVFS only, neglecting static power completely. On

the contrary, modern processors have significant static power,
and must be addressed. Hence, optimal power minimisation
cannot be guaranteed without considering both DVFS and
DPM. More advanced approaches that combine DPM and
DVFS are presented in [6][18]. Unlike our method, these ap-
proaches discuss a specific power reduction policy where DPM
and DVFS can be applied to each processor independently
only. In contrast, we consider VFI-based hardware platforms
where DPM and DVFS can be applied with any DVFS policy.

This paper is the first to compute energy schedules for
combined DPM and DVFS, on a heterogeneous multiprocessor
platform, partitioned in voltage-frequency islands (VFIs). With
the help of VFIs, we combine DPM with a DVFS policy
with any granularity, generalising local and global DVFS. This
achieves fine-grained system-level power management.

We use Synchronous Dataflow (SDF) [12] as a compu-
tational model. SDF provides a natural representation of real-
time streaming and DSP applications. Contemporary SDF anal-
ysis tools, e.g., SDF3 [16] lack support for energy optimisation,
while power reduction techniques based on mathematical op-
timisation [6][13][18] do not support model-checking of user-
defined properties. Therefore, we propose a novel approach
based on Priced Timed Automata (PTA). These extend timed
automata [3] (for the modelling of time-critical systems and
time constraints) with costs, which we use to model energy
consumption. PTA can be analysed by the tool UPPAAL Cora
[4] (Cost Optimal Reachability Analysis). PTA and UPPAAL’s
model checker also extend the analysable properties to include
for instance the absence of deadlocks and unboundedness,
safety, liveness and reachability. Finally, PTA provide straight-
forward compositional and extensible modelling capabilities
to system engineers, as opposed to mathematical optimisation
approaches.

Our approach takes three inputs: an SDF graph that models
the application; a platform model that describes the specifics
of the hardware such as VFI partitions, frequency levels and
power usage per processor; and a throughput constraint. We
compute an energy optimal schedule that meets the constraint,
utilising the dynamic and static slack in the application.

The main contribution of this paper is a fully automated
technique to compute power-optimal schedules. In particular,
we demonstrate the following: (1) We apply a combination of
DPM and DVFS, confirming earlier results [7][8] that DPM
and DVFS together result in lower energy consumption than
considering only DVFS; (2) Our method considers processors
partitioned into VFIs; thus allowing to combine DPM, and
DVFS policy with any granularity. (3) We consider the transi-
tion overhead between different frequencies. (4) Our approach

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.59

271

FD,2 MC,1

RC,1

VLD,1 IDC,1

1

1

11

1

1 1
x

1

1 1

1

x
1

x

1

1
1

1

1

x

1

Fig. 1: MPEG-4 Decoder

is able to handle heterogeneous platforms, in which only
specific processors can run a particular task. Moreover, our
technique is based on the solid semantic framework of Priced
Timed Automata, enabling the verification of functional system
correctness.

II. PROBLEM FORMALISATION

A. SDF Graphs

Typically, real-time streaming applications execute a set of
periodic tasks, which consume and produce a fixed amount of
data. Such applications are naturally modelled as SDF graphs:
a directed, connected graph in which tasks are represented by
actors. Actors communicate with each other via streams of
data elements, represented by tokens .

Definition 1. An SDF graph is a tuple G = (A,D,Tok0, τ)
where: A is a finite set of actors, D ⊆ A2 × N

2 is a finite
set of dependency edges, Tok0 : D → N denotes distribution
of initial tokens in each edge, and the execution time of each
actor is given by τ : A→ N≥1.

An actor a ∈ A can fire if each input edge (a′, a, p, q) ∈
In(a) of a contains at least q tokens; firing actor a removes
q tokens from the input edge (a′, a, p, q). Firing lasts for τ(a)
time units and ends by producing p′ tokens on each output
edges (a, b, p′, q′) ∈ Out(a). Each actor a ∈ A fires according
to the repetition vector γ(a) in an SDF graph iteration [9].

