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Abstract—Schmitt-Trigger stages are the method of choice for
robust discretization of input voltages with excessive transition
times or significant noise. However, they may suffer from
metastability. Based on the experience that the cascading of
flip-flop stages yields a dramatic improvement of their overall
metastability hardness, in this paper we elaborate on the question
whether the cascading of Schmitt-Trigger stages can obtain a
similar gain.

We perform a theoretic analysis that is backed up by an ex-
isting metastability model for a single Schmitt-Trigger stage and
elaborate some claims about the behavior of a Schmitt-Trigger
cascade. These claims suggest that the occurrence of metastability
is indeed reduced from the first stage to the second which suggests
an improvement. On the downside, however, it becomes clear that
metastability can still not be completely ruled out, and in some
cases the behavior of the cascade may be less beneficial for a given
application, e.g. by introducing seemingly acausal transitions. We
validate our findings by extensive HSPICE simulations in which
we directly cover our most important claims.

I. INTRODUCTION

In VLSI design two types of discretization are performed to
make real-world quantities “computable” in a digital domain.
The values of originally analog quantities are transformed
from their continuous space into a suitable digital (i.e. discrete)
representation by analog-to-digital converters. In the time
domain a periodic clock signal performs a transformation from
a continuous to a discrete time by sampling these digital logic
states at suitable instances, typically the clock edge. It has
been formally proven that every such transformation from a
continuous space to a discrete one inevitably introduces the
risk of metastability [1], i.e. a prolonged state of indecision
between two discrete values. Consequently one either has to
allow an unbounded decision time, or expect to occasionally
experience undefined, also known as “metastable”, readings.
In the time domain this question boils down to deciding about
the precedence of events; it has been extensively studied in
context with flip-flops [2], where a decision needs to be made
whether a transition on a data line occurred before or after a
given clock edge. Synchronizer circuits are used to reduce the
risk of metastable upsets to a suitable level, albeit at the cost
of performance. In case of the waiting synchronizer [3] flip-
flop stages are simply cascaded to that end, which generally
yields a dramatic improvement in reliability.
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In the value domain the most fundamental task is that
of a discriminator which has to decide whether a given
input voltage is higher or lower than a reference. To avoid
oscillating behavior for inputs close to the reference, Schmitt-
Trigger (S/T) stages [4] are employed instead whose hysteresis
behavior makes them ignore irrelevant voltage fluctuations.
However, it has been shown that for certain input traces a
S/T can become metastable as well [5], [6]. Following the
lessons learned from synchronizers, one may ask whether the
cascading of S/Ts is again effective in reducing the risk of
metastable upsets. This is exactly the question we want to
address in this paper.

To this end we will, in the next section, revisit the behavior
of a single S/T stage. Based on this knowledge we will, in
Section III, break down our key question into sub-questions
whose answer may finally allow the desired overall judgment.
In Section IV we will briefly introduce the metastability model
for a single S/T stage, as derived by Marino in [5] and use it to
shed light on our related sub-questions. On the foundation of
this analysis we will elaborate predictions for the behavior of
a two-stage S/T cascade in Section V which we will validate
by extensive simulation experiments in Section VI. Finally, we
will conclude the paper with Section VII.

II. BEHAVIOR OF A SINGLE SCHMITT-TRIGGER STAGE

The key property of a S/T is its hysteresis behavior as
shown in Fig. 1. Once an input voltage Vin has crossed
the upper threshold VH from below, the S/T output flips
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Fig. 2. Conventional CMOS S/T implementation (from [4])

to LO1 and will not return to HI before the input crosses
the lower threshold VL. This behavior provides the S/T its
desired robustness against fluctuations of Vin which cause a
comparator to oscillate when occurring close to its (single!)
threshold voltage.

Clearly, the hysteresis behavior is tantamount to making
the reference voltage depend on the current output state,
which, in turn, implies that there is some kind of feedback
of the output state to the input. Fig. 2 shows a typical CMOS
implementation of a S/T [4]. The feedback path via transistors
M3 and M6 is clearly visible. It is exactly this (inevitable)
existence of the positive feedback path that makes the S/T
prone to metastability. In case of an input trace that first causes
the S/T state to flip but then, before the feedback path has
fully stabilized, pulls the S/T back to the old state, undesired
behavior can be observed at the output. As will be elaborated
in more detail in Section IV, the S/T can exhibit the following
behaviors at its output:
(B1) For strictly monotonic input traces the S/T will show

clean (steep) and well timed output transitions. This is
the regular behavior.

