
PROXIMA: Improving Measurement-Based Timing Analysis through
Randomisation and Probabilistic Analysis

Francisco J. Cazorla1,12, Jaume Abella1, Jan Andersson2, Tullio Vardanega3, Francis Vatrinet4, Iain Bate5, Ian Broster6,
Mikel Azkarate-askasua7, Franck Wartel13, Liliana Cucu9, Fabrice Cros10, Glenn Farrall11, Adriana Gogonel9, Andrea Gianarro2,

Benoit Triquet8, Carles Hernandez1, Code Lo9, Cristian Maxim9, David Morales1, Eduardo Quinones1, Enrico Mezzetti3,
Leonidas Kosmidis1, Irune Aguirre7, Mikel Fernandez1, Mladen Slijepcevic1, Philippa Conmy6, Walid Talaboulma9

1 Barcelona Supercomputing Center, Spain 2 Cobham Gaisler, Sweden 3 University of Padova, Italy
4 SYSGO, France 5 University of York, UK 6 Rapita Systems l.t.d., UK
7 IK4-Ikerlan, Spain 8 Airbus SAS, France 9 INRIA, France
10 Airbus Defence and Space, France 11 Infineon, UK 12 IIIA-CSIC, Spain
13 While he was at Airbus SAS, France

Abstract—The use of increasingly complex hardware and
software platforms in response to the ever rising perfor-
mance demands of modern real-time systems complicates the
verification and validation of their timing behaviour, which
form a time-and-effort-intensive step of system qualification or
certification. In this paper we relate the current state of practice
in measurement-based timing analysis, the predominant choice
for industrial developers, to the proceedings of the PROXIMA1

project in that very field. We recall the difficulties that the
shift towards more complex computing platforms causes in that
regard. Then we discuss the probabilistic approach proposed
by PROXIMA to overcome some of those limitations. We
present the main principles behind the PROXIMA approach
as well as the changes it requires at hardware or software level
underneath the application. We also present the current status
of the project against its overall goals, and highlight some of
the principal confidence-building results achieved so far.

I. INTRODUCTION

Complex high-performance hardware and software com-
ponents are increasingly used in critical real-time embedded
systems (RTES)2 in match with the rising computational
demands of new-generation avionics, automotive, railway
and medical RTES.

The verification of the timing behaviour in industrial-
quality RTES requires providing evidence that the appli-
cation will always perform its duties in a timely fashion.
This verification involves the use of methods to estimate the
worst-case execution time (WCET) of the time-critical appli-
cation programs, and their completion time once governed
by the scheduling decisions made at system level. WCET
estimates need to be sufficiently tight (to avoid incurring
undue pessimism) and trustworthy enough to earn the level
of confidence defined in the applicable safety standards.

Determining a tight and sound Worst-Case Execution
Time (WCET) bound of software programs running on

1Probabilistic real-time control of mixed-criticality multicore systems.
2For safety, availability, security, mission or business concerns.

modern, high-performance processors is especially challeng-
ing [4]. Various WCET analysis techniques exist in the state
of the art. The industrial users in PROXIMA all come from
measurement-based deterministic timing analysis (MBDTA),
which is not surprising owing to its considerable presence in
current industrial practice [28]. With MBDTA, the software
programs of interest are executed on the target platform to
collect a score of execution-time measurements. To achieve
minimum soundness, MBDTA requires the user to have
control on: (i) the conditions in which the measurement
runs are made so that they represent those expected during
operation; and (ii) the input and state conditions that may
cause the program to incur its worst-case timing behaviour.

The most well-known factors that affect the program’s
execution time include the input vectors that determine –
among other – the control flow path taken by the program in
the measurement runs. We call them high-level level sources
of jitter. The use of complex high-performance hardware
creates other low-level sources of jitter, which include: the
mapping functions that determines how software objects
are assigned to memory, as they determine how they are
placed in cache, the conflicts that they can suffer, with
the consequent execution-time effects; and, in a multicore
setting, the way parallel contention on access to shared
hardware resources (e.g., a bus) cause access requests to
jitter in time.

With MBDTA, the end user must control all input and
state conditions with influence on execution-time jitter so as
to achieve sufficient coverage of its effects for all sources
of it in the system (across the whole set of measurement
runs made during analysis). While tools exist for high-level
sources of jitter that validly aid the user in that endeavour, no
such tools exist for low-level sources of jitter. For instance,
it is hard to assess whether all potential cache layouts,
or a representative subset of them, have been exercised
in the measurement runs. Likewise in a multicore setting,
determining whether the access requests from a program



Figure 1. Introduction to MBPTA and its use.

have aligned with those of its parallel contenders in a manner
that represents a sufficiently stressful scenario is exceedingly
hard. Overall, the lack of control and coverage of low-level
sources of execution-time jitter in a processor with high-
performance features severely limits the confidence that can
be provided on the computed WCET value.