Example 1. Figure 1 shows the SDF graph of an MPEG-
4 decoder [17]. The SDF graph contains five actors
A={FD, VLD, IDC,RC, MC}, representing the tasks per-
formed in MPEG-4 decoding. For example, the frame detector
(FD) determines the number of macro blocks to decode. To
decode a single frame, FD must process between 0 and 99
macroblocks, i.e., x ∈ {0, 1, . . . , 99} in Figure 1.

B. Platform Application Model

The Platform Application Model (PAM) models the multi-
processor platform where the application, modelled as SDF
graph, is mapped on. Our PAM models supports several fea-
tures, including (1) heterogeneity, i.e., actors can run on certain
type of processors only, (2) a partitioning of the processors in
voltage and frequency islands, (3) different frequency levels
each processor can run on (4) power consumed by a processor
in a certain frequency, both when in use and when idle, (5)
power-overhead required to switch between frequency levels.

Definition 2. A platform application model (PAM) is a tuple
P = (Π, ζ, F,Pidle ,Pocc ,Ptr , τact) consisting of a finite

Level Voltage Frequency Level Voltage Frequency

1 1.2 1400 4 1.05 1128.7

2 1.15 1312.2 5 1.00 1032.7

3 1.10 1221.8

TABLE I: DVFS levels of Samsung Exynos 4210

set of processors Π assuming that Π = {π1, . . . , πn} is
partitioned into disjoint blocks of voltage/frequency islands
(VFIs) such that

⋃
Πi = Π, and Πi ∩ Πj = ∅ for i �= j,

a function ζ : Π → 2A indicating which processors can
handle which actors, a finite set of discrete frequency levels
available to all processors denoted by F = {f1, . . . , fm} such
that f1 < f2 < . . . < fm, a function Pocc : Π × F → N

denoting the power consumption (static plus dynamic) of a
processor operating at a certain frequency level f ∈ F in
the operating state, a function Pidle : Π × F → N assigning
the power consumption (static) of a processor operating at a
certain frequency level f ∈ F in the idle state, a function
Ptr : Π × F 2 → N expressing the transition overhead from
one frequency level f ∈ F to next frequency level f ∈ F for
each processor π ∈ Π, and the valuation τact : A×F → N≥1

defining the actual execution time τact of each actor a ∈ A
mapped on a processor at a certain frequency level f ∈ F .

Example 2. Exynos 4210 is a state-of-the-art processor used
in high-end platforms such as Samsung Galaxy Note, SII etc.
Table I shows its different DVFS levels, and corresponding
CPU voltage (V) and clock frequency (MHz) [14].

Definition 3. The throughput of an SDF graph mapped on a
PAM is the average number of iterations that are executed per
unit time, measured over a sufficiently long period.

III. POWER OPTIMISATION TECHNIQUES

This section illustrates the importance of considering DPM
with DVFS, and VFIs with the help of a non-trivial observa-
tion. Let us consider a real-time periodic application mapped
on a single processor. Figure 2 shows the behaviour of static
(ES) and dynamic (ED) energy consumption of the processor
as a function of processor frequency for the execution of an
entire iteration. Note that ES also includes power-overheads.
The minimum frequency at which the task can meet its
deadline is denoted by fa. Similarly, f∗ denotes the minimum
frequency at which there is enough slack for the processor to
move to the low power state. Thus, the processor can only
move to the low power state, if its frequency is no less than
f∗. Otherwise, it will not be able to meet the deadline.

As explained earlier, ED increases cubically with the
increase of frequency. However, ES shows varying patterns.
In Region A where fa ≤ f < f∗, idle period of the processor
is too short to allow it to move to the low power state where
static energy consumption is lower. Therefore, ES is higher
and constant in Region A. Nevertheless, as frequency reaches
f∗, slack, i.e., idle period of the processor increases, allowing
the transition to less static power consuming states. Thus, ES

drops down at f = f∗. As frequency increases beyond f∗
in Region B, idle period of the processor increases further
in linear fashion, leading to switching to deeper sleep states
by the processor. Without loss of generality, if we assume
that power-overhead of switching to deeper low power states

272

ffa f∗ fmax

Region A Region B

E

ED

ES

Fig. 2: ES and ED

ffopt1=fa f∗ fopt2 fmax

Region A Region B

E

E(fopt1)

E(fopt2)

ETot

Fig. 3: ETot

also increases linearly, we get linear decrease of ES with the
increase of frequency in Region B, as shown in Figure 2.