(B2) A monotonic input trace that brings the S/T right to
the tripping point and stays constant there can cause an
indecision on whether to flip, which ultimately leads to
a clean but (arbitrarily) late transition.

(B3) Similarly, an input trace that goes slightly beyond the
threshold but then back again and stays constant, can
make the S/T assume a metastable state in which it
outputs a constant voltage that is determined by the final
constant value of Vin and may well be somewhere in
between a clean HI and a clean LO.

(B4) An input pulse of marginal width, i.e. one that does
not give the S/T enough time to stabilize its state, can
create a glitch at the output. Depending on whether this

1We will consider an inverting S/T throughout the paper, as virtually all
practical implementations are inverting.

pulse reaches full height or not, we distinguish between
a glitch and a runt, respectively.

(B5) In general, a non-monotonic input trace can, in principle,
make the S/T output any desired voltage between clean
HI and clean LO for any desired time – in fact by
appropriately controlling the input trace one can obtain
any desired output voltage trace (within the S/T’s static
and dynamic voltage limits, of course).

It very much depends on the application which of these
behaviors are actually undesired, and as a consequence it is
hard to quantify the improvement in signal quality obtained
by the S/T in general. In most cases marginal voltage levels
are problematic, as they could be interpreted differently by
different receivers. Unfortunately, in case (B3) one may still
encounter marginal output voltage levels that are not just
transient, but, as these cases are hard to trigger and hence can
be considered rare, the S/T provides a very good improvement
in general. If output glitches are a concern, case (B4) becomes
problematic, and even in case (B2) a late transition may form
a glitch in conjunction with a regular subsequent one. Again,
these cases need very specific input traces and are hence rare.
Finally, due to case (B5), no type of output behavior can be
completely ruled out by using the S/T, which means there
is only a quantitative improvement, albeit a substantial one.
However, as there are infinite numbers of both, “good” and
“bad” traces, it is not possible to quantify the improvement;
and we are not aware of any such approaches in the literature.

III. QUESTIONS TO BE ANSWERED

From the above analysis we have concluded that a single S/T
stage improves the signal quality. So in principle, a subsequent
S/T stage should obtain a similar improvement, and thus
overall the cascade has a higher gain than the single stage.
However, it remains to be investigated whether this is indeed
the case. In order to come to a conclusive answer, the following
questions should be addressed:
(Q1) In which cases does the second S/T stage improve the

behavior?
(Q2) Are there cases in which the behavior is getting worse?

Are there new types of (likely) behavior?
(Q3) Is the second stage equally likely to become metastable

as the first one?
(Q4) Can metastability of the last stage be completely

avoided, possibly by forming a longer cascade?
(Q5) How are the static properties of the cascade determined

(is it still a S/T, and if so, which hysteresis)?
(Q6) How are the dynamic properties determined (regular

delay, output slope, is there a performance penalty in
using a cascade?)

(Q7) Are there any rules for optimal dimensioning of the
cascade (combination of fast and slow stage, different
hystereses,...)

To conclusively answer these questions we will in the
following elaborate a sufficiently detailed understanding of the
behavior of a (2-stage) S/T cascade. As a first step towards
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Fig. 3. Dynamic model of the S/T inspired by Marino [5]

this end we will revisit an existing model for the metastable
behavior of a single S/T stage in the next section.

IV. METASTABILITY MODEL OF A SCHMITT-TRIGGER
STAGE

Marino has already proposed a dynamic model for the S/T
that allows to investigate its metastable behavior [5]. This
model is based on a S/T implementation using an operational
amplifier (OpAmp) as shown in Fig. 3. The OpAmp is
assumed to be ideal, but with a limited output voltage range
of ±M . An RC low pass at its output defines its dynamic
behavior, and a resistive voltage divider by k ∈ {0...1}
feeds back part of the output voltage to the input (positive
feedback). For brevity we omit the derivation and solution of
the associated differential equations here (for details please
refer to [5]) and just show the results:

As the saturation requires separate treatment, the solution
comprises three regions, as illustrated in Fig. 4: upper and
lower saturation (Regions 1 and 3), as well as the “linear
region” 2 between them. The dashed lines represent the
borders between the regions (the corresponding equations are
also given).

The dynamic system represented by the S/T is then de-
scribed by the following equations:

Region 1:
dVout
dt

= V ′out = −
1

τ1
(Vout − γ1) (1)

The resulting trajectory for Vout is a decaying exponential
function with time constant τ1 ≈ R0C0 that asymptotically
approaches the truly stable rest point γ1 ≈M .