Contribution. The PROXIMA project aims at enabling
cost-effective verification of timing analysis – including
worst case execution time – for real-world software pro-
grams running on complex multicore and manycore plat-
forms. The project vision rests on two main principles.
First, selectively introducing randomization in the timing
behaviour of selected hardware and software resources or
making them work on their worst latency so as to cause
the whole spectrum of impact of low-level sources of
jitter to be captured in measurement runs. Second, using a
measurement-based probabilistic timing analysis (MBPTA)
techniques to determine the worst combined impact of all
sources of jitter present in the system, thereby quantifying
the probability that the execution time of the software
program of interest may exceed a given bound. The injection
of timing randomisation (and forcing some resources to
work on their worst latency) in the execution platform
is a fundamental enabler to the guarantee that, across a
sufficiently low number of runs, the impact of all existing
sources of jitter can be individually covered. This tenet is
in contrast with deterministic architectures where, no matter
how many measurement runs the user may make, it is hard
if at all possible to provide a quantitative guarantee that
all the timing phenomena of interest have been observed.
Timing randomisation also ensures that the impact that
each individual source of jitter has on program execution
time follows a probabilistic law, which allows using sound
statistical means to determine the number of runs required
to observe its manifestation and thus apply probabilistic
modelling soundly. In that manner the user is relieved from
the heavy control obligations carried by the use of MBDTA.

II. MEASUREMENT-BASED DETERMINISTIC TIMING
ANALYSIS: STATE OF PRACTICE

Cost/benefit considerations compounded with industrial
pragmatism cause MBDTA to be the dominant state of
practice. The typical conduct is to capture the “high-water
mark” value in execution time across multiple runs of the
program of interest and then add an engineering margin to it
(e.g., 20%) to compensate for the unknown. For this method
to be used with sufficient confidence, substantial effort must
be expended to ensure that the worst-case conditions have
been exercised or closely approximated, which however is
diluted in the overall testing campaign. This has proven to be
feasible and viable for simple hardware and simple software.

In the general case however, software programs may have
an inordinately large input space, which cannot possibly
be exercised in a test campaign searching for worst case.
The input vectors used are therefore those intended for
functional testing, which may not be fit to incur the longest
execution time, falling short on the side of the worst-case
path or in the coverage of the low-level sources of jitter.
Tool support exists that allows this manual process to be
reduced to a series of smaller testing problems that can be
more easily managed. For example, a tool may automatically
combine the measurements taken from multiple tests on the
program of interest, to calculate a high-water mark bound
that includes conditions that are not necessarily exercised in
a specific test case. Doing that removes the need to drive the
program down the worst case path in one single test case.
Instead, multiple (smaller and easier) test cases are used to
drive each fragment to its own worst case, the results being
automatically combined according to the program structure.
This approach, which is implemented in commercial tools,
has seen broad acceptance in DO-178B/C projects, due to it
being incremental on the existing methods, with significant
cost saving in terms of testing effort.

As platform complexity increases, the effort to test the
longest path within a single test case exceeds practical and
cost limitations. Furthermore, low-level factors out of the
control of the tester (such as cache state, jitter caused by
floating point operations and such like) limit the reliability
and confidence of this method.

• For instance, the memory placement of software objects
has been deemed a factor of high consequence on
execution time in the presence of cache memories
as it determines how different addresses compete for
cache space. Even if those addresses can be fixed
so that inter-task side-effects can be avoided, this is
not so for stateful services from the operating system,
whose execution time may depend on execution history.
Services using different memory locations as a result of
past history, would cause different cache access patterns
and different execution times to emerge depending on
the type and cardinality of tasks included in the test.



Figure 2. MBPTA’s use procedure

• Another example is the floating-point unit. For most
architectures the floating-point unit takes a variable
latency depending on the particular values operated.
This cause that depending on the particular values used
in each experiment – which the user can hardly control
– the program will suffer a variable impact due to
floating point operations.

Getting accurate and cost-effective timing analysis ulti-
mately comes down to a question of representative testing,
which means selecting a suitable level of detail for compo-
nents (ideally as large as possible) so that the user can ensure
that test inputs and test conditions exercise each component
adequately. This should provide confidence that all important
sources of jitter have been observed without introducing
additional conditions that are infeasible in practice. Then
those results need to be combined in a representative way.