Figure 3 shows ETot = ES + ED , as a function of
processor frequency. We can see in Figure 3 that local optimal
frequencies to minimise ETot in both regions are well defined.
However, there is no a priori reason that global minimum
of ETot should lie in Region A or Region B . Depending on
the power consumption values of the processor and deadline
of the application, the global optimal frequency can be either
in Region A or B.

Alternatively, if we do not consider DPM, ES in Region
B remains same as A, and consequently, ETot increases in
Region B as well. Therefore, we can safely conclude that
we must consider both DPM and DVFS to determine optimal
power consumption. We can generalise this result for multi-
processors also. Moreover, partitioning processors into VFIs
enable us to assign frequency per group of processors, rather
than running all processors at the same frequency. The different
power minimisation techniques discussed in this section are
evaluated experimentally in Section V.

IV. POWER OPTIMISATION USING PRICED TIMED

AUTOMATA

A. From SDF Graphs to Priced Timed Automata

Timed automata (TA) are a popular and powerful formalism
to model and analyse real-time systems [3]. TA are state-
transition diagrams augmented with real-valued clocks, which
can be used in enabling conditions for transitions and in state
invariants that enforce deadlines.

Price timed automata (PTA) extend TA with costs. Costs
can either be accumulated in states, proportionally to the
residence time, or by taking a transition. In particular, the
model-checker UPPAAL Cora [4] has a support for finding
cost-optimal schedules, i.e., it can provide a trace to a given
goal state with the lowest accumulated value costs.

Our framework consists of separate models of an SDF
graph and the platform application model. In this way, we
split the problem of optimal power management in terms
of tasks and resources. Given an an SDF graph G =
(A,D,Tok0, τ) mapped on a platform application model
(Π, ζ, F,Pidle ,Pocc ,Ptr , τact), we generate a parallel compo-
sition of PTA:

AG‖Processor1‖, . . . , ‖Processorn‖Scheduler .
Here, the automaton AG models the SDF graph. The PTA
Processor1, . . . ,Processorn model the processors Π =
{π1, . . . , πn}, and the automaton Scheduler decides when to

Voltage(V) Frequency(MHz) GDVFS GDVFS+DPM
Pidle(W) Pocc(W) Pidle(W) Pocc(W)

1.2 1400 0.4 4.6 0.1 4.6

1.00 1032.7 0.4 1.8 0.4 1.8

TABLE II: Platform power consumption of different scenarios

switch the frequency level of all processors in the same VFI.
Due to lack of space, we refer to [2] for details on translation
of SDF graphs to PTA and analysis in UPPAAL Cora.

B. Power Optimisation utilising UPPAAL Cora

This subsection illustrates how we use UPPAAL Cora to
obtain power optimal schedules. As explained earlier, each
actor fires according the repetition vector γ in an iteration. For
each actor a ∈ A in the SDF graph, we define its corresponding
entry in the repetition vector as γ(a). We also define the
number of iterations per period as m.

A technique of calculating the maximum throughput of an
SDF graph mapped on a given number of processors via timed
automata (TA), using the model-checker UPPAAL is proposed
in [1]. This work demonstrates that the fastest execution of
every consistent and strongly connected SDF graph, mapped
on a platform application model, repeats the periodic phase n
times if each actor a ∈ A fires equal to (nm + k)γ(a) for
some constants n and k. The maximal throughput of the SDF
graph is determined from the periodic phase.

Power optimisation using UPPAAL Cora is a two-fold
method. In the first step, we obtain the completion time
of the fastest execution of an SDF graph using the method
explained above. The second step is to incorporate completion
time , in our PTA model discussed in IV-A. Then, using the
Best trace option in UPPAAL Cora, we derive an execution
which minimises the power consumption, while maintaining
the completion time.

V. EXPERIMENTAL EVALUATION VIA MPEG-4

We analyse power optimisation, by means of an MPEG-4
decoder example in Figure 1. We evaluate energy consumption
with respect to (1) fixed number of processors (2) varying
number of processors.

