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Paolo Burgio∗, Marko Bertogna∗, Ignacio Sañudo Olmedo∗, Paolo Gai†, Andrea Marongiu‡, Michal Sojka§
∗University of Modena and Reggio Emilia, Modena, Italy – †Evidence srl, Italy

‡Swiss Federal Institute of Technology (ETH), Zurich, Switzerland – §Czech Technical University in Prague, Czech Republic
Email: {paolo.burgio, marko.bertogna, ignacio.sanudoolmedo}@unimore.it, pj@evidence.eu.com, a.marongiu@iis.ee.ethz.ch, sojkam1@fel.cvut.cz

Abstract—The advent of commercial-of-the-shelf (COTS) het-
erogeneous many-core platforms is opening up a series of oppor-
tunities in the embedded computing market. Integrating multiple
computing elements running at smaller frequencies allows ob-
taining impressive performance capabilities at a reduced power
consumption. These platforms can be successfully adopted to
build the next-generation of self-driving vehicles, where Advanced
Driver Assistance Systems (ADAS) need to process unprecedently
higher computing workloads at low power budgets. Unfortu-
nately, the current methodologies for providing real-time guar-
antees are uneffective when applied to the complex architectures
of modern many-cores. Having impressive average performances
with no guaranteed bounds on the response times of the critical
computing activities is of little if no use to these applications.
Project HERCULES will provide the required technological
infrastructure to obtain an order-of-magnitude improvement in
the cost and power consumption of next generation automotive
systems. This paper presents the integrated software framework
of the project, which allows achieving predictable performance
on top of cutting-edge heterogeneous COTS platforms. The
proposed software stack will let both real-time and non real-time
application coexist on next-generation, power-efficient embedded
platform, with preserved timing guarantees.

I. INTRODUCTION

Automotive systems are entering a new era, where vehicles
integrate more and more functionalities: they are heavily
connected with the surrounding environment and the internet-
of-things, and most importantly, they become capable of
independent decisions, that is, they are more “intelligent”.
This revolutionary change in the way we build our cars
requires a technological shift also in the computing platforms,
opening up a number of opportunities for innovation and
research. All the main players of the automotive market are
spending an increasing amount of resources in this direction.
Major OEM and Tier-1s such as BMW, Volvo, Tesla Motors,
and General Motors are already developing the necessary
know-how and technological background to build the next
generation of embedded automotive systems. Recently, even
companies from other markets, such as Apple and Google,
are entering this challenge (see the GoogleCar [1]). The next
challenge is to build – and especially, to commercialize and
sell – a completely automated self-driving car, supported by
a Advanced Driver Assistance Systems (ADAS). In order to
build fully-featured ADAS, system engineers face a number
of challenges and unprecedented requirements, which are far
from being satisfied. Such a system must:

1) manage heavy sensor-fusion and image-processing;

2) run with reduced power consumption, allowing smaller
batteries and renewable power sources to be put onboard
the vehicle;

3) quickly interact with the environment, requiring a
prompt elaboration of sensor data;

4) automatically run highest criticality workloads, replac-
ing safety-critical human activities.

The converging needs for predictable high-performance at
low power call for a “real-time embedded super-computing
platform”, i.e., a platform capable of predictably providing
real-time guarantees to applications running on top of power-
efficient embedded hardware.

Modern Commercial-Off-The-Shelf heterogeneous architec-
tures (COTS) based on multi- and many-core accelerators can
satisfy this need for energy-efficient performance. Integrating
multiple computing elements running at lower frequencies
allows obtaining impressive performance capabilities at a
reduced power consumption, while architectural heterogeneity
enhances platform flexibility. Examples of such platforms are
the NVIDIA Tegra X1 [2], a GPU-based SoC (described in
Figure 1), and the Xilinx Ultrascale [3], which also embeds
programmable logics. Unluckily, their tremendous potential
in terms of performance/Watt comes at the price of in-
creased architectural complexity, which ultimately makes it
extremely difficult to write efficient code for them (poor

programmability). Even more importantly, for the automotive
domain, established methodologies and tools to provide real-
time guarantees are born for single-core systems; when applied
to the complex designs of heterogeneous many-cores, they lead
to over-conservative and pessimistic timing bounds that ulti-
mately prevent their adoption within industrial settings (poor

predictability). For this reason, the design methodologies
and software stack for automotive systems must be heavily
modified, and to some extent re-designed, to cope with the
next generation of platforms.

