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Abstract—In the last years, the need for enhancing health
and preventing problems with remote monitoring is increasing.
A non-invasive low-cost technique for processing bio-signals
and monitoring vital parameters, at rest and during physical
activity, is the use of wearable PhotoPlethysmoGraphic (PPG)
systems. However, in order to detect a relevant vital parameter,
such as the heart rate during demanding exercises, motion
artifacts must be removed from the signals retrieved.

In this paper, we present a fast and easy to implement
algorithm to estimate the heart rate value which does not need
to reconstruct the noise-free signal nor does it apply adaptive
filtering as existing algorithms, thus gaining computational time
and stored memory space. The method consists of applying
the Fast Fourier Transform on short windows of data and
removing motion artifacts relying on single-sided amplitude
spectrum analysis of PPG and 3-axis accelerometer signals.
The results show that our algorithm manages to remove a
wide range of motion artifacts achieving an average absolute
error of only 1.27 BPM between the heart rate estimated
by the algorithm every second and the ground-truth value.
The method was successfully implemented on a wearable PPG
device achieving an execution time of 226 ms per second, hence
obtaining a battery lifetime of 9.37 days.
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I. INTRODUCTION AND RELATED WORK

New approaches to improve and prevent health issues
are being developed and start to enter the healthcare and
wellness fields. A well spread example is the domain of
Wireless Body Sensor Network (WBSN) systems which
can detect vital parameters as heart rate, blood pressure,
respiration and activity level. Moreover, monitoring the
mentioned parameters gives information about activity and
fitness level for healthy people.

Different companies are producing WBSN, such as Polar
[1], which provides a heart rate sensor positioned on a chest
belt connected via Bluetooth to a fitness mobile application
that shows the variation of the heart rate. Other chest belts
are provided by MyZone [2], Wahoo Fitness [3], Suntoo
[4]. These devices use electrodes for heart rate monitoring
whose cost is higher than other techniques which can reach
the same accuracy, such as PhotoPlethysmoGraphy (PPG).

Srinivasan Murali, Francisco Rincon
SmartCardia GmbH
Lausanne, Switzerland

Email: {srinivasan.murali, francisco.rincon} @smartcardia.com

Wearable PPG systems apply a non-invasive, low-cost, op-
tical technique which detects the blood volume changes
in vessels. They contain a sensor which constists of a
Light Emitting Diode (LED) illuminating the skin and a
photodetector receiving the light reflected from the tissues.
The alternating current component of the PPG waveform
gives information about the cardiac rhythm, therefore it is
possible to estimate the heart rate within the standard range
between 0.67 Hz and 3.67 Hz, i.e. 40 BPM (Beats Per
Minute) and 220 BPM, considered in this work.

During exercises and physical activities, the PPG signal
can be affected by strong motion artifacts (MA) in the
same range of frequencies, which must be removed to
make accurate heart rate estimation. There are commercial
wrist-based devices for fitness applying algorithms for MA
removal, such as Mio Alpha 2 [5], which presents a high
accuracy but a large variation from subject to subject [6].
Apart from the commercial world, different research studies
present various methods for estimating heart rate in cor-
rupted PPG signals. One of the common methods used is the
periodic moving average filter, based on the quasi-periodicity
of the PPG signal [7]. This filter segments the signal into
periods and resamples each period. However, in-band noise
occurs when the spectra of the MA and the PPG one overlap.
Another technique is using acceleration-based adaptive fil-
ters. They require a reference signal to minimize the mean
squared error between the filter output and the reference
[8]. One relevant framework for motion removal from PPG
signal is TROIKA [9], which claims that the three steps
of the method are necessary for this purpose. The method
applies a signal decomposition, which partially removes MA
frequency components and reconstructs the noise-free signal.
In addition, it applies a sparse signal reconstruction for high-
resolution spectrum estimation, which requires solving an
optimization problem to improve perfomance. The last step
is a spectral peak tracking with verification, which analyzes
the PPG spectrum to detect the heart rate as a peak and
verifying it looking at previous windows. The method shows
an average absolute error (see Section IV) for heart rate
estimation of 2.34 BPM, with a standard deviation of 0.82



BPM. Another work was proposed by the same authors [10],
but it is not designed for embedded devices as we target in
this work.

