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Abstract—The use of networks-on-chip (NoC) in real-time
safety-critical multicore systems challenges deriving tight worst-
case execution time (WCET) estimates. This is due to the
complexities in tightly upper-bounding the contention in the
access to the NoC among running tasks. Probabilistic Timing
Analysis (PTA) is a powerful approach to derive WCET
estimates on relatively complex processors. However, so far
it has only been tested on small multicores comprising an on-
chip bus as communication means, which intrinsically does
not scale to high core counts. In this paper we propose pTNoC,
a new tree-based NoC design compatible with PTA require-
ments and delivering scalability towards medium/large core
counts. pTNoC provides tight WCET estimates by means of
asymmetric bandwidth guarantees for mixed-criticality systems
with negligible impact on average performance. Finally, our
implementation results show the reduced area and power costs
of the pTNoC.

I. INTRODUCTION

Multicores are well accepted as one of the main design
paradigms to increase performance in critical real-time
embedded systems (CRTES). In the avionics domain, for
instance, the size of on-board applications has grown by a rate
of 10x every 10 years [10], which has motivated the use of
multicores for avionics CRTES in some Airbus studies [18].
The goal is allowing the consolidation of multiple applications
with mixed criticalities onto a single hardware platform.
Similar observations can be made for the automotive domain,
where modern cars can have software components consisting
of up to 100 million lines of code, and each car contains up to
70 computers working together under complex conditions [7].
Timing verification of CRTES requires the derivation of
worst-case execution time (WCET) estimates, which is a
complex task on multicore platforms. Furthermore, mixed-
criticality CRTES also require high average performance
(e.g., autonomous driving, unmanned vehicles, infotainment,
etc.).

Deriving tight WCET estimates for tasks running on a
multicore has been addressed with different families of timing
analysis techniques [31]. Measurement-based probabilistic
timing analysis (MBPTA) [9] is a promising approach to
handle multicore complexity. MBPTA has as main benefit
reducing the burden on the end-user to carry out the analysis:

during the analysis time the user collects execution time mea-
surements on the target platform from which MBPTA derives
probabilistic WCET (pWCET) estimates that upper-bound
the execution time of the program during operation. This
simplicity makes MBPTA, which has been already evaluated
in avionics [30] case studies, appealing for industrial use.

To obtain such benefits, MBPTA requires, on the one hand,
that the hardware-software elements causing variability in
programs’ execution time are controlled to obtain reliable
pWCET estimates [6]. This is achieved by either making
those resources to work on their worst-latency (making
them jitterless), or injecting randomization in their timing
behavior (making them have a probabilistic behavior). Both
approaches enable the analysis of those resources with
MBPTA [15]. Randomization further allows delivering tighter
pWCET estimates [12]. On the other hand, MBPTA requires
that the execution conditions under which observations are
taken at analysis time are conveniently set to match or
upper-bound those that may occur during operation [6].
Notably, time randomized architectures are not a fiction, but
concrete FPGA prototypes based on commercial processors
are undergoing [11].

Among multicore shared resources the network-on-chip
(NoC) has prominent impact on programs’ execution time
and pWCET, as it connects cores to memory and/or shared
cache levels. In the context of non time-randomized multicore
architectures, also known as time-deterministic architec-
tures, several NoC designs have been evaluated including
meshes [25], rings [19] and buses [12]. Among existing NoC
designs, only buses have been proven MBPTA-compliant [12]
for different arbitration policies. However, bus scalability is
limited since its latency increases rapidly with the number
of cores [23]. Further, in the context of MBPTA, proposed
arbitration policies offer homogeneous guarantees and perfor-
mance across cores, which do not match the heterogeneous
bandwidth requirements in future mixed-criticality multicore
real-time systems [28].

This paper proposes pTNoC, a new tree NoC design that
overcomes the limitations of homogeneously-arbitrated buses
to manage the abundant traffic between cores and memory
and/or shared caches. Trees are chosen since they can scale
to higher-core counts, have been shown to work with time-
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deterministic architectures [20] and are implemented in real
processors such as the P2012 [5]. The challenge lies on
making a tree NoC MBPTA-compliant while providing high
average performance and heterogeneous — configurable —
guaranteed bandwidth allocations under a low complexity
and energy envelop. Overall the main contributions of this
paper are as follows:

1) We analyze several MBPTA-compliant arbitration poli-
cies for tree NoCs, and show that trees scale better to
high core counts than buses in terms of homogeneous
performance guarantees.