III. PROBABILISTIC ANALYSIS AND RANDOMISATION

PROXIMA’s MBPTA derives probabilistic WCET
(pWCET) estimates in the presence of high-performance
hardware. pWCET distributions express the maximum
probability with which one instance of the program can
exceed a given execution time bound. For instance, in
Figure 1 we observe that the probability that one instance
of the program to run longer than 4 ms is smaller than
10−14. The particular execution-time value chosen is the
one whose exceedance probability is deemed sufficiently
low in relation to the integrity level of the functionality
being analysed, dependent on the corresponding safety
standard. For instance, the execution rate of a program
could be used to determine the exceedance threshold per
instance such that the set of program’s executions occurring
in an hour can be shown not to incur more exceedances
than a given threshold (e.g., 10−9). Interestingly, at the
moment safety-related standards and guidance documents

Figure 3. GPD and GEV

do not support the concept of probabilities associated with
software. However it is not unusual for acceptable practice
for certification to change over time, e.g. the adoption of
fixed priority scheduling in aircraft engines [7], [16] which
contrasts with the earlier practice of static scheduling.
When the need arises for new technology features, the
certification authorities often develop their position on
issues to be considered and the way the technology might
be used, e.g. for caches [25] and multicore processors [26].

For the application of MBPTA, we differentiate between
two moments in the lifetime of the system: the analysis
phase, when verification of the timing behaviour takes
place; and the operation phase when the system becomes
operational. The goal of MBPTA is to compute the pWCET
function of the program of interest with execution-time
measurements taken at analysis time that are guaranteed
to represent the operating conditions that may occur during
operation. This requires MBPTA to have good control of
all low-level sources of jitter during analysis. The values
of all sources of execution-time jitter for that experiment
are referred to as execution conditions for an experiment.
MBPTA therefore requires that the execution conditions
under which measurements are collected during analysis lead
to equal or worst timing behaviour than determined by the
conditions that can arise during operation [9].

A. Extreme Value Theory

MBPTA uses Extreme Value Theory [14], [22] (EVT)
to build a pWCET distribution based on a sample with a
limited number of observations collected during the analysis
phase (e.g., in the order of thousands of execution time
measurements). Below we provide a brief and informal
description of the foundations of EVT: for more formal
descriptions of EVT, see [14], [22].

EVT is used to study the probabilities associated with the
occurrence of extreme (and thus rare) events. That is, EVT is
used to model the behaviour of maxima/minima in the tail of
the probability distribution of those events. EVT has been



Figure 4. Gumbel, Frechet and Weibul

successfully applied in a number of fields, e.g. hydrology
and insurance. EVT has two main results. First, for the
distribution of excesses over a threshold (see the top part of
Figure 3), EVT shows that the limiting distribution is a gen-
eralized Pareto distribution (GPD). Second, – under certain
conditions – the distribution of the standardized maximum of
a series (see the bottom part of Figure 3) converges to one of
the Gumbel, Frechet, or Weibull distributions, Figure 4. All
those three distributions are described within the generalized
extreme value (GEV) distribution.

EVT requires that the data being analysed can be mod-
elled with independent and identically distributed random
variables [14][8]. This can be assessed using specialised
statistical tests. Interestingly, some authors have shown that
independence across observations is not strictly needed as
long as maxima are independent or the dependence across
maxima is weak [10], [24]. However, in the rest of this paper
we build upon independent data since it is a by-product of
MBPTA-compliant platforms.

The Exponential Test is also used to confirm that the
maximum of the series converges to Gumbel’s exponential
tail, which is a good fit the WCET problem since the
execution times of a program are finite but its maximum
is unknown [11].

MBPTA applies EVT to derive pWCET estimates of a
program running on a computing platform that has char-
acteristics which ensure the emergence of sufficient ran-
domness [11]. There is a fundamental challenge in applying
EVT to solve the pWCET problem: EVT treats the system
as a black box so that the projection it produces from the
data it is fed, solely holds for exactly that system. This
requires the user to ensure that the observation data obtained
from the system incurred during analysis have an upper-
bounding relation to those the system may produce during
operation. Simple-minded application of EVT to analysis-
time observations that do not warrant the above condition
would fail to provide sound results for the operation-time
behaviour of the system. Another way to appreciate the

significance of this problem is to note that EVT should be
understood as a method that predicts the worst combined
effects of phenomena individually observed during analysis
but not to predict the occurrence of those never observed.