A. Fixed Number of Processors

We consider an MPEG-4 decoder mapped on the plat-
form containing four Exynos 4210 processors, i.e., Π =
{π1, π2, π3, π4}. For a constraint of completing three iterations
within varying deadlines, we consider the following scenarios.

• Global DVFS only (GDVFS): In the first scenario, the
processors employ DVFS only, without DPM. We con-
sider two frequency levels (MHz), i.e., f1 = 1032.7 and
f2 = 1400. Table II shows the power consumption (W) at
both frequencies. Note that the idle power consumption of
all processors π ∈ Π is constant at both frequencies. Re-
call that GDVFS assumes one VFI Π1 = {π1, π2, π3, π4}.

• Global DVFS + DPM (GDVFS+ DPM): To allow the
processors to benefit from both DPM and DVFS, we
introduce a low power state, i.e., idle power consumption
of all processors π ∈ Π at frequency level f2 = 1400

273

MHz is changed to Pidle(π, f2)=0.1 W because more idle
time allows DPM. However, Pocc(π, f2) and Pocc(π, f1)
remains same as GDVFS, as given in Table II. The power-
overhead (W) of all processors π ∈ Π is, Ptr(π, f2, f1) =
0.2 and Ptr(π, f1, f2) = 0.1.

• DVFS + DPM with 2 VFIs (DVFS+ DPM− 2): The pro-
cessors are partitioned into two VFIs such that Π1 =
{π1, π2} and Π2 = {π3, π4}, while utilising both DVFS
and DPM. The power consumption values remain the
same as in GDVFS+ DPM.

• DVFS + DPM with 3 VFIs (DVFS+ DPM− 3): In this
case, the processors are partitioned into three VFIs such
that Π1 = {π1}, Π2 = {π2} and Π3 = {π3, π4}.

Figure 4 shows the energy consumption calculated for each
scenario. The first two scenarios are compared as follows.

1) GDVFS vs GDVFS+DPM:

• In almost all cases, GDVFS results in higher energy con-
sumption, as compared to GDVFS+ DPM.

• At tighter deadlines when idle time of processors is
insufficient to move to the low power state, the difference
between GDVFS and GDVFS+ DPM is not significant. Thus,
ETot lies in Region A. However, as deadline is relaxed,
the processors spend more time in the low power state and
ETot moves to Region B. Consequently, GDVFS+ DPM
gets more promising, implying the benefits of DPM.
For instance, at 50 ms, GDVFS+ DPM saves considerable
energy consumption equal to 10.3%, compared to GDVFS.

Therefore, the results explained above prove our earlier claim
that static power is non-negligible in order to guarantee
optimality, and both Region A and B must be analysed to
determine minimum energy consumption.

Now we have seen the benefits of DPM, the effect of
varying the number of VFI partitions, i.e., GDVFS+ DPM,
DVFS+ DPM− 2 and DVFS+ DPM− 3 is explained below.

2) DVFS+DPM with VFIs:

• At tighter deadlines, for the reason that system is at
maximum capacity all the time, having higher number
of VFIs does not result in major energy reduction.

• But, as deadline is relaxed, we see that increasing the
number of VFIs prove to be more effective, and produce
considerable reduction in energy consumption. For ex-
ample, for the deadline of 50 ms, DVFS+ DPM− 2 and
DVFS+ DPM− 3 save 4.9% and 8.3% energy consumption
respectively, as compared to GDVFS+ DPM. The reason
is that in GDVFS+ DPM where we have one VFI only,
all processors have to run at the same frequency, even
though fewer might be required. By partitioning into more
VFIs, we can cluster processors in such a way that only
required processors run at the specific frequency, and
others may run at the different frequency; thus, trading
system’s complexity for energy minimisation.

Hence, VFIs provide better control over energy optimisation
and design complexity. Without VFIs, system designers are
left with two options only, i.e., either local or global DVFS.
However, with the help of VFIs, it is possible to achieve fine-
grain power reduction by employing any DVFS policy, ranging
from local to global. Therefore, the use of VFIs enables system
designers with the larger range of design choices.