2) We propose arbitration policies to enable fine-grain and
flexible heterogeneous bandwidth assignments to better
match the requirements of mixed-criticality systems.
This is implemented through small changes in the router
arbitration policy.

3) We provide a complete evaluation in terms of WCET
estimates, average performance, power and area, and
compare our pTNoC against the only MBPTA-compliant
NoC so far, a shared bus [12], showing that our pTNoC
outperforms the MBPTA-compliant bus in all metrics.
Our evaluation shows that pTNoC achieves tighter
WCET estimates — between 16% and 25% on average
for different arbitration policies — and higher average
performance — around 3% — than its bus counterpart.
Moreover, the mixed-criticality-aware pTNoC design
delivers lower WCET estimates for tasks with stringent
time requirements — an extra 9% reduction — with
negligible effect on the average performance of other
tasks.

The rest of the paper is organized as follows. Section II
provides some background on MBPTA and NoC arbitration
policies. Section III describes our reference multicore ar-
chitecture. Section IV presents our pTNoC tree-based NoC
design. Section V describes how to adapt NoC designs for
mixed-criticality CRTES. Results are presented in Section VI.
Finally, Section VII presents the main conclusions of this
study.

II. BACKGROUND AND RELATED WORK

A. Measurement-Based Probabilistic Timing Analysis

MBPTA [9] provides a distribution of WCET or proba-
bilistic WCET (pWCET) curve. Each value on the pWCET
curve, see Figure 1, is associated with the residual risk —
expressed as a cutoff probability — with which one instance
of the program is not proven to stay below that pWCET value.
The cutoff probability is selected in accordance with safety
standards in the application domain (e.g., DO-178B/C [24]
for avionics). For instance, Figure 1 shows a pWCET curve
in which a cutoff probability of 10~!4 and the corresponding
pWCET estimate are selected.

MBPTA builds on Extreme Value Theory (EVT) [16], a sta-
tistical method for approximating the tail of distributions. In
particular, EVT is applied to the execution time measurements
obtained in the tests performed in the analysis stage. MBPTA
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requires execution time measurements to upper-bound the
impact that jittery hardware resources, such as caches or
the NoC, can incur once the system is deployed [6], [15].
Such upper-bounding can be performed deterministically
or probabilistically. An example of deterministic upper-
bounding would be enforcing a variable-latency functional
unit to operate always at its highest latency at analysis
time. An example of probabilistic upper-bounding would
be a randomly arbitrated bus [12] that is made to arbitrate
across all cores at analysis time so that its probabilistic
latency distribution at analysis time upper-bounds that during
operation. By doing so, the jitter of those resources during
operation is accounted for in the measurements obtained at
analysis time.

We refer the interested reader to the original work on
MBPTA for details on the timing analysis process including
properties needed from the hardware/software platform [9],
[15], the measurement collection [6], and detection and
solution of anomalies [3]. MBPTA [9] has already been
positively assessed for complex avionics [29], [30] case
studies following a methodology close to industrial practice
and MBPTA-compliant bus-based multicore designs have
already been included [11] in a FPGA implementation of
the NGMP processor for the space domain [8].

B. Arbitration Policies for Shared Resources

Three arbitration policies have been shown to meet the
requirements of MBPTA:

« Round-robin (RR). Arbitration policies such as round-
robin are deployed in time-deterministic systems. In the
context of MBPTA, when the time alignment of the
requests w.r.t. the round-robin can be any — which is
the least restrictive case from the user point of view —
one needs to assume that each request will experience
the maximum arbitration latency [12], which can be
enforced at analysis time with the worst-case mode [21].
For the case of round-robin the highest latency a request
can suffer due to the access to the bus is [21]: (N, —
1) x L, where N, is the number of cores (contenders)
and L the bus latency. This corresponds to the case
in which a request from one core has to wait for one
request from each other contenders to complete.



o Lottery (LOT). The arbiter grants access to the different
contenders randomly on each arbitration [17]. To be
MBPTA-compliant, arbitration is always performed
across all contenders (/V.) and only the one chosen
can access the bus in that slot regardless of whether it
has any pending request [12]. Therefore, large arbitration
times occur with decreasing probabilities.