As a precondition to sound use of EVT, MBPTA requires
that the sources of execution-time jitter phenomena observed
during analysis have sufficient (upper-bounding) represen-
tativeness of their manifestation during operation. If this
condition is warranted, then feeding these observations to
EVT produces an approximation of the tail of the distribution
of the worst-case timing behaviour that the program may
exhibit in the operational life of the system. Next we discuss
how this can be achieved using MBTA-compliant processors.

B. Meeting MBPTA requirements

To meet the above-described MBPTA requirements,
MBPTA-compliant processors are modified in two ways:
randomisation is injected in the timing behaviour of hard-
ware resources whose jitter is high (e.g. caches and
buses) [9] so that the probability of their worst-case be-
haviour can be captured in analysis-time measurement
runs [12][3]; other processor resources with small jitter are
instead set to work at their highest latency during analysis.
As a result the corresponding measurements at analysis
upper bound the execution time distribution for that resource
that may manifest during operation time [21]. The low-to-
high boundary for the above discrimination is processor and
application dependent.
It is worth noting that the goal of MBPTA compliance,
i.e. randomizing the timing of some (jittery) resources
and making the remaining work in their worst latency, is
not providing independent and identically distributed (i.i.d.)
execution times. Instead, the goal is to help providing an
argument that i) analysis time observations capture the
execution time impact of jittery resources; ii) that impact
upperbounds the one that can occur during operation. The
fact that i.i.d. execution times are obtained is a by-product
of MBPTA compliance.

C. Application Process

Figure 2 outlines the MBPTA procedure. First, the user
has to provide confidence that the execution platform is ren-
dered MBPTA-compliant by hardware or software means, so
that the sources of execution-time jitter can be deemed con-
trolled. Second, the user gathers execution-time observations
from measurement runs of the software program of interest
(Unit of Analysis). Third, this body of data is processed with
the Block Maxima Method [14] to derive a distribution of
maxima, which is fed to a checker that determines whether
the samples that compose it are independent and identically
distributed (as EVT requires). The checker also assesses
whether the data follows the Gumbel distribution. Once all
the tests are passed, the EVT process for tail extension is
applied, which determines the parameters of the Gumbel



distribution that best fit the given distribution of maxima.
Finally, we assess whether the collected measurements are
sufficient to ensure statistical representativeness. Should
this not be the case, more measurements would have to
be collected and the process would be repeated until this
condition is satisfied. Experience suggests that the number
of runs required is in the order of thousands.

IV. CURRENT STATUS AND FUTURE STEPS

In its quest for high test-readiness level, PROXIMA has
strived to advance the maturity of all individual elements re-
quired for correct functioning of MBPTA. We now describe
the situation for each such element.

A. MBPTA Improvements

In terms of the MBPTA procedure per se, PROXIMA is
advancing on the following fronts.

• Path Coverage: MBPTA provides pWCET estimates
that are valid only for the paths that have been exercised
by the input vectors provided by the user. However,
complexity and cost considerations often restrain the
user from providing adequate path coverage. It is also
worth noting here that MBPTA technology in general
does not build on the ‘probability’ of each path to
occur. It is in fact quite complex, if at all possible,
to determine for a particular path the probability with
which it will be executed during operation [9] and to
guarantee that the path frequency observed at analysis
time, for a concocted set of input vectors, matches
exactly that probability. With MBPTA, if a path can
be executed at operation, its impact is conservatively
factored in the pWCET estimate
The Extended Path Coverage (EPC) [29] technique re-
lieves the user from this stringent coverage requirement
only relying on a set of measurements for each basic
block (already requested in DO-178C [23] for DAL-A
functions). EPC builds on the concept of probabilis-
tic path-independence to characterize the probabilistic
impact of unobserved paths on the set of observed
execution times. The computed impact is then used to
synthetically extend the set of observations to obtain the
equivalent effect of full path coverage, while incurring
a small amount of overestimation in comparison with
standard MBPTA. Tool support for EPC has been fully
implemented for an FPGA processor that has been
developed in PROXIMA, seeking MBPTA-compliance
by design. After a first positive evaluation on top of a
cycle-accurate simulator reported in [29], EPC support
is now being evaluated on the actual FPGA.

• Dependent data: The basic versions of EVT require
independence conditions on the set of execution time
measurements. However, this requirement may not hold

if successive values are dependent in time, the distri-
bution changes gradually over time, or the distribution
changes periodically.
By using appropriate methods for modelling block
maxima for dependent data and threshold exceedances
for dependent data, in the context of Generalized Ex-
treme Value (GEV) and Generalized Pareto Distribution
(GPD) estimators respectively, EVT can be used with
dependent data. In this respect, by building two separate
and independent estimation methods (therefore free
of common-mode errors) we provide the validation
arguments for the obtained pWCET estimate. The
claim is that if the pWCET estimates obtained by the
two methods are sufficiently close, then the obtained
pWCET is indeed valid with respect to set of execution-
time measurements provided.