In this paper, we propose a method for monitoring heart
rate in real-time which analyzes the spectrum retrieved
from the Fast Fourier Transform (FFT). In order to gain
computational time, speed and memory space and decrease
power consumption in the embedded device, we avoid noise-
free signal reconstruction, focusing on the detection of MA
as peaks in the range of frequencies previously mentioned.
Integer arithmetic is employed as well to reduce execution
time. The method works on short windows of data, which
makes it applicable to real-time processing on WBSN de-
vices. It does not require a reference signal, as the history
of estimated values is used to update the current one. The
method detects a wide range of MA and it manages to
estimate the heart rate when PPG and MA spectra overlap.
It shows an average absolute error of only 1.27 BPM with a
standard deviation of 0.91 BPM. We compute the execution
time of the algorithm on-board, i.e. 226 ms per second,
which grants a battery autonomy of 9.37 days for the fully
working device.

The paper is divided as follows. In Section II and III, we
present respectively the structure of the proposed method
and optimizations for the on-board implementation. In Sec-
tion IV, we describe the set-up of the experiments provided
in the IEEE Signal Processing Cup (SPC) 2015 [11] and the
features of the final WBSN implementation of the algorithm.
In Section V, we validate the method applied in post-
processing on the dataset used and we show the results of
the implementation on device in terms of accuracy, execution
time and power consumption related to it. Finally, we present
the conclusions of the work in Section VL.

II. PROPOSED ALGORITHM FOR HEART RATE
ESTIMATION

During physical activity PPG signal is affected by MA and
the frequency spectrum shows different peaks corresponding
to it aside from the pulse. Fig. 1 shows an example of PPG
signals of a subject at rest (a) and during running (c), and
the corresponding single-sided spectra (b, d). In the spectrum
(d), the peak due to the MA is highlighted and shows a high
amplitude compared to the peak corresponding to the heart
rate.

A simple method to detect and remove MA is adopting
a 3-axis accelerometer. This gives information about proper
acceleration in a 3-axis reference system due to the move-
ment of the body part where the system is worn. Moreover,
the selection of the wavelength of the LED employed is
relevant to decrease MA in the PPG signal. The green light
(530 nm) was shown to be more suitable than the red light
for monitoring the heart rate in daily life and the PPG has
relative freedom from MA compared to the red light [12],
[13]. Therefore, we use a PPG system with a green LED
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Figure 1. PPG signals and corresponding spectra at a sampling frequency
of 125 Hz. (a) represents a PPG signal of a subject at rest and (b) its single-
sided amplitude spectrum. (c) represents a PPG signal while the subject is
running with strong MA and (d) the corresponding spectrum.
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Figure 2. Block diagram of the main steps of the proposed algorithm

in reflectance mode, since our measurement position is the
upper arm or the wrist.

The developed algorithm is divided in three main steps, as
the block diagram in Fig. 2 shows. These steps are explained
in details in Sections II-A, II-B, II-C.

A. Frequency Analysis and Peak Detection

As mentioned in Section I, the FFT analysis enables a
reduction of computational time compared to methods that
involve adaptive filtering or complex signal decomposition
and reconstruction. Since the PPG signal is non-stationary
and quasi-periodic, a Fourier series analysis is not directly
applicable. It can only be applied in a cycle-by-cycle basis
[14]. Therefore, we have chosen the use of the FFT applied
on short windows of data (8 s) sliding by 1 s per iteration,
assuming that the main frequency is stable.

Fig. 3 shows this first step of the algorithm. The method
initially rescales the PPG signal to maximize its dynamic



maximum
range l bcoeffl

SCALING SIGNAL FIR BAND-PASS
TO OPTIMAL FILTER

RANGE [0.5 - 10] Hz

COMPUTE FFT AND
SPECTRUM ON 40
BPM TO 220 BPM

Figure 3. Block Diagram of Step A: Frequency Analysis

range, considering its amplitude and the maximum value
that can be represented by a 32-bit integer, which is the
data type used to store PPG samples.

A band-pass Finite Impulse Response (FIR) filter is then
applied to remove low and high frequencies with cut-off
values set at 0.5 Hz and 10 Hz, in order not to lose the
range of frequencies needed because of attenuation. FIR
filters are more suitable to be implemented with integer
arithmetic, as we use, instead of Infinite Impulse Response
(ITR) filters, which have problems in scaling the coefficients,
losing precision for the filtering step.