« Random permutations (RP). Lottery arbitration may
lead to theoretically infinite contention delays since
there exists a non-null probability a contender waits
long time to get granted access to the bus. With random-
permutations [12] in each arbitration window, compris-
ing one slot per contender, the order of the slots is
randomly generated. For instance, with 3 contenders we
could have the following arbitration windows (random
permutations of 1,2,3): <2,1,3>, <1,2,3>, <3,1,2>,
etc. This policy bounds the largest number of slots
a contender may wait to get the bus (unlike lottery
arbitration).

III. REFERENCE MULTICORE

We consider a processor and memory architecture in
which core-to-core communication is carried out with explicit
messages managed by the real-time operating system (RTOS)
through memory [4]. When a bus is shared across a large
number of cores, the bandwidth provided to each core is
reduced. In such an architecture there are two types of
communications: N-to-1 to allow cores accessing L2 and 1-
to- N, to allow L2 responding core requests. The most suitable
NoC for this type of communications is a tree since it is
specifically suited to N.-to-1 and 1-to-/N, communications.
Further, a tree NoC has been used in time-deterministic real
processors [5] [20]. Our view is that tree NoCs can also be
made MBPTA compliant, so that larger multicores can be
used in the context of MBPTA. Other designs such as meshes
would fit much better designs with N.-to-/N, communication
needs and require larger area and power than a tree so we
did not try to make them MBPTA compliant.

In our reference architecture memory-level parallelism is
exploited across tasks running in different cores. The L2
cache can process up to one request per core in parallel,
which implicitly defines the maximum throughput required
for the NoC as well as the size of the buffers to use in the
tree.

In this paper we consider 8- and 16-core multicores. The
benefits of the tree NoC diminish for smaller multicores (e.g.,
4 cores) for which buses are competitive. Larger multicores
(e.g., > 16 cores) may fit better a clustered architecture
where each cluster has its own local memory as it has been
shown in [20]. Clustering provides good scalability, isolation
across clusters (which is good to limit interferences) and low
power. Also, with more than 16 cores memory bandwidth
becomes the bottleneck, so clustered designs with local
memory controllers per cluster are convenient in that case.
Note also that CRTES industry has only certified single-core
and few dual-core systems, so providing solutions up to 16
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Figure 2: N_-to-1 binary tree NoC for an 8-core setup

cores already provides scalability beyond near-future industry
requirements.

IV. SINGLE-CRITICALITY PTNOC

Figure 2 shows a tree NoC to connect 8 cores to the
L2. Arbiters at the bottom level, i.e. those closer to the
cores, arbitrate requests from each of the two cores they are
connected to. The 2" lowest level may need to buffer up
to 2 requests per link (one from each of the cores below);
the 37 level up to 4 requests per link, and so on. As shown,
the tree allows the use of small radix routers. Each router
arbitrates among the two incoming links every cycle allowing
at most one request to proceed to the next level of the tree.
In the last stage, the tree can deliver up to one request per
cycle, which is the speed at which L2 can accept requests.
Typically, the L2 requires some cycles to serve a request, but
does it in a pipelined way so a new request can be accepted
every cycle. Finally, requests are served through a 1-to-N,
pipelined tree where only routing is needed (no arbitration
is required).

Symmetrical arbitration policies provide homogenous band-
width assignments to the tasks running in the different cores.
We analyze how the policies used for MBPTA-compliant
buses [12] apply to the tree NoC. In the following explanation
we assume that all links have requests ready to be arbitrated.
Later in this section we describe how contention must be
modelled for pWCET estimation purposes.

« With RR each arbiter in the tree selects each of its
incoming links alternatively in a deterministic manner.
Given N, cores, a request may be delayed by up to
N, —1 requests from the other cores either because they
are in front of it in a queue in the same link or because
they are arbitrated first from another link in any router.

o LOT makes each arbiter select randomly one of the
two links. As for RR, the latency for traversing the
tree includes arbitration and queueing time. However,
differently to RR, arbitration delay can be arbitrarily
long with decreasing probabilities. The probability of
waiting O cycles due to arbitration in one arbiter is 1/2,
1 cycle 1/4, 2 cycles 1/8, and so on and so forth. In
general, the arbitration delay in an arbiter is C' cycles
with probability 1/2¢+1,

« RP is implemented by making each arbiter produce a
random permutation of two elements, O and 1, every



two cycles, where 0 (1) indicates that the left (right)
link is granted access. Thus, arbitration delay in one
arbiter is 0 cycles with probability 1/2, 1 cycle 3/8 and

2 cycles 1/8 [12].
Overall, any arbitration policy valid for the bus can also
be adapted for the pTNoC and, as we show later, pTNoC
outperforms the bus regardless of the arbitration policy used.