• Multicore analysis: Resources shared by multiple cores
are subject to interference resulting from parallel com-
peting accesses or modifications. Inter-core interference
constitutes an important part of the execution conditions
that need to be controlled. Maximising the interferences
observed at analysis time is extremely complex, as
interfering co-runners would be required to conflict
with each and every requests of the Unit of Analysis.

1) Our first multicore MBPTA analysis variant re-
lies on observations made with controlled co-
runners that constitute a multi-variate model that
relates the sources of inter-core interferences to a
given impact. The inter-core interference model
can then be used to derive an inflation factor
that upper-bounds the possible impact of inter-
core interference, including the worst case, on
the Unit of Analysis in the actual system. The
use of a MBPTA-compliant platform, offering ran-
domised arbitration policies and isolation between
the shared state space used by different cores,
guarantees representativeness of each observed
and predicted interference scenarios. The provi-
sion of the interferences-generating contenders
during analysis is lifted from the end user.

2) Our second variant, called partially time com-
posable bound, builds on two elements. First,
performance monitoring counters (PMCs) when
running each task in isolation. These include ex-
ecution time, bus accesses and memory accesses.
And second, worst-latencies that a request from a
given task can cause on a contender task. This is
derived by deploying a set of specialized applica-
tion kernels (or resource stressing kernels [15]).
With these two pieces of information the model
derives the worst contention that a task can suffer
from another contender task without the need of
simultaneously running them.



Figure 5. PROXIMA platforms.

• Tool support RVS is a framework of tools for on-target
verification for embedded, real-time software. RVS in-
cludes RapiTime, a measurement based software timing
performance tool. RapiTime automates the instrumen-
tation of software for measurements, and processes data
to identify WCET hotspots and potential WCET paths
based on the actual observed measurements. RVS has
been adapted for PROXIMA by the development of
new instrumentation routines for gathering data from
PROXIMA platforms, by incorporating the PROXIMA
pWCET calculations into the standard workflow, and
support for data post processing such as via EPC.
In addition, RVS viewer has been adapted to include
visualisation of the pWCET graphs.

B. MBPTA-enabling hardware

In PROXIMA, we have implemented a MBPTA-compliant
4-core processor FPGA prototype, starting from an RTL
LEON3 processor description [27] enhanced with shared
L2 cache, improved tracing support, and a per-core float-
ing point unit (FPU). To achieve MBPTA compliance the
following hardware modifications have been applied: all
floating point operations can be selectively set to work at
their worst-case latency; L1 data and instruction caches,
TLBs implement random placement and replacement [18].
The same holds for the L2 cache, which is also partitioned
across cores to be free from inter-core conflicts. Those
modifications increase the FPGA resources consumption by
a mere 2%. The next planned step is to implement random
arbitration for the on-chip bus [17].

In PROXIMA we also address manycore processors. To
this end, we have built a performance simulator that models
an exploratory clustered manycore. Efficient networks-on-
chip (NoCs) have been designed for tree-based intra-cluster
communications and crossbar-based inter-cluster communi-
cations. The manycore processor simulator will be further
extended to make it entirely MBPTA-compliant, thus dealing
with memory and I/O access.

C. MBPTA-enabling software

PROXIMA also seeks to enable MBPTA compliance on
top of Commercial Off-The-Self (COTS) processors. To this
end, we have extended prior software-only randomisation
solutions [19], [20] to attain MBPTA compliance on top of
caches that implement modulo placement and LRU replace-
ment.

Software-only randomisation solutions randomise the
placement of objects in memory so that the resulting cache
conflicts also take a random nature, independent of the
actual location of the objects in memory. In PROXIMA
we have devised two method to achieve this goal: one
which operates on a single executable and causes it to
take random placements; another, which builds multiple
executables which differ in memory placement. The for-
mer is called Dynamic Software Randomisation (DSR); the
latter Static Software Randomisation (SSR). DSR performs
randomisation at runtime by placing objects dynamically
in random locations with support from a combination of
a compiler pass and a runtime library. SSR achieves the
same effect in an entirely static manner by randomising
the position of objects in the source code (and so in the
binary), thus also leading to random memory locations.
Whereas DSR randomises execution time across runs, SSR
does so across binaries. Hence, the timing analysis process
and interpretation of the results changes across techniques,
although this is transparent to the user.