The algorithm computes the FFT and the relative spectrum
of PPG and accelerometer signals, limiting the range of
frequencies to 40 - 220 BPM, as discussed in Section I. The
input length of the FFT, shown in Fig. 3, is set to minimize
its resolution applying a 7:1 ratio of zero-padding to the
window of data. Given a sampling frequency of 125 Hz, a
window of 8s (1024 samples) and NFFT of 8192 samples,
the resolution will be:

F's
NFFT

where F's is the sampling frequency of the signals,
NFFT is the FFT length. The resolution in BPM is
computed as

resyr = = 0.0153 Hz (1)

resf ripm = resgpe X 60 = 0.9180 BPM 2)

where resyy, is the resolution of the FFT in Hz and
resyrippm 1S the resolution of the FFT in BPM. We use
FFT length as power of two because it is faster [15].

The peak detection in the PPG and accelerometer spectra
is shown in Fig. 4. We consider the amplitude of the
maximum peak in the spectrum and we choose to take the
peaks with amplitude greater than a specific percentage of
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Figure 4. Block Diagram of Step A: Peak Detection

the maximum peak. The thresholds are different for PPG and
accelerometer spectra. Since in the PPG the pulse rate can
correspond to a low peak compared to the MA, a threshold
of 1% of the maximum peak is chosen for this signal.
Meanwhile, when the movement occurs, the spectrum of the
accelerometer data contains few peaks with high amplitude,
therefore the threshold is set at 40% of the maximum peak,
value empirically chosen.

The PPG peaks are sorted and the first 7 biggest peaks are
chosen from the PPG, though this parameter can be adjusted
as needed. The algorithm stores the main and second peaks
from the sorted array and, considering the main one, the
previous and next peaks from the non-sorted array.

B. Motion Artifacts Removal

The second step of the algorithm consists of the analysis
of the PPG and accelerometer peaks found in the previous
step. During movement, in the array of PPG peaks detected,
MA appear in the range of frequencies as they appear in the
three arrays of accelerometer peaks. As the PPG spectrum
is a superimposition of different frequencies due to the
pulse rate and MA, the frequency at which the movement
occurs is not exactly the same as the one appearing in the
accelerometer spectrum. Therefore, in order to detect MA in
the PPG spectrum, the algorithm sets a range of fluctuation
of the frequency of the movement occurring in the PPG
spectrum. This interval depends on the frequency in the
accelerometer spectrum.

Algorithm 1 MA removal

1: for i =0 to lengthPeaksppc do
2. for j =0 to lengthPeaksacc do

3: if pacc(j) x 0.98 < pppa(i) < pacc(j) x 1.02
then

4 if pppc(i) # mainPeakppe then

5 pppc(i) =0

6: valuepppg =0

7 end if

8 else

9 if pacc(j) <95 & flagPeak = 1 then

10: pppc(i) =0

11: valuepppg =0

12: end if

13: end if

14:  end for

15: end for

{This code is executed for X, Y, Z of the accelerometer}

In Algorithm 1, the condition in line 3 shows the interval
in which MA are detected in the PPG spectrum. Hence,
every peak of the PPG should have a fluctuation of £2%
from one of the peaks in the accelerometer. Fig. 5 shows
the spectra of both PPG and X-axis accelerometer. The
peak highlighted in the figure, with value 160.2, is removed



because is lower than 159.3%1.02 ~ 162.49, as the condition
requires. Lines 5 and 6, 10 and 11 show how the peak is
removed.
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Figure 5. Peak recognition in PPG spectrum when it is in the range of one
of the accelerometer peaks. (a) PPG spectrum. (b) Accelerometer spectrum.

As shown in line 4, if the movement occurs, the algorithm
checks if the PPG peak analyzed is the main one. The
conditions in line 9 correspond to two events: the main peak
of the PPG corresponds to the horizontal movement of the
arm or the wrist (pacc(j) < 95) and the pulse rate is in
the neighbourhood of the main peak (flagPeak = 1). We
analyze these events sequentially.