A. Factoring in NoC contention

pWCET estimates need to be time-composable, i.e. they
should not vary regardless of the tasks running in the other
cores. Time composable pWCET estimates greatly simplify
incremental qualification and, by extension, help dealing
with the increased timing verification and validation costs of
CRTES. This is achieved by allowing each system component
to be subject to formal timing validation in isolation and
independently from other components.

In time-deterministic architectures measurement-based
techniques rely on some hardware support, such as the worst-
case mode [21]. In [21], each task is run in isolation at
analysis time and hardware makes each request to experience
the maximum, upper-bound, delay (UBD) that it may suffer
during operation due to contention. In the case of the NoC
this implies modeling the worst-case traversal time [20].

We use the worst-case mode for time-deterministic architec-
tures and for time-randomized architectures when deploying
round-robin arbitration since contenders could issue requests
systematically with specific time intervals that lead always
to the worst contention. Instead, for LOT and RP arbitration
we create a probabilistic worst-case mode where the task
under analysis runs in isolation in one core. In all other
cores dummy requests are generated so that those cores
always have one request in flight in the pTNoC, matching the
maximum load a core can put on the tree. This is the worst
case because, even if contenders issue requests systematically
with specific time intervals, randomized arbitration policies
produce random delays on those requests and thus, change
— randomly — those time intervals. Thus, the worst scenario
is the one we consider, with maximum load. To that end,
dummy requests are simply discarded by the L2 cache,
that immediately notifies the corresponding core so that
it can issue a new dummy request in the next cycle. This
creates a scenario with maximum contention where requests
progress randomly through the pTNoC. Those requests suffer
contention in the L2 due to its limited bandwidth. Overall,
this produces the highest (probabilistic) contention that the
task under analysis can suffer during operation.

V. MIXED-CRITICALITY PTNOC

Safety-related functions are assigned a safety (assurance)
level that defines the steps required in the design, verification
and maintenance of the hardware/software components used
by those functions, which inherit functions’ safety level.
Safety levels are described by specific standards in each
domain. For instance, in the avionics domain safety standards
such as DO-178B/C [24] classify components into 5 different
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Figure 3: Heterogeneous guarantees in a tree NoC for an
8-core setup.

levels, from Design-Assurance Level (DAL) DAL-A to DAL-
E, where DAL-A stands for the most critical level.

In the time domain, each safety-level requires providing a
set of guarantees — which vary across levels — and sufficient
evidence on the timing behavior of the tasks. For instance, the
most critical real-time tasks (e.g., DAL-A in avionics or ASIL-
D in automotive) may need strict performance guarantees
provided in the form of a reliable WCET estimate.

Orthogonal to this, in each safety level, performance
requirements may be heterogeneous depending on the type
of application. While some critical real-time applications
may need little (yet guaranteed) performance to operate on
the little data read from some simple sensors, other critical
real-time applications such as 3D Path Planning [27] for
Unmanned Aerial Vehicles may require high performance to
process large amounts of data. Likewise, low-criticality and
non real-time applications may also have heterogeneous (av-
erage) performance needs. These heterogeneous performance
needs translate into heterogeneous bandwidth allocation
requirements when using the NoC. In this section we
describe different approaches to deal with mixed criticalities,
WCET, and average performance guarantees. Our solutions
provide flexible means to satisfy the heterogeneous needs
of mixed-criticality applications with a wide variety of
performance requirements. For instance, let us assume we
want to consolidate one DAL-A real-time task (7'1) with
commodious deadline, one DAL-B real-time task (7'2) with a
tight deadline, and six DAL-E (non-critical) tasks (73 to T'8)
with no real-time constraints. In this scenario, our approach
enables, for instance, allocating 20% of the guaranteed
bandwidth to 71, 80% to T'2, and remaining tasks are allowed
to transmit requests opportunistically, but without timing
guarantees.

A. Heterogeneous Bandwidth Assignments

Heterogeneous bandwidth allocation can be implemented
by assigning different priorities to the requests of the different
cores. In pTNoC we divide cores into several priority levels
(layers). Priorities across layers may change as well as inside
each layer, depending on the particular approach followed.
We explore three such approaches.