Currently, PROXIMA supports SSR on COTS LEON3
and AURIX TriCore processors, and DSR on the COTS
LEON3 processor. DSR will also be readied for a P4080
processor.

D. Real-Time Operating System (RTOS)

RTOSes can provide useful help in meeting the MBPTA
requirements. The solution embraced within PROXIMA
builds on the concept of time-composable RTOS, which
guarantees to only cause an additive contribution to the
execution time of the application program, without causing
it to incur additional jitter effects caused by history or data



Figure 6. Reference architecture.

dependence owing to RTOS interference action or services.
We seek constant (or at least near-constant) timing behaviour
for RTOS services, and prevent the RTOS from interacting
with the inner state of shared hardware resources. The
resulting time composability is achieved at the cost of a
modest performance loss.

The RTOS-level solutions pioneered in PROARTIS [1]
have been brought to maturity within SYSGO’s PikeOS [2],
which supports para-virtualization of multiple guest OSes
with guarantees of isolation (see Figure 7). Time compos-
ability improvements have also been implemented on the
guest OSes used in the PROXIMA case studies, namely
ARINC-653, and native PikeOS.

For research purposes at lower Technology Readiness
Level (TRL), we produced a time-composable version of
more generic RTOSes, such as RTEMS in its recently-
released multiprocessor variant, for use with the FPGA, a
multicore port of TiCOS, an ARINC-653 compliant RTOS
developed in PROARTIS, for use with the P4080, and Erika
Enterprise3, for use with the AURIX.

All of the PROXIMA RTOSes have also been modified
to meet the instrumentation requirements entailed by the
MBPTA technology, and to support the application of SW-
only time randomization techniques.

E. Certification

PROXIMA addresses critical RTES, therefore, it must
comply with the safety standards of the target critical in-
dustries. The PROXIMA team is developing a cross-domain
argumentation considering the commonalities of the different
safety certification standards considered in the project: Rail-
way (EN-5012x), Automotive (ISO-26262), Avionics (DO-
178) and Space (ECSS-Q-ST-x0C).

Within this cross-domain approach, the mathematical
foundations of MPBTA are being demonstrated with rigour
and authority sufficient to withstand independent review,
together with the required answers of the representativeness

3Erika Enterprise RTOS, http://erika.tuxfamily.org/drupal/.

Figure 7. PikeOS framework.

question (including for the example, the quality and quantity
of the input data to be collected during analysis) and the
implications of the requiring hardware and software modifi-
cations. The certification approach in PROXIMA also under-
goes domain-specific evaluations. In the case of the railway
domain, for example, an early safety concept has been elab-
orated considering the use of MBPTA on a mixed-criticality
and multicore scenario [5]. This concept, which also presents
a first version of the mathematical foundation of the MPBTA
process and the design of a hardware implementation of an
on-chip Pseudo Random Number Generator (PRNG) to feed
timing randomization [6], has been positively assessed by
an external certification authority addressing SIL-4 integrity
level within IEC-61508/EN-5012x standards.

V. PROXIMA PLATFORMS AND EARLY RESULTS

PROXIMA seeks to increase the TRL of the MBPTA
technology with respect to the status it had at the end of
PROARTIS – the predecessor project of PROXIMA.

Execution Platforms. PROXIMA has developed two
classes of execution platforms, depending on whether timing
randomisation is achieved by hardware or software means.
The former class includes custom processors; the latter
COTS.

• Hardware-enabled randomisation. In this group, we find
the LEON3 [27] based FPGA processor mentioned in
section IV, in which randomization is injected through
hardware modifications, as shown in the left part of Fig-
ure 5. In the said FPGA, the placement and replacement
policies for all caches are time randomised, as well as
the arbitration on access to hardware shared resources
(such as the bus). Some other resources, such as the
floating-point unit, which has a jittery response time
dependent on the input values, can be set to always
respond with worst latency.

• COTS with software-enabled randomisation. This
group includes all platforms in which the hardware



Figure 8. Results obtained and comparison with current practice.

is given cannot be customised to support MBPTA.
For those processors, we achieve MBPTA compliance
by injecting randomisation via software, with ad-hoc
software randomization technology. In this group we
find the same LEON-3 [27] based FPGA platform
mentioned above, except that no modification has been
applied to it, to keep equivalent to a COTS version.
This variant enables us to compare the effectiveness
of hardware-enabled and software-enabled solutions ap-
plied to one and the same processor. In PROXIMA we
also use two further COTS platforms, with different de-
grees of hardware resource sharing: a FreeScale P4080-
based board and an AURIX TC7XX-based board.