20 30 40 50

160

180

200

Deadline (ms)

E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

(m
W

s) GDVFS
GVDFS+ DPM

DVFS+ DPM− 2
DVFS+ DPM− 3

Fig. 4: Comparison of power optimisation techniques

50 100 150 200

50

55

60

65

Frames per second

E
ne

rg
y

C
on

su
m

pt
io

n
(m

W
s) 6/3

5/3

4/3

3/2

2/2

1/1

Fig. 5: Energy usage per frame against frames per second. The
legend shows the number of processors/ number of VFIs.

B. Varying Number of Processors

We also evaluated the performance of the MPEG-4 decoder
on a varying number of processors. The maximum number of
processors required to accomodate maximum parallelism of
this example is 6, calculated by SDF3. We obtain a Pareto front
by sweeping the throughput constraint, as shown in Figure 5.
We get three majors results from Figure 5, as explained below.

• Achieving higher frames per second at fewer processors
increases the energy consumption. The reason is the
smaller slack at the tighter frames per second constraint.
Therefore, more work is done on fewer processors to
attain the same frames per second.

• As we relax the frames per second constraint, slack in-
creases, and the same frames per second can be achieved
by consuming less energy on fewer processors. For in-
stance, in Figure 5, we can reach 100 frames per second
on four processors with 2.4% less energy consumption,
as compared to five processors. For higher slack in the
application, this difference gets bigger. Thus, we may
not require more processors in our platform, and reach
a certain throughput at a considerably lower energy con-
sumption, contributing to prolonged battery life.

• Relaxing the frames per second beyond a certain limit
on a fixed number of processors increases the energy
consumption, as static energy surpasses the dynamic
energy. For instance, the energy consumption of three
processors increases by 1.9%, when moving from 77 to
59 frames per second.

VI. OTHER CASE STUDIES

Apart from the MPEG-4 decoder example, we present
other real-life case studies taken from [1], namely a bipartite
graph, an MP3 playback application, a MP3 decoder and an
Audio Echo Canceller. We assume that these case studies
are mapped on a multiprocessor platform containing Samsung
Exynos 4210 processors Π = {π1, . . . , πn}. The execution
times of these case studies are given in ms.

274

TABLE III: Experimental Results of Case Studies

Processor VFIs Time per Iteration Energy Consumption

Bipartite Graph

4 Π1 = {π1, π2},Π2 = {π3, π4} 42 345·3
3 Π1 = {π1},Π2 = {π2, π3} 44 338·5
2 Π1 = {π1},Π2 = {π2} 51 333·1
1 Π1 = {π1} 73 335·8

MP3 Playback Application

2 Π1 = {π1, π2} 1880 9907

1 Π1 = {π1} 2118 9742·8

MP3 Decoder

2 Π1 = {π1, π2} 8 64·6
1 Π1 = {π1} 14 64·4

Audio Echo Canceller

4 Π1 = {π1, π2},Π2 = {π3, π4} 23 324·2
3 Π1 = {π1},Π2 = {π2, π3} 24 322·3
2 Π1 = {π1, π2} 35 322

1 Π1 = {π1} 73 335·8

60 80 100 120
55

60

65

Frames per second

E
ne

rg
y

C
on

su
m

pt
io

n
(m

W
s)

Fig. 6: Power consumption of the heterogeneous system

Table III shows the results of the experiments to find out
the least power consumption. The first column displays the
given number of processors, and the second column represents
division of processors into VFIs. Columns 3-4 show per
iteration, minimum achievable time (ms) and minimum energy
consumption (mWs) respectively, on the given processors.

So far, we have considered a homogeneous system, in
which we can assign any actor to any processor. However,
this freedom is limited in a heterogeneous system by which
processors could execute a particular actor. In UPPAAL Cora,
we can utilise the same models described earlier in a het-
erogeneous system. Let us consider an MPEG-4 decoder
mapped on a heterogeneous system having two Exynos 4210
processors Π′ = {π′

1, π
′
2} and two Exynos 4212 processors

Π′′ = {π′′
1 , π

′′
2}. Let us consider that actor {FD} ⊆ A can

be mapped only on {π′
1} ⊆ Π′, actors {VLD, IDC} ⊆ A can

be executed only on {π′
2, π

′′
2} ⊆ Π′ ∪ Π′′, and {π′′

1} ⊆ Π′′
is assigned to execute actors {RC, MC} ⊆ A only. We have
two VFIs, i.e., Π1 = {π′

1, π
′′
1} and Π2 = {π′

2, π
′′
2}. Figure 6

shows the Pareto front of energy dissipation for the varying
throughput constraints.