(a) Inter-layer priorities. Each core is assigned a priority
level with the requests from upper-layers prioritized over
the requests of lower layers. Hence, guaranteed bandwidth
can only be provided for the cores within the top layer.
The bandwidth that the rest of the cores can enjoy is that
left by higher-priority cores. For instance, in the avionics
domain, DAL-E applications, which require only best-effort
performance guarantees, are the only ones that could be
assigned to a layer other than the top one.

Priorities can be implemented in each node of the tree
keeping separate buffers for each priority level in those nodes
where requests with different priorities may be arbitrated.
The arbiter selects one request in this order: first high-priority
requests from the selected link, followed by high-priority
requests from the non-selected link, low-priority requests
from the selected link and, finally, low-priority requests from
the non-selected link.

(b) Intra-layer priorities. Cores in each priority layer can
be provided heterogeneous bandwidth allocation, which can
be implemented in different ways. In the case of RP we
create permutations with as many slots as needed with high-
priority links being assigned more slots. For instance, one
could distribute bandwidth across links as shown in Figure 3
in which all cores are in the top priority layer: cores 1
and 2 (Groupl or G1) get the highest bandwidth: 0.32 (0.5
in the first arbiter and 0.8 in the second and the third).
Analogously, cores 3 and 4 (G2) get 0.08 of the bandwidth
each and cores 5 to 8 (G3) get 0.05 of the bandwidth each.
In the case of a bus, the same approach can be implemented
by increasing the number of slots for cores with higher
bandwidth requirements.

(¢) Mixed-layer priorities. The two previous approaches
can be combined such that all requests from cores in
higher-layer priorities are prioritized over the cores in lower-
layers. And within each layer bandwidth can be allocated
homogeneously or heterogeneously (intra-layer priorities).

Note that intra-layer priorities, despite they can be set to
allocate the bandwidth in a non-homogeneous way, provide
the same level of guarantees to all cores in the layer.
In that respect, while intra-layer priorities only change
the bandwidth allocation, inter-layer priorities change both
bandwidth guarantees and allocation.

Overall, different degrees of bandwidth (from full band-
width to no bandwidth) can be guaranteed to the different
cores, thus enabling a flexible scheme to configure the NoC
to the needs of tasks in different criticality levels.

B. Implementation Remarks

pTNoC provides special purpose control probabilistic
bandwidth allocation (pba) registers, which can be written
with standard instructions in most ISAs, e.g. mfsr (move
from special register) and mtsr (move to special register).
How these registers are set by the RTOS is explained with
an illustrative example below.

In principle, each link of each arbiter needs as many
queues as priority layers. One can restrict this to having only
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Figure 4: Example of an arbiter implementing inter- and
intra-layer priorities.

Normalized WCET

Figure 5: pWCET estimates for the 16-core bus and tree-
based multicores normalized w.r.t. bus-RR.

2 priority layers to reduce hardware overheads, especially
because only the highest priority layer has true guarantees
and so it makes little sense having several low priority layers.

Inter-layer priorities are implemented by prioritizing the
requests in high-priority queues over the ones in low priority
queues. Intra-layer priorities are implemented by allowing
W -slot windows in the arbiters and using pba to determine
which link (left (0) or right(1)) is granted access. For instance,
let us assume W = 4-slot windows, which allows managing
the bandwidth in 25% steps (e.g., 25% per slot) in each
arbiter. In a 3-layer tree for an 8-core setup, this allows
the bandwidth to range from 42.2% (75% in all arbiters,
so 0.75%) to 1.6% (0.253). To program the pba the arbiter
creates 4-bit random permutations for each priority layer, see
Figure 4. If only 2 priority layers are allowed, then 2 separate
sets of pba registers are needed, one for each layer. In the
example in Figure 4, for the high-priority traffic the left link
is assigned 75% of the bandwidth, i.e. there are three 0’s in
each permutation out of four bits. For the low-priority traffic,
bandwidth is divided evenly, i.e. the number of 0’s and 1’s
is the same.