In all of the execution platforms, RVS is used to gather
the execution-times measurement observations. RVS auto-
matically instruments the source code so that measurements
can be taken at specific points of execution. The source code
is compiled and executed on the target, capturing the data
to a series of time trace files. Further other information such
as performance-monitoring counter or addresses traces are
extracted thanks to manual modification of the application
associated to dedicated custom exploitation scripting (not
yet integrated in an unified tool suite). The trace data are
filtered and used for Extended Path Coverage, followed
by processing through the MBPTA calculation programs to
create the pWCET curves. The data can then be viewed
within the RVS viewer in the form of a series of graphs

On top of these platforms, a set of case studies in the
avionics, space, railway and automotive domains are being
run to assess the benefits of the PROXIMA approach.

Early Results. The selected application is Weight and
Balance Back-up Computation part of the flight control
system and in charge of computation of estimations of centre
of gravity and weight of the aircraft.

We considered the FPGA platform comprising 4
LEON3 [27] processors, see Figure 6. Each core comprises
a set-associative data and instruction caches as well as fully-

associative data and instruction TLBs. The request from the
instruction path and the data path are sorted in private buses
before they are send to the shared bus and the memory
controller. The caches implement random placement [18]
and random replacement, the latter of which is deployed
in many architectures. Fully-associative TLBs implement
random replacement. Note that the effect of buffers has
been shown MBPTA compliant [13]. For the purpose of this
preliminary experiment, we show results for a single-core.
This allows us to asses the impact of randomisation in the
different caches and TLBs.

The results presented in this paper are related to the
execution of this IMA application on top of PikeOS A653
personality and hypervisor running on the MBPTA com-
pliant HW randomized FPGA one a single core with no
opponents.

We execute 1,000 times the function under analysis on the
target platform. This value ensures the results are representa-
tive, see last step in Figure 2. Execution time measurements
are captured through specific instrumentation using GPIOs
and off the shelf TraceBox hardware provided by Rapita
partner. The traces are then processed by a modified RVS
toolsuite implementing MBPTA.

We start by checking that the distribution of maximums
obtained from the original population 1,000 execution time
measurements passes the independence and identical distri-
bution tests. We consider the commonly accepted signifi-
cance value α = 0.05 for both the two-sample Kolmogorov-
Smirnov (KS) [14] test for identical distribution and the
runs-test [8] for independence. To our best knowledge there
is no proof for a precise significance value relevant to the
WCET estimation problem. We also pass the Exponentiality
Test (ET), which confirms that distribution of maximums
converge to a Gumbel.

Figure 8 shows the EVT projection obtained with MBPTA
and a comparison in terms of maximum-observed execution
time, also known as high-water mark (HWM), and WCET



estimate with respect to a deterministic architecture. In
Figure 8 we see the distribution of the execution time mea-
surement collected on the reference randomised platform and
the EVT projection obtained from that. The vertical dashed
lines from left to right show: the HWM for the deterministic
counter part of our reference architecture, the HWM for
the randomised reference architecture, the pWCET value
for an exceedance probability of 10−9 and 10−12. The last
vertical line shows the result of increasing by 20% the HWM
observed for the non-randomised architecture.

• HWM. HWM is only 5% worse for the randomised
architecture than for the deterministic one. This value
is in the range obtained for average performance results
that in general show that time-randomised architectures
provide around 10% less performance than their time-
deterministic counterparts.

• WCET estimate. In terms of WCET, the most important
metric in RTES, we show that for exceedance probabil-
ities at 10−9 and 10−12 the pWCET estimate provided
by MBPTA are only 6% and 8.5% higher than the
HWM of the randomised architecture. These results
show that the pWCET curve computed by MBPTA
slants towards the observed values, which provides
good tightness.
The pWCET bound corresponding to that exceedance
threshold is 14% higher than the HWM observed on
the deterministic architecture, hence better (because
tighter and thus less pessimistic) than the WCET value
computed with the current MBDTA techniques, which
use HWM+20%. Moreover, while MBPTA has a solid
mathematical foundation, the latter approach based on
the 20% adjustment does not, which affects its confi-
dence for future architectures.