Region 2:
dVout
dt

= V ′out =
1

τ2
(Vout − γ2) (2)

Here we have a growing exponential function with time
constant τ2 ≈ R0C0

kA−1 that moves away from the metastable
rest point γ2 ≈ Vin−(1−k)VR

k− 1
A

. Note that we do not have a
single metastable point, as in case of a latch, but all points on
γ2 are metastable points and the actual rest point depends on
Vin (see Fig. 4).
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Fig. 4. Phase diagram for the S/T from Marino [5]

Region 3:
dVout
dt

= V ′out = −
1

τ3
(Vout − γ3) (3)

Similar to Region 1 this yields a decaying exponential function
with time constant τ3 = τ1 ≈ R0C0 that asymptotically
approaches the truly stable rest point γ3 = −γ1 ≈ −M .

At this point it is interesting to compare the S/T with a
latch, as Veendrick derived a similar model for latches in [7]
to investigate their metastability behavior. While both elements
have a positive feedback, the key difference is that in the latch
the input becomes decoupled when the storage loop is closed
(i.e. when switching to hold mode). Mathematically this means
that the input becomes irrelevant, and just the homogeneous
solution of the differential equation applies. In the S/T this
is not the case, and the input continuously influences the be-
havior. This not only complicates the mathematical treatment
(and is probably the key reason why there are no quantitative
improvement values available for the S/T), it also results in
the S/T having more than one metastable point: depending on
the input voltage the S/T can rest in any metastable location
along the γ2 line and hence produce any arbitrary metastable
output voltage. Finally, this lack of decoupling between stages
also complicates the analysis of the S/T cascade.

As a physical analogy one might consider the metastable
latch as a stick that is vertically placed on a firm table such
that it balances on its tip before it finally falls, while the S/T
is the same vertical stick but balancing on a finger that can
still be moved left and right (inverted pendulum).

V. CLAIMS ABOUT THE BEHAVIOR OF A
SCHMITT-TRIGGER CASCADE

In the following we want to investigate a two stage S/T
cascade as shown in Fig. 5. It was already argued in Section II
that a single S/T stage can essentially exhibit any output
behavior (case (B5)). This means that the first stage does not
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qualitatively restrict the second one’s input space, and, as a
consequence, stage 2 has unrestricted output behavior as well.
So at this point we can already answer question (Q4) about
complete avoidance of metastability through a S/T cascade:
This is simply not possible.

In continuation of the physical analogy given in Section IV
we can view the second stage as a second vertical stick
balancing on the upper tip of the first one. This analogy
nicely illustrates that it becomes much more unlikely to see
metastability in the second stage (i.e. actually find a balance
for the second stick) – thus giving an intuitive answer to (Q3)
– , but it is physically possible.

To get closer to a quantitative answer, let us analyze how
the different output behaviors of the first stage are handled
by the second one. The internal signal connecting the S/T is
named Vm (cf. Fig. 5).

A. Regular behavior

Let us start with the regular behavior (B1) and assume a
starting point with Vin < VL,1 (the case of Vin > VH,1 is
analogous). Note that in VL,i and VH,i the index i corresponds
to the stage number. Due to the inverting behavior of each of
our S/T stages, we have Vm at HI and Vout at LO again. As
Vin increases, Vm and Vout stay constant until Vin reaches
VH,1. Beyond that point Vm will switch to LO. With a strictly
monotonic Vin this transition of Vm will be rapid. Clearly,
this transition of Vm will also cause the second stage to
switch, namely when crossing its threshold VL,2. Overall, we
experience a clean switching, with the threshold determined
by that of the first stage, while the second stage’s threshold
is irrelevant, as Vm crosses the whole voltage range anyway.
This answers question (Q5).

Vin

Vout

VH,1VL,1 V1 V2

HI

LO

Fig. 7. Theoretical hysteresis (Vin − Vout) of S/T cascade

Generally, in this mode of operation we can expect the
steepness of the transitions to increase as the first S/T tends to
switch fast when its threshold is reached, causing the second
one to change even faster. The signal is however delayed by
the propagation delay of the second S/T.

B. Late transitions of stage 1

According to case (B2) a ramp input stopping at a constant
value near the threshold will cause a late but clean transition
at stage 1. In that case the second stage perceives a clean
input which it simply conveys (adding its nominal propagation
delay). So late transitions are essentially not modified by the
second stage.