VI. EVALUATION

We model a 8/16-core processor with pipelined in-order
cores. Each core has separated first level instruction (I1) and
data (D1) caches, a partitioned-across-cores L2 cache and
main memory. I1 and D1 are 4KB, 8-way and 16B/line and
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Figure 6: Request delay in a tree for an 8-core setup.

implement random placement and replacement policies [13].
The L2 is 256KB 8-way and also implements random
placement and replacement policies. L2 is non-inclusive [14].
D1 uses write-through miss policy, I1 is read-only and L2 is
write-back. Hit/miss latency is 1 cycle for [1/D1 and 3 cycles
for L2. L2 is accessed either through pTNoC where each
arbitration stage takes 1 cycle, or through a non-pipelined
bus whose latency is 3 (4) cycles in the 8-core (16-core) case.
The latency values used for the tree and the bus reflect the
improved scalability of the tree where arbitration is performed
on a distributed manner and the maximum link length is
decreased [23]. For modeling this processor setup we used a
simulator based on the SoCLib simulation framework [26].
For modelling the NoC we used gNoCsim [2], a powerful and
configurable NoC simulator, which we integrated in SoCLib.
As explained before, only the bus has been proven MBPTA-
compliant so far. Moreover, other topologies (i.e. a mesh)
do not provide any performance advantage for N.-to-1 and
1-to-N,. communications and, as shown later, incur higher
area and power overheads.

We make use of the proposal in [21] to make access to
main memory be jitterless as needed for MBPTA. This further
allows factoring out the variation of memory on pWCET
estimates, making that NoC results can be better understood.

We use the EEMBC Autobench suite [22], which reflects
current real-world demand of some automotive CRTES.
pWCET estimation is performed with MBPTA for a cut-
off probability of 10713, It is noted that similar trends are
observed for other cut-off probabilities. For the purpose of
measuring average performance we run each benchmark
1,000 times as part of a 8/16-benchmark workload composed
of randomly selected EEMBC Automotive benchmarks. For
instance, for the 8-core setup we included each benchmark
1,000 times in a list and randomly picked from there 8
benchmarks to build each workload until the list was empty.

A. Homogeneous bandwidth setups

First we evaluate pTNoC under an homogeneous bandwidth
setup in which all cores are provided the same level of
guarantees, i.e. all cores are in the same priority layer.

PWCET estimates. We compare the pWCET estimates
obtained with MBPTA for the 3 arbitration policies, namely
RR, LOT and RP; for both the bus and the tree with 16
cores. Results, shown in Figure 5, are normalized w.r.t. the
bus implementing RR arbitration, hence, the higher the value
for an arbitration policy the worse. Due to space constraints

we show average results across all benchmarks as well as
results for few individual benchmarks corresponding to cases
where differences are large (idctrn), small (basefp) and
close to the average case (aifirf). As shown, the tree
NoC always leads to tighter pWCET estimates than the bus
regardless of the arbitration policy used (20% for RR, 25%
for LOT, 16% for RP). This occurs because the tree has much
higher guaranteed throughput due to its pipelined fashion.
When comparing the pWCET across arbitration policies for
the tree, we observe that RP is the best choice because its
maximum and average latency to traverse the tree is equal
or lower than that for the other policies.

Average performance during operation. While WCET
is the most important metric in CRTES, we also evaluate
average performance when real NoC traffic is experienced
rather than worst-case traffic. Given that real traffic is low in
the NoC, contention occurs seldom. Thus, tree NoC average
execution time is only 3.4% lower than that for the bus.
Differences across arbitration policies are negligible (well
below 0.1% for both the bus and the tree).

Per-request tree delay. Figure 6 shows the per-request
delay histogram to traverse the tree for the different arbitration
policies at analysis time. Results correspond to the a2time
benchmark, although all benchmarks show very similar
distributions. As shown, for the RR policy its worst-case
traversal time of the NoC is 10 cycles. LOT takes around
7.8 cycles on average, however, it may take any number of
cycles with decreasing probability. For instance, a latency of
15 cycles is experienced around 1% of the times. Finally, RP
leads to the lowest average latency (7 cycles) and it never
experiences a latency higher than 10 cycles (it is 10 cycles
0.5% of the times), which is its worst case. This is the reason
for RP to outperform the other policies for the tree.

B. Heterogeneous bandwidth setups

In order to study the case of mixed-criticality systems
with heterogeneous performance requirements, we evaluate
different setups:

1) Inter-layer priorities. First we evaluate a setup where
only one core is in the high-priority layer (E1-prio) and
the rest of the cores are in the low-priority layer; and
also a setup in which two cores are in the high-priority
layer (E2-prio), in particular cores 1 and 2, while the
rest of the cores are in the low-priority layer.