VI. CONCLUSIONS AND FUTURE WORK

We have described the foundations of the PROXIMA
MBPTA approach and the benefits it brings over the current
practice with measurement-based timing analysis. We have
also summarized the state of PROXIMA in the develop-
ment of the technology apparatus required for the sound
application of MBPTA. Finally, we have shown early results
obtained with a real avionics case study on the PROXIMA
tool chain on a FPGA platform in which bits of the hardware
randomisation technology have been implemented. Until the
end of the project we plan to consolidate the transition to
multicores, both with customized designs in the FPGA and
COTS designs.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PROXIMA Project
(grant agreement 611085). Carles Hernández is jointly

funded by the Spanish Ministry of Economy and Com-
petitiveness (MINECO) and FEDER funds through grant
TIN2014-60404-JIN. Jaume Abella has been partially sup-
ported by the MINECO under Ramon y Cajal postdoctoral
fellowship number RYC-2013-14717.

REFERENCES

[1] PROARTIS EU-FP7 project. http://www.proartis-project.eu,
2010.

[2] Pikeos website. http://www.sysgo.com/products/pikeos-rtos-
and-virtualization-concept/, 2014.

[3] J. Abella et al. Heart of Gold: Making the improbable happen
to extend coverage in probabilistic timing analysis. In ECRTS,
2014.

[4] J. Abella et al. WCET analysis methods: Pitfalls and chal-
lenges on their trustworthiness. In SIES, 2015.

[5] I. Agirre et al. A safety concept for a railway mixed-criticality
embedded system based on multicore partitioning. In DASC,
2015.

[6] I. Agirre et al. IEC-61508 SIL 3-compliant Pseudo-Random
Number Generators for Probabilistic Timing Analysis. In
DSD, 2015.

[7] I. Bate and A. Burns. An integrated approach to scheduling in
safety-critical embedded control systems. Real-Time Systems
Journal, 25(1):5–37, Jul 2003.

[8] J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall,
1968.

[9] F.J. Cazorla et al. Upper-bounding program execution time
with extreme value theory. In WCET Workshop, 2013.

[10] S. Coles. An Introduction to Statistical Modeling of Extreme
Values. Springer, 2001.

[11] L. Cucu-Grosjean et al. Measurement-based probabilistic
timing analysis for multi-path programs. In ECRTS, 2012.

[12] Enrico Mezzetti et al. Randomized caches can be pretty useful
to hard real-time systems. LITES, 2(1), 2015.

[13] Leonidas Kosmidis et al. Applying measurement-based
probabilistic timing analysis to buffer resources. In WCET
Workshop, 2013.

[14] W. Feller. An introduction to Probability Theory and Its
Applications. 1996.

[15] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca
Fossati, Marco Zulianello, and Francisco J. Cazorla. Assess-
ing the suitability of the NGMP multi-core processor in the
space domain. In EMSOFT, 2012.

[16] S. Hutchesson and N. Hayes. Technology transfer and
certification issues in safety critical real-time systems. In
Digest of the IEE Colloquium on Real-Time Systems, number
98/306, April 1998.

[17] J. Jalle et al. Bus designs for time-probabilistic multicore
processors. In DATE, 2014.



[18] L. Kosmidis et al. A cache design for probabilistically
analysable real-time systems. In DATE, 2013.

[19] L. Kosmidis et al. Probabilistic timing analysis on conven-
tional cache designs. In DATE, 2013.

[20] L. Kosmidis et al. Containing timing-related certification cost
in automotive systems deploying complex hardware. In DAC,
2014.

[21] L. Kosmidis et al. Probabilistic timing analysis and its impact
on processor architecture. In DSD, 2014.

[22] S. Kotz et al. Extreme value distributions: theory and
applications. World Scientific, 2000.

[23] RTCA. DO-178C, software considerations in airborne sys-
tems and equipment certification, 2011.

[24] L. Santinelli et al. On the sustainability of the extreme value
theory for WCET estimation. In WCET Workshop, 2014.

[25] https://www.faa.gov/aircraft/air cert/design approvals/air
software/cast/cast papers/media/cast-20.pdf. Position Paper

CAST-20: ADDRESSING CACHE IN AIRBORNE SYSTEMS
AND EQUIPMENT. Certification Authorities Software Team
(CAST), 2003.

[26] https://www.faa.gov/aircraft/air cert/design approvals/air
software/cast/cast papers/media/cast-32.pdf. Position Paper
CAST-32: Multi-core Processors. Certification Authorities
Software Team (CAST), 2014.

[27] http://www.gaisler.com/cms/index.php?option=com
content&task=view&id=13&Itemid=53. Leon3 Processor.
Areroflex Gaisler.

[28] Wilhelm R. et al. The worst-case execution-time problem
overview of methods and survey of tools. ACM Transactions
on Embedded Computing Systems, 7:1–53, May 2008.

[29] M. Ziccardi et al. EPC: Extended Path Coverage for
Measurement-based Probabilistic Timing Analysis. In RTSS,

2015.