C. Hysteresis curve of the cascade

We know from Section II that for a single S/T to become
metastable its input voltage must be between its thresholds.
This means we can only make the second stage metastable
with a Vm between VL,2 and VH,2, which will (apart from
a steep transition during switching as described above) only
occur when the first stage is metastable, and even then only
in a specific range, as shown in Fig. 6. In the following we
will use V1 and V2 to denote those values of Vin that, if the
first S/T is metastable, will cause it to output Vm = VL,2 and
VH,2 respectively. This consideration allows us to draw the
hysteresis curve for the overall behavior of the cascade shown
in Fig. 7: Still the static switching points are determined by
the first stage, but the range of possible metastable behavior is
limited to the range of V1 ≤ Vin ≤ V2, with V1 and V2 being
determined by the slope of the γ2 line of the first stage and
the thresholds of the second stage.

The same hysteresis is achieved when using two non-
inverting Schmitt-Triggers, while combining an inverting S/T
with a non inverting one, mirrors the hysteresis around the line
Vout = (HI +LO)/2, independent of the ordering (assuming
equal VL,i and VH,i values).

For the case that the hystereses of the single S/Ts are not
equal the ordering is important, as VH and VL of the cascaded
system are determined by the first S/T alone and V1 and V2 by



both of them. Let VNi be (VH,i + VL,i)/2. If VN1 = VN2 =
V DD/2 the order does not have an influence on V1 and V2.
In all other cases they might deviate, however the difference
between them, i.e. V2−V1, is constant. This is very important
since V2− V1 < VH − VL. Therefore it is possible, if the first
S/T is held in metastability, to create a pulse train at the output
with the reduced hysteresis V1 to V2 (cycling the dotted lines
in Fig. 7).

D. Moving into metastability

To move the second stage into metastability, stage 1 needs
to be made metastable first. This can be attained by increasing
Vin from a value lower than VL,1 to VH,1 and then decreasing
it appropriately, while stage 1 starts to switch (behavior (B3)).
By staying close to the metastable restpoints (γ2 in Fig. 4)
until Vm reaches VL,2 (Vin = V1) the second S/T will start to
switch and can be driven into metastability in the same way as
the first one. While keeping both S/Ts in metastability, which
is either possible with very precise or very fast control of Vin
(for a more detailed explanation see [6]), the output values
between LO and HI shown in Fig. 7 are reachable.

E. Emergence of glitches

An interesting behavior can be observed when, with both
stages in the metastable state, Vin is increased to a value
between V2 and VH . This will bring Vm to above VH and
hence cause the second stage to flip to LO. A further (mono-
tonic!) increase of Vin beyond VH will then bring the first
stage to saturation and make Vm transition to LO, which, in
turn, causes the second stage to flip back to HI. In this case we
have observed a glitch at Vout that was caused by a monotonic
transition of Vin (however, a non-monotonic Vin was initially
required to bring both S/Ts into the metastable state in the first
place). The root of this behavior lies in the positive slope of
the γ2 line, which is somehow contradictory to the otherwise
inverting behavior of the S/T. This is also expressed by the
direction of the arrows in Fig. 7.

While this definitely represents a new type of (often unde-
sired) behavior not seen with a single stage – thus answering
(Q2) positively – one should keep in mind that it takes an
extremely precise control of Vin to navigate into this case. In
the physical analogy this would equal the case of bringing
both sticks in vertical balance and then having them fall down
to opposite sides.

F. Generalization of the analysis

The above scenarios only represent some selected possible
cases of output behavior. More generally, the shape of Vout(t)
is determined by (a) the shape of the input voltage Vin(t),
(b) the state of stage 1 (given by Vm(t)), and (c) the state of
stage 2 (given by Vout(t)). In this 3-dimensional space one can
identify 9 characteristic sub-spaces (for Vin remaining constant
at its initial value). Five of these are listed in Table I, the
other 4 are symmetric and not treated here for brevity. The
subtables 1 ... 5 apply for different values of Vin. Table 1
shows the case where Vin is significantly lower than VL,1,

such that Vm is forced to HI and consequently Vout to LO
immediately, irrespective of their initial state. The zeros denote
the final state of the cascade’s output. The arrows show what
event could be observed at the output. 0 means the output
was initialized to zero and remains there, 0 means the output
makes a fast transition to 0 from wherever it was initialized
to. The 0 shows that there is (very limited) glitch potential if
the nominal propagation delays of the two S/Ts significantly
vary.