2) Intra-layer priorities. All cores are in the high-priority
layer with different intra-layer priorities.

pWCET 8-core setup. In this case for the latter setup
we consider 3 groups of cores with priorities as shown in
Figure 3: G1 (cores 1 and 2), G2 (cores 3 and 4) and G3
(cores 5, 6, 7 and 8), with G1 having more bandwidth than
G2 and G2 more than G3. We obtained pWCET estimates
for each benchmark in each group (G1-3) during analysis
time as explained in Section IV-A.

Figure 7 shows the pWCET estimates for the tree NoC for
each arbitration policy normalized w.r.t. the homogeneous
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Figure 7: WCET estimates for the tree-based 8-core normal-
ized w.r.t. non-priority RP case. Values on top of the columns
show the guaranteed bandwidth in each case.

bandwidth (no-prio) case averaging values across all EEM-
BCs. The numbers on top of each column correspond to
the (theoretical) guaranteed bandwidth in each case. L.e., in
no-prio each of the 8 cores should get 1/8 of the bandwidth
and for the El-prio and E2-prio case each core can get full
and half of the guaranteed bandwidth respectively.

In the case of El-prio and E2-prio results correspond
to the benchmark(s) running with high priority. In both
cases, we observe how our proposal effectively reduces the
pWCET estimate for programs running in the core(s) in the
top priority. For the case of intra-layer priority we observe
that cores 1 and 2 in group G1 reduce their pWCET estimate
by taking bandwidth from cores in groups G2 and G3, whose
pWCET estimates are affected, specially for cores in G3.
In general, the differences among bandwidth allocations are
relatively small. The reason is that requests quickly get to
the top arbiter since buffers in each link are large enough.
Therefore, contention mostly occurs in that arbiter, thus
creating relatively low variability across cores sharing the
same link in the top arbiter. Moreover, intra-layer priorities
in this top arbiter have a much larger impact than those in
other arbiters due to the same reasons: requests mostly queue
in the top layer.

pPWCET 16-core setup. For the 16-core intra-layer setup
we used a configuration similar to that for 8 cores as shown
in Figure 8a, but modifying priorities in the top arbiter to
illustrate its dominant effect. The delay histogram for requests
in each priority group are shown in Figure 8b. pWCET
estimates for this setup are shown in Figure 9. On top of
each column we show the (theoretical) allocated bandwidth
to each group.

Trends are analogous to those in the 8-core setup. For
instance, El-prio provides the best pWCET estimate for the
core with high priority, and it is followed by E2-prio for the
2 cores with high priority. Also, the groups of cores with
highest G1 and lowest G4 have higher and lower pWCET
estimates than the case of homogeneous priorities respectively.
This correlates with the fact that the higher the bandwidth,
the lower the pWCET estimate. Similar trends are observed
for G2 and G3. The delay histogram in Figure 8b already

shows that requests in G1 experience the lowest delay across
groups and lower than no-prio, thus tasks in G1 obtain lower
pWCET estimates than those for other cases. G2 and G3
obtain slightly worse pWCET estimates, as expected based
on the delay histogram. No-prio performs a bit worse and
G4 is the worst case among those, which also matches with
the expectations based on the delay histogram.

It can also be observed that G2 and G3, despite having
lower bandwidth than no-prio, have lower pWCET estimates.
As explained before, this occurs because requests reach the
top arbiter experiencing relatively low contention, but most
contention occurs in the top arbiter where requests are queued
until sent to L2. Therefore, bandwidth allocation in the top
arbiter has much higher influence than that in the other
arbiters. Since cores in G2 and G3 have higher bandwidth in
the top arbiter than cores in no-prio, their pWCET is lower.
Thus, pWCET differences in the 16-core setup are lower
than in the 8-core case because priorities in the top arbiter
are similar across links (0.6 vs 0.4) in the 16-core case, and
unbalanced (0.8 vs 0.2) in the 8-core case. Part of our future
work includes investigating other bandwidth management
schemes with higher controllability.

Average performance. We have also evaluated average
performance when running under no-prio, inter- and intra-
layer priority configurations. Figure 10 shows the average
performance of all tasks in the workload for the 16-core setup.
pTNoC effectively provides both, heterogeneous bandwidth
guarantees and allocation, with very reduced impact on
average performance. For the inter-layer configurations the
slowdown is less than 5.5%. Differences come from the
case where several programs with high memory bandwidth
requirements fall in the same workload, some of them
being in the top priority cores (thus creating plenty of high-
priority traffic) and others starving systematically in the
low priority cores. For the intra-layer configuration giving
higher bandwidth to some cores negligibly improves average
performance across all cores w.r.t. the no-prio setup. Average
performance is just 2% better for G1 w.r.t. no-prio, 0.5%
worse for G4 w.r.t. no-prio and 0.4% better across all groups.