If we take a 3-axis reference system on the upper arm or
the wrist and consider the Z axis as the vertical movement,
the frequency along Z corresponds to the step frequency,
unlike the horizontal one which corresponds to half of the
step frequency, i.e. to complete an arm swing two footsteps
are necessary [16]. While running, the heart rate can reach
values from 70% to 90% of the maximum heart rate (from
105 BPM to 140 BPM as minimum value) [17], far from
the maximum frequency of horizontal movement considered.
The step frequencies range reached during this activity starts
from 2.2 Hz (fast walking, corresponding to 132 BPM)
to 3.2 Hz (190 BPM) or even more, as extrapolation of
previous studies [18]. Therefore, if there is a peak in the
accelerometer at half of the frequency of the maximum
considered (190 BPM, that is 95 BPM), it is removed from
the PPG peaks.

On the other hand, while running, if the pulse rate gets
closer to the step frequency, the MA peak should be removed
under precise conditions. In this case, the peak is close to
the MA, though with a low amplitude, or merged with the
accelerometer peak. As shown in Algorithm 2, the method
checks the neighbourhood of the PPG main peak. Since the
peaks greater than 95 BPM are already removed if they rep-
resent the MA, the algorithm checks if the conditions at line
5 are verified. In the first one, dist(pppg, mainPeakppq)
represents the distance between every peak and the main
one and 10 BPM is the maximum distance considered. In
the second condition, heightppg represents the amplitude

of a peak in the spectrum and the threshold for detecting
a neighbour peak is set at 20% of the maximum amplitude
heightmainpeak- If the conditions are verified, the algorithm
assigns 1 to flagPeak (line 6). This flag shows that a peak
exists in the neighbourhood, which is likely to be the real
heart rate, therefore the PPG main peak, representing the
step frequency, is removed.

Algorithm 2 Check neighbourhood for close peaks
1: if lengthPeaksppg > 1 & mainPeakppa > 95 then
2. for ¢ =1 tolengthPeaksppg do
3 if pPpG(i) > 95 then
4: dist = dist(ppp (i), mainPeakppc)
5

if dist < 10 & heightppg > 0.2 x
heightmainPeak then

6 flagPeak =1

7: end if

8 end if

9:  end for

10: end if
{This code is executed before the MA removal}

It can occur that, in the neighbourhood, close peaks are
not detected. In this case the heart rate value is likely
merged with the PPG main peak. To detect it, the algorithm
computes the 2nd order derivative of the spectrum and then
finds the peaks. Algorithm 3 shows the details of this case.

Algorithm 3 Check neighbourhood for hidden peaks
1: if flagPeak = 0 then

compute 2nd order derivative

3 find peaks 2nd order derivative

4. if dist(peakpre,, mainPeakppg) > 15 then

5 peak = peakprey

6: end if

7

8

9

if dist(peaky ey, mainPeakppg) > 15 then
peak = peaknewt
: end if
10:  dist = dist(peak, mainPeakppg)
1 if dist < 12 & height2ndpeqr
height2nd,,qinpeak then
12: flagPeak =1
13:  end if
14: end if
{This code is executed before the MA removal and after
checking close peaks}

> 0.2 X

The method detects the direction of the hidden peak by
checking if the distance between the previous or next peak
and the main peak in the original spectrum is greater than
15 BPM, as shown in the conditions in lines 4 and 7.

If the conditions in line 11 are verified, the new peak is
added in the PPG peaks and the main peak is removed



(flagPeak = 1). The conditions are similar to the ones in
Algorithm 2, except that the neighbourhood size checked is
larger in order to detect the hidden peak.
The parameters of distance and threshold on the amplitude
are set depending on the resolution of the FFT and the
corresponding spectrum. In this case they are fixed, though
they can be adjusted changing the resolution, statically or
dynamically.

After removing MA, the algorithm checks the main and
second peak in case errors in the signal occur. Hence, an
error is detected as shown in Algorithm. 4.