VII. CONCLUSIONS

Despite the remarkable progress in power optimisation
using DVFS, compact methods for optimal power management
by combining DVFS and DPM, with VFIs are still needed.
We demonstrate a novel power reduction technique for SDF-
modelled streaming applications, which combines the benefits
of DVFS, DPM and VFIs using model-checking.

Future research directions are to carry on from the results
achieved in this paper and explore the possibilities of battery-
aware scheduling of SDF graphs. Another exciting prospect is

to add a third dimension, taking also reliability relaxations and
constraints into account.

ACKNOWLEDGEMENT

This research is supported by the EU FP7 project SENSA-
TION (318490).

REFERENCES

[1] W. Ahmad, R. de Groote, P. K. F. Hölzenspies, M. Stoelinga, and
J. van de Pol. Resource-constrained optimal scheduling of synchronous
dataflow graphs via timed automata. In ACSD ’14, pages 72–81, 2014.

[2] W. Ahmad, P. K. Hölzenspies, M. Stoelinga, and J. van de Pol. Green
computing: Power optimisation of VFI-based real-time multiprocessor
dataflow applications (extended version). Technical Report TR-CTIT-
15-04, University of Twente, 2015.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[4] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev.,
32(4):34–40, Mar. 2005.

[5] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design
techniques for system-level dynamic power management. IEEE Trans.
on VLSI Systems, 8(3):299–316, June 2000.

[6] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-
time multiprocessor system-on-chip with optimal DVFS and DPM
combination. TCES, 2014.

[7] V. Devadas and H. Aydin. On the interplay of voltage/frequency scaling
and device power management for frame-based real-time embedded
applications. IEEE Trans. on Computers, 61(1):31–44, Jan 2012.

[8] M. E. T. Gerards and J. Kuper. Optimal DPM and DVFS for frame-
based real-time systems. TACO, 9(4):41:1–41:23, Jan. 2013.

[9] A.-H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M.
Moonen, M. Bekooij, B. Theelen, and M. Mousavi. Throughput analysis
of synchronous data flow graphs. In ACSD’06, pages 25–36, June 2006.

[10] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In ISLPED’07, pages 38–43, Aug 2007.

[11] S. Irani and K. R. Pruhs. Algorithmic problems in power management.
SIGACT News, 36(2):63–76, June 2005.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous data flow: Describing
signal processing algorithm for parallel computation. In COMPCON
’87, pages 310–315, 1987.

[13] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. Nguyen, and
K. Goossens. Power minimisation for real-time dataflow applications.
In DSD’11, pages 117–124, Aug 2011.

[14] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang.
Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors. TCAD, May 2013.

[15] A. K. Singh, A. Das, and A. Kumar. Energy optimization by exploiting
execution slacks in streaming applications on multiprocessor systems.
In DAC’13, pages 115:1–115:7. ACM, 2013.

[16] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In ACSD’06,
pages 276–278, June 2006.

[17] B. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V.
Gheorghita, and S. Stuijk. A scenario-aware data flow model for
combined long-run average and worst-case performance analysis. In
MEMOCODE’06, pages 185–194, July 2006.

[18] Y. Wang, H. Liu, D. Liu, Z. Qin, Z. Shao, and E. H.-M. Sha. Overhead-
aware energy optimization for real-time streaming applications on
multiprocessor system-on-chip. TODAES, 16(2):14:1–14:32, Apr. 2011.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In OSDI’94. USENIX Association, 1994.

[20] J. Zhu, I. Sander, and A. Jantsch. Energy efficient streaming applications
with guaranteed throughput on MPSoCs. In EMSOFT’08, pages 119–
128, 2008.

275