C. Implementation and Energy Results

We have implemented the proposed tree design using
the 45nm technology open source Nangate library [1] with
Synopsys DC. We have used M1-M4 metallization layers
to perform the Place&Route with Cadence Encounter of the
different arbitration nodes. To determine the placement of
the different arbitration nodes we have followed the approach
proposed in [23] to minimize link length. Table I summarizes
the implementation results for 8- and 16-core trees using two
priority layers. Results for a bus implementation are also
shown for comparison purposes. Area and delay results in the
table are normalized w.r.t. an 8-core mesh NoC. As shown,
tree NoCs require lower area than the 2D mesh network
because the tree NoC implements only the resources required
to perform all-to-one communication. However, as expected,
the area required for implementing the tree is larger than
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Figure 8: Heterogeneous bandwidth guarantees in a 16-core tree NoC.
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Figure 9: pWCET estimates for the 16-core setup for different
arbitration policies normalized w.r.t. non-priority RP case.
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Figure 10: Average execution times for 16 cores for different
arbitration policies.

that required for the bus. Critical path delay results shown
in the table determine maximum achievable frequency of
the different NoC designs. Maximum achievable frequency
mainly depends on two factors: network size and arbitration
inputs. For the bus and the tree, network size impacts
operation frequency as it determines the maximum link length
required in the floorplan. The number of arbitration inputs or
contenders is given by the number of layers used to perform
the arbitration. As shown in Table I pTNoC shows good

scalability up to 16 nodes unlike the bus that shows a delay
1.67x and 1.47x worse than the pTNoC for 8 and 16 cores,
respectively. Moreover, while the number of arbitration layers
penalizes maximum achievable frequency, its impact can be
contained if only two arbitration layers are used as proposed
in this paper. Note that results shown in the table are for the
case of RP. However, results for RR and LOT arbitration,
also computed but not shown in the table, are roughly the
same.

We have also computed energy values when executing
several applications with the proposed NoC design. In
particular, we have computed values for EEMBC benchmarks
and for one synthetic benchmark. The synthetic benchmark
is a corner case where high number of misses in L1
occur to create high contention in the NoC. Differences in
energy measurements for regular benchmarks (EEMBC) are
imperceptible while RP behaves slightly better (1.5%) in the
case of the synthetic benchmark. The conclusions we extract
from these measurements is that the very low implementation
overhead of RP has negligible impact in energy values even
in the least favorable scenario (low contention) while the
reduction in the execution time provided by RP provides
slightly lower energy values in the most favorable scenario
(high contention).

VII. CONCLUSIONS

MBPTA has emerged recently as a powerful method to
derive WCET estimates for critical tasks in safety-related
systems. Multicore designs providing the properties needed
by MBPTA have been presented in the literature, but they
rely on a shared bus to communicate cores and memory, and
do not fit well mixed criticalities.

We have presented a MBPTA-compliant tree NoC, pTNoC,
that outperforms buses in the 8- and 16-core setups evaluated.
pTNoC enables the realization of mixed criticalities on
multicores by managing different guarantee levels and
bandwidth assignments with minimum impact on average
performance.



Table I: Results of the synthesis normalized w.r.t. 8-core mesh
values. Absolute values are also provided for completeness.

Area
8-core 16-core
mesh | tree | bus | mesh | tree | bus
Relative 1 10.5410.38|2.30 |1.55]1.24
Absolute (10%um?)| 18.4 [10.0] 7.0 | 42.3 [28.6]22.9
Delay
8-core 16-core
mesh | tree | bus [ mesh | tree | bus
Relative 1 [090[1.33] 1 [0.96|1.61
Absolute (ns) 0.83 [0.75] 1.1 | 0.83 [0.80]1.34

Our results for 16 cores show 16% to 25% average WCET
reductions for our tree w.r.t. the bus for different arbitration
policies. Further WCET reductions of up to 9% are obtained
when using priorities for mixed criticalities. Also, our results
show that pTNoC incurs low area and energy costs.
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