These are the motivations behind the HERCULES (“High-
Performance Real-time Architectures for Low-Power Embed-
ded Systems”) Project [4]. The ambitious goal of HERCULES
is to obtain an order-of-magnitude improvement in the cost and
power consumption of next generation real-time applications
for safety-critical domains.

This paper introduces the software stack envisioned in
HERCULES. To do so, we show some of the design choices
characterizing current automotive systems, guided by indus-
trial requirements from project partners, namely Airbus AGI,
Magneti Marelli S.p.A. and Pitom snc. We first describe the



platform template considered in the project (Section II) and the
chosen programming models (Section III). These choices also
take into account industrial needs, like the reuse of legacy code

and libraries on heterogeneous many-core devices without

requiring heavy code refactoring. This allows maximizing
the industrial impact of the HERCULES framework (method-
ologies, tools and software), simplifying the technological
transfer to existing application scenarios. In Section IV we
describe the full software stack. Finally, Section V draws some
conclusions.

II. TARGET ARCHITECTURE

The choice of the target computing platforms is crucial
and it affects every part of the technological stack of the
project. With very limited exceptions, real-time systems have
been based on embedded architectures which have not (or at
least not exclusively) been thought to address the predictability
and analysability requirements of time-critical applications.
The few platforms designed for being fully timing analysable
became quickly obsoleted by later process technologies. For
this reason, HERCULES will employ Commercial-Off-The-
Shelf (COTS) components.

The advantage of using COTS are multiple: they are cheaper
than custom-made solutions; more robust to hardware and
timing faults; fully supported by the hardware provider; and
easily available for market exploitation.

HERCULES targets heterogeneous architectures, made by
a “traditional” high-performance host cores (such as ARM
Cortex or Intel iX) and a many-core accelerator, such as GPUs
[2], in case coupled with FPGA logics [3]. The techniques,
rationales and tools developed within HERCULES will be
designed to be easily portable on future platforms. This is
possible thanks to the software stack and highly expressive
programming models, which allow hiding the complexity of
the hardware architecture, and ensuring application portability.

The ARM Big.LITTLE [5] (2011) represents the tate-of-
the-art for the target “host” subsystem. It couples powerful
“big” cores such as ARMv8 Cortex-A57 and slower yet more
power-efficient “little” cores such as Cortex-A53 (ARMv8
architecture). Since the two subset of cores share the on-
chip memory banks, and caches are coherent, workloads may
migrate between them almost on-the-fly. This is typically
performed transparently by the OS, e.g., in case of Linux,
by the cpufreq infrastructure. HERCULES will employ a
Heterogeneous Multi-Processing (HMP) model, which enables
concurrently exploiting all physical cores at once, as opposite
to the “traditional” clustered switching model, where only one
subsystem is active at the same time.

Tegra [2] is a family of NVIDIA SoCs explicitly targeting
embedded systems such as tablets and smartphones. It is
shown in Figure 1. It couples one or more ARM cores with a
General Purpose GPU (GP-GPU) in a single package. On one
side, poorly parallel, control-based and I/O computations are
typically executed on the host subsystem, while highly parallel
workloads are offloaded to the power-efficient many-core
accelerator. The latest release of the family is the Tegra X1
[2] platform which embeds an octa-core host with Big.LITTLE
configuration and a Maxwell GPU with 256 CUDA cores. The
platform is claimed to achieve 1 TFLOP of computing power,

Fig. 1. Scheme of the NVIDIA Tegra X1 platform

within only 15 Watts. Tegra X1 is not certified for Functional

Safety and Road Vehicles Standard (ISO 26262 [6]). However,
NVIDIA declared that the next version of the platform – based
on the novel Parker architecture – will be qualified ASIL-B
[7]. Since the two platforms are similar from an architectural
point of view, the technology produced by HERCULES on the
Tegra X1 we will be easily ported to the Parker, as soon as it
will be available, i.e., end of 2016.