TABLE I
POSSIBLE OUTPUT BEHAVIORS WITH STATIC INPUT

Vin0 VL,1 VH,1V1 V2

1 2 3 4 5

1 0 1
1
0

0 0
0 0

2 0 1
1
0

0 0
0 0

3 0 1
1

0

0 0
0 0
1 1
1 1
1 1

4 0 1
1

0

0 0
0 0
1 1
1 1
1 1

5 0 1
1

0

10
1

0

0 0
0 0 0 0 0
0 0 1 1

1 1 1 1 1
1 1

Vout

Vm

Table 2 shows possible outputs when Vin is so close to
VL,1 that it causes an abnormal switching delay of the first
S/T (Region 2 in Fig. 4). Due to this delay, a late transition
(0 ) or a glitch (0 ) can be observed at the output when Vm
is initialized to 0. That would correspond to the case of glitch
emergence described above.

In table 3 , Vin is between VL,1 and V1 – the first stage can
now also be initialized metastable resolving to 1 ( ), to 0 ( )
or not resolving at all ( ). As can be seen, due to Vin < VL,1

the metastable voltage must be below VL,2 for the next stage,
which can therefore not distinguish this type of metastability
from a clean LO. When metastability resolves to HI, the effect
on the second stage will be identical to the late transitions in
the previous paragraph.

Table 4 shows the case when the metastable voltage output
of the first stage is very close to VL,2. The difference to the
previous table is that during metastability of the first S/T, the
second one can delay its output transition. The most interesting
case is 0 . It shows that the relationship of the delays
(metastability/late transition) makes a qualitative difference at
the output: If Vm reaches HI first, the output remains LO; if
Vout is faster, the output could be an arbitrarily delayed glitch.

Table 5 presents the behaviors for input voltages of V1 <
Vin < V2. Here both S/Ts can be initialized metastable,
therefore the table has many entries. Apart from late tran-
sitions, 0 and 1 again show the interesting cases of race
conditions. Depending on the order of metastability resolution,
the output can either go directly from an undefined voltage to
HI or LO (first S/T resolves before second one), or first go
to the opposite logic state followed by a full range transition
(second S/T resolves before first one), thus generating a glitch.
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Fig. 8. Time trace of Vin, Vm and Vout for input slopes stopping at a constant value near VL,1

So we can conclude that in addition to the 3-dimensional
space described so far, the order of metastability resolution
is important as well, if both S/Ts are metastable.

As a general trend we can observe in the table that, while
some of the metastable cases of stage 1 are propagated, others
are turned into other behaviors like proper transitions, delayed
transitions, or glitches. In no case an intermediate voltage is
generated from clean transitions. So in applications where the
key purpose of using a S/T lies in protecting the subsequent
logic from intermediate voltages, the cascade does a decent
job in reducing that risk. However, if glitches and badly timed
transitions are dangerous, then the use of the cascade may be
counter-productive. This may be considered an answer to (Q1)
... (Q3).

G. Pulse propagation

According to case (B4) a single S/T stage may or may not
propagate a glitch or runt. As the second stage may, of course,
show the same behavior, glitches and runts may propagate
through the whole cascade. As the second stage may turn some
of these into stable transitions, however, the probability of
propagation can be expected to become lower in the cascade.

VI. VALIDATION OF THE CLAIMS

To validate our predictions about the behavior of the cascade
from the previous section, we performed HSPICE simulations
of two S/Ts in series, each implemented using the circuit
shown in Figure 2 with transistor parameters of an industrial
65 nm process.

Fig. 8 shows the behavior of the cascaded S/Ts when a
ramp resulting in a constant value is applied to the input (case
(B2)). As one can see the first stage responds with late but
clean transitions, i.e. ones that cross the intermediate voltage
range sufficiently fast. The second stage then increases the
steepness of the transitions even further. Please note that the
inputs causing the different traces only deviate by a very
small amount of their final, constant value. Therefore we can
confirm, that VH,1 respectively VL,1 has to be approached very
accurately to observe late transitions at the output. However,
this is due to the properties of the first stage alone, while the
second stage does not yield any further improvement.

When short pulses are applied to the cascaded S/Ts (case
(B4)), these are preserved or suppressed depending on their
width, as can be seen in Fig. 9. A little bit misleading is the
fact, that the pulses at the output seem to be longer than those
at the input, since the time they spend below VL is longer
than for those at the input. This can, however, be explained
by the increased steepness of the transitions. When the pulses
are compared by their crossing times of V DD/2, for example,
one can see that they stayed the same and are not stretched in
time.