Algorithm 4 Check previous 5 heart rate values
1: while m > 0 do
2. if dist(mainPeakppa, hrprev(m)) > 5 X sec then
3 flagHROK =0
4:  end if
5 m=m-1
6 sec = sec + 1
7: end while
{This code is executed after the MA removal}

The algorithm sets a maximum variation of the current
heart rate from the one in the previous window to 5 BPM.
We set this value because it is unlikely that in one second
the heart rate varies of more than 5 BPM. Line 2 shows
the distance from the 5 previous windows. Therefore, the
maximum variation from the 5th previous windows is 25
BPM, from the 4th 20BPM, etc. If these conditions are
not verified, the algorithm sets flagH ROK to 0 (line 3).
This flag is used in the next step of the algorithm, where
the current heart rate is updated considering the previous
window, to contain the variation of heart rate in case of
erTors.

C. Adjustment and Updating of the Heart Rate Value

In Section II-B, the algorithm sets flagH ROK to O if
the main peak and second peak of the PPG are not in the
maximum range of variation of heart rate considered, after
removing MA. This can happen when the acquired PPG
signal is noisy compared to the accelerometer one, therefore
the peaks found in the PPG spectrum are mainly MA related.
Algorithm 5 shows the third step of the method.

The algorithm manages the accumulated error by decreas-
ing the maximum variation of the current heart rate from the
previous window to 2 BPM. The direction of the variation is
chosen as the position of the current PPG main peak from the
previous heart rate value (sign(mainPeakppqs — HRo1q)).
The heart rate value in the current window is updated as
shown in the formula in line 2, where HR,;4 is the heart
rate value in the previous window.

If no error occurs, the algorithm checks the distance
between every remaining peak and the previous heart rate.
The closest one is chosen as the suitable heart rate value.

Algorithm 5 Adjusting considering previous window and
updating

1. if flagHROK = 0 then

20 HRpew = HRyq + sign(mainPeaky,g—H Roq) X2

3: else

4 if lengthPeaksppc > 0 then

5 distiopastPeak = 1000

6: for i =0 to lengthPeaksppg do

7 dist = dist(pppg (1)7 HRold)

8 if pppg(i) 75 0 & dist < distiorastPear then

9 HRyew = HRo1q + sign(pppa(i)—H Roa) X
min(dist,5)

10: distiopast Peak = dist
11: end if

12: end for

13:  end if

14: end if

15: if lengthPeaksppg > 0 then

16: HR = HR, e

17: HRyqg = HRpew

18: else

19: HR = HR,4

20: end if

21: hirprey(pr) = HR
{This code is executed after removing MA and checking
5 previous windows}

In this case, the current window is updated as shown in the
formula at line 9, where dist is the distance of every PPG
peak from the old heart rate. If the distance is lower than 5
BPM, the algorithm updates the value using dist, otherwise
it updates the heart rate by 5 BPM.
In the end, if the algorithm does not detect any peaks, it
assigns the value of the previous window as the current heart
rate, as shown in line 19.

In Section III we present the optimizations applied for the
implementation.

III. OPTIMIZATIONS FOR WBSN EXECUTION

Two main optimizations of the algorithm presented in
Section II for WBSN execution are achieved and presented
in this section. The first one is lowering the execution time
of a routine. In this work, the main portion of computation
time gained is related to the FFT routine. The algorithm uses
a fixed-point short integer FFT [19] faster than the one using
floating-points to achieve this goal. Applying the integer
arithmetic can also affect the memory space allocated for
the computation, which is the second optimization.

The device contains a PPG sensor and a 3-axis accelerometer
sampling data at 125 Hz and 250 Hz and a ultra-low
power 32-bit microcontroller unit (MCU) with a 48 KB
RAM. The memory portion stored at 125 Hz for both PPG



and accelerometer, downsampled in order to have the same
sampling frequency, is calculated as addition of equations
3 and 4. The memory space related to the window of data
where we apply the FFT is:

MeMyind = 2% 1024 x4 + 2% 3 %1024 x2 ~ 20 KB (3)

where 1024 represents the length of the window buffer
of 8,192 s of data (power of two used for the speed of
the FFT) at the specified sampling frequency, in samples.
The value is multiplied by 2 because we use a circular
buffer for the changing window and a sorted buffer as
actual input to the algorithm. The first adding represents
the PPG data, which consist of 22-bits per sample, therefore
we store integer values each occupying 4 bytes of memory.
The second adding represents the 3-axis accelerometer data,
short integer values each occupying 2 bytes of memory. The
memory space related to the sliding window of data used for
updating the heart rate value is:

memgrige = 2% 128 x4 + 2% 3 %128 x2 =~ 2.5 KB (4)

where 128 represents the length of the sliding buffer
of 1,024 s of data at the specified sampling frequency,
in samples. The value is multiplied by 2 because we use
two buffers in the interrupt routine in order to execute the
algorithm routine while the signal is sampled.
As the memory portion stored at 125 Hz is almost half of
the memory available, we reduce the sampling frequency to
31.25 Hz which, according to the Nyquist-Shannon sampling
theorem, can represent a bandwidth of Es that is 16 Hz,
greater than the maximum frequency of 3.67 Hz considered
in the algorithm. We manage to reduce of i the memory
stored compared to 125 Hz of sampling rate, that is 5.8 KB.

In Section V, we report the results of the implementation
on device compared to the signals provided by the IEEE SPC
2015 resampled at 31.25 Hz. The results of the gold standard
in post-processing to validate the algorithm are shown at
both 125 Hz and 31.25 Hz.

IV. EXPERIMENTAL SET-UP

The first validation of the algorithm was conducted in
Matlab R2014b and involved twelve datasets provided by
the 2015 IEEE SPC. They were recorded when subjects
performed various physical exercises. Two-channel PPG
signal and 3-axis accelerometer were recorded from the
subject’s wrist and on-channel ElectroCardioGram (ECG)
from the subject’s chest as ground-truth of the heart rate,
each sampled at 125 Hz. As the heart rate, output of the ECG
recorded, is updated every 2 s, the output of the algorithm
is also plotted every 2 s, even if computed every second.
We used only one of the two PPG channels and the 3-
axis accelerometer data. The algorithm is applied on signals
sampled at 125 Hz and downsampled at 31.25 Hz, on a data

window of 8 s. For the validation, the output of the algorithm
is plotted compared to the ECG ground-truth value. Two
type of analysis are conducted to show the behaviour of the
algorithm: Average Absolute Error (AAE) and median value.

1
AAE =+ x > | HRaig(i) = HRyrue(i) | (5)

where N is the number of window steps considered,
HR,,(7) is the output of the algorithm at each step and
HRyyyue (i) is the ground-truth value from the ECG. The
AAE is used in order to compare it with the existing
algorithms, while the median shows the difference of the
two values not biased by small or big values. It is computed
considering the values estimated and the ECG after 15 steps,
that is 30s, giving the algorithm time to reach stability.

The on-board processing was implemented in C, using the
device mentioned in section III. The sampling of PPG and
accelerometer signals were simulated storing static arrays of
30 s of data for the twelve subjects considered and filling
the buffers in the interrupt routine.
The execution time of the algorithm routine is computed
on one of the signals on 30s window of data. The power
consumption of the device is computed considering the duty
cycle of the PPG sensor for both receving and transmission
modes, the accelerometer, the microcontroller active and
sleep mode and the execution of the algorithm for heart rate
estimation.

The Section V presents the results of post-processing
and embedded execution of the algorithm and reports the
indicators to validate it.

V. RESULTS AND VALIDATION

Table I shows the AAE of the twelve subjects and the
median value for both sampling frequency mentioned in
Section IV. It shows also the average and standard deviation
of the AAE and median value for the twelve subjects.

Table 1
ANALYSIS ON TWELVE SUBJECTS OF SPC 2015 - AAE AND MEDIAN IN
BPM FOR SIGNALS SAMPLED AT 125 HZ AND 31.25 Hz

Analysis in BPM

125 Hz 31.25 Hz
AAE Median | AAE  Median
S1 1.62 0.91 1.87 1.40
S2 1.42 0.71 297 2.19
S3 1.26 0.65 2.08 1.82
S4 1.40 0.49 2.53 1.73
S5 0.61 0.39 1.56 1.48
S6 1.55 0.60 2.00 1.30
S7 0.47 0.45 1.24 1.18
S8 0.43 0.39 2.10 1.7
S9 0.36 0.31 1.43 1.23
S10 3.78 2.03 4.99 3.04
S11 1.14 0.80 1.49 1.31
S12 1.16 0.77 2.60 2.20
MEAN 1.27 0.7 2.24 1.71
STD 0.91 0.46 1.01 0.54
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Figure 6. Heart rate estimated compared to ECG true heart rate for best case subject (a) and worst case subject (b), for a sampling frequency of 125 Hz