Figures 10 and 11 show the cases when both S/Ts are in
their metastable region and the first respectively second one
resolves before the other. In the first case Vout increases with
Vm until it reaches VH , where Vout drops rapidly. If, however,
the second S/T resolves first and afterwards the first one to the
same value, a glitch at the output is introduced. This exactly
matches our predictions from theory.
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Fig. 9. Time trace of Vin, Vm and Vout for pulse inputs
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Fig. 10. First stage resolving earlier from metastability

In the simulation we also observed a behavior that was
not predicted, namely that transitions of stage 2 influence
the behavior of stage one. This coupling can be seen best
in Fig. 12. Initially the first Schmitt-Trigger resolves towards
VDD until VH,2 is reached, causing the second one to switch.
This, however, also introduces a change at the output of stage
one forcing it to drop.

Fig. 13 shows how the S/T cascade can be driven into
metastability and even forced to output arbitrary waveforms
(in this example a sine wave). The beginning of the figure (first
15 ns) shows regular transitions (case (B1)). The hysteresis is
clearly observable and it also becomes clear why the cascade’s
thresholds/hysteresis are determined by those of the first S/T
in the series – it applies its hysteresis to the input and outputs
fast, full range transitions. With such transitions at its input,
the second S/T’s hysteresis only marginally increases the
propagation delay through the cascade but does not alter the
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Fig. 11. Second stage resolving earlier from metastability
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Fig. 12. Interactions between switching S/T stages

overall hysteresis.
The next part of the figure (until 28 ns) shows how the first

S/T is driven into metastability by carefully reverting Vin when
Vm begins to switch. The waveform that the metastable S/T
outputs is such that the second S/T becomes metastable in the
same manner (from 28 ns onward). With both S/Ts metastable,
the cascade is driven to output a sine wave (case (B5))
followed by a constant output voltage (case (B3)). During
the sine output the non-inverting behavior of the single S/T
stages and the amplification of VintoVm and then Vout can be
observed very clearly. In the end (from 70 ns) the second S/T
is resolving to VDD after which the first S/T also resolves
to VDD, forcing Vout to GND. The input is continuously
increased and eventually crosses VH,1, causing one last output
transition – again as predicted in theory.

Finally, Fig. 14 depicts the measured stable (truly stable
plus metastable) points in the (Vin, Vm, Vout)-space. The gray
line at the back is the projection of the 3D-curve to the plane
Vm over Vin and thus represents the hysteresis curve of the
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Fig. 14. Characteristic of the cascade

first stage. The projection to the left plane (Vm over Vout)
shows (a rotated version of) the hysteresis curve of the second
stage. The most interesting one is the projection of the curve
to the ground plane, i.e. Vout over Vin. This represents the
overall hysteresis of the cascade. And indeed this curve exactly
matches our prediction from Fig. 7.

The 3D view also gives a better understanding of the
reachability of the metastable states with Vout neither HI
nor LO. These are only the states on the line connecting
(Vin, Vm, Vout) = (0.64, 0.74, 1.2)V and (0.53, 0.43, 0)V.
This line segment has two noteworthy properties: 1) Both its
projections to the first and second S/T characteristic coincide
with metastable states – the output can only be held at an
intermediate voltage when both S/Ts are metastable. 2) It
does not start from any stable state. This is not apparent
in the 2D overall cascade characteristic. To reach any point
from that segment in a controlled manner, the first S/T has
to be metastable for a considerable time to produce the
non-monotonic waveform required to make the second S/T
metastable. Intuitively, both arguments lead to a substantially

lower probability of the S/T cascade to output an intermediate
voltage compared to a single S/T.

VII. CONCLUSION

We have addressed the question whether the cascading
of Schmitt-Trigger stages improves the metastable behavior.
Our comprehensive theoretical and simulation-based analysis
showed that the risk of an intermediate output voltage is indeed
decreased, and generally the probability of metastable behavior
is significantly reduced. This is due to the fact that the first
stage must necessarily be metastable for the second stage
to become metastable as well. However, there are cases in
which the interaction of the two states of the two S/T stages
causes extra transitions, and also some cases of intermediate
voltage are converted to transitions by the second stage. If the
resulting, potentially misplaced transitions are a problem, the
usefulness of the cascade should be carefully reconsidered in
the given application context.

Another result is that metastable output behavior cannot be
safely ruled out, even with an arbitrarily long cascade. We
have shown for the two-stage cascade that an arbitrary output
waveform can be generated, if only the input is controlled
precisely enough.
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