Fig. 6(a) and Fig. 6(b) show the results for two of the

twelve subjects, the best and worst case, for a sampling
frequency of 125 Hz. As shown in Table I, at 125 Hz, the
AAE for the twelve subjects is 1.27 BPM + 0.91 BPM,
which compared to the TROIKA firmware (2.34BPM,
see section I) is 1BPM lower and the maximum value
(1.2740.91 = 2.18BPM) of AAE is 0.16 BPM still lower
than the TROIKA result. Eleven subjects out of twelve show
an AAE lower than 1.7BPM, while an outlier shows an
AAE of 3.78 BPM, which compared to the TROIKA is only
1BPM more, acceptable considering the advantages of the
method. The outlier is shown in Fig. 6(b): after reaching
stability the algorithm follows the ground-truth pretty well,
even in the worst case subject. The best subject is shown
in Fig. 6(a), which has an AAE of 0.36 BPM. The median
value in the worst case is 2.03BPM and in the best case
is 0.31BPM, showing that the unbiased difference between
the two values is very low. At 31.25 Hz, the AAE for the
twelve subjects is 2.24BPM + 1.01BPM, 1BPM more
than the one at 125 Hz, because of the resampling precision.
The value compared to the TROIKA framework is still
lower. The median value is lower than the AAE, because
not biased from small or big values. The outlier has an
AAE higher than the mean value but it is still acceptable
considering the advantages for real-time processing.
The results show clearly that it is possible to avoid signal
reconstruction and focus directly on the spectra of the
PPG and accelerometer and relative peaks, obtaining high
performance in terms of accuracy.

Therefore, the method is suitable to be implemented on
embedded system and Table II shows the absolute error
between the post-processing results and the same data
streamed on a real wearable device. The average error has a

mean value of 0.42 BPM which is due to the aproximation
precision for using integer arithmetic implementation on
device, while in Matlab the heart rate is computed as
floating-point value.

Table 11
ABSOLUTE ERROR BETWEEN HEART RATE VALUE COMPUTED IN
POST-PROCESSING AND THE ONE COMPUTED IN THE EMBEDDED
DEVICE

S1 S2 S3 S4 S5 Sé
Absolute Error (BPM) 041 037 03 0.2 026 0.27

S7 S8 S9 S10  S11 S12
Absolute Error (BPM) 036 024 031 04 024 1.72

Table III
AVERAGE CURRENT CONSUMED FOR HARDWARE COMPONENTS AND
ALGORITHM PROCESSING

Average current

Current (mA)  Time (%s)

(mA)
PPG Tx On-Rx On 1.225 10% 0.123
PPG Tx Off-Rx On 0.6 10% 0.06
Accelerometer 0.5 100% 0.5
Baseline current 0.045 100% 0.045
HR processing 10.5 23% 2415
Sleep mode 0.018 77% 0.014
Total 3.16

We computed the execution time of the algorithm routine,
obtaining an average of 226 ms per second, which is the
time between two outputs of the algorithm. Table III shows



the total average current computed considered the features
mentioned in section IV in order to retrieve the total amount
of power consumed while the device is fully working.

Considering the battery rating of 710mAh we success-
fully obtain a battery lifetime of 9.37 days.

VI. CONCLUSIONS

The demand for improvement and prevention of acute or

chronic problems and enhancing health through remote vital
parameter monitoring has increased the manufacturing of
wearabel device. In particular, heart rate monitoring using
wearable PhotoPletysmoGraphic (PPG) systems have the
advantage of being non-invasive, due to the optical sensor,
and low-cost.
One challenge is to detect the heart rate during physical
activities from a PPG signal affected by MA. We proposed
a method which applies the Fast Fourier Transform on
short windows of data and removes MA depending on the
spectrum of PPG and 3-axis accelerometer signals, avoiding
complex reconstruction of the signal or adaptive filtering.
The results showed that the algorithm removes a wide range
of MA achieving a high degree of accuracy. The method was
suitable to be implemented in a wearable embedded device
running 22.6% of the time between two heart rate values.
The device can fully work for 9.37 days, including algorithm
processing.
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