The architectures depicted in this section do not cover the
full spectrum of modern heterogeneous many-core platforms,
yet they are quite representative of current market trends and
products. The HERCULES project targets future automotive
and avionics systems, whose computational platforms are
expected to provide hundreds of GOPs within a few Watts.
This is the main reason behind the selection of Tegra-like
platform as one of the reference architectures of the project.

III. PROGRAMMING MODEL

This section describes the programming models envisioned
in the project. There is a plethora of de-facto or de-jure

standards for programming heterogeneous architectures, which
we want to address to ensure not only compliancy with
legacy code and software libraries, but also with existing

methodologies, tools and, most of all, programmers’ expertise.
We hereafter introduce the main advantages and drawbacks for
each of them.

In order to provide a clean and simple programming in-
terface, we decided to support directive-based programming
APIs, such as OpenMP [8]. CUDA [9] or OpenCL [10] will
also be supported. Compiler transformation will be employed
to convert high-level constructs to lower-level programming
routines written in CUDA or OpenCL. As explained in the
following, the HERCULES ecosystem will also support legacy
hard-real time applications written in AUTOSAR [11].

A. Programming heterogeneous platforms with OpenMP

OpenMP [8] is the de-facto standard for programming
shared-memory systems. OpenMP was developed at the end of
90’s to program regular, loop-based workload on top of sim-
metric multiprocessors systems (SMP) with shared-memory.
More recently [12], it evolved to deal with more irregular and
dynamic parallelism, switching from a loop-oriented approach
to a task-oriented approach. Finally, with specifications 4.5 [8]
(2011), it also embraced heterogeneous computing paradigm
and execution model based on subroutines (so-called target

regions) which are offloaded to an accelerator device, partially



relaxing the SMP execution model and, ultimately, the shared-
memory model. In its specifications, OpenMP is a set of APIs,
pragmas and environmental variables. To implement a full
parallel software stack, it relies on a runtime which provides
basic functionalities for threading and resource allocation/-
management. The actual runtime implementation, and its set
of APIs, are compiler-specific: for instance, the most known
GNU port relies on the so-called GCC-OpenMP (GOMP)
framework [13]. Although some efforts have been made [14],
[15], OpenMP is not yet suitable for real-time computing,
neither it mentions real-time capabilities in the standard.

B. Programming models for GP-GPUs: CUDA and OpenCL

The preferred solution for programming NVIDIA GP-GPUs
are either CUDA [9] or OpenCL [10].

CUDA provides a set of APIs for (massive) threading
and hooks for data movement/placing on the GPU device.
Application code runs on top of a runtime library + GPU driver
which works together with the operating system to provide
these services. There are no implicit real-time guarantees in
the CUDA standard. Original CUDA runtime and drivers are
closed and proprietary. The consortium stipulated an informal
agreement with NVIDIA to jointly develop a basic support for
real-time computing on their embedded platform. The GPU is
currently seen as a non-preemptible, shared resource with run-
to-completion semantics. In the project, we will explore the
possibility of relaxing these assumptions by adding preemption
support and concurrent programming capabilities of a single
GPU device. In Figure 2, “real-time CUDA extensions” which
might be developed during the project are marked with a star.

Open-Computing-Language (OpenCL [10]) is a joint effort
by the Khronos Consortium [16] for building an open language
for programming accelerator-based platforms. Similarly, to
CUDA it provides non real-time APIs for threading and
memory management at the application/user level, relying on a
runtime+OS+drivers subsystem. Similarly to CUDA, OpenCL
increases the complexity of application code, and does not
provides real-time guarantees.

C. Automotive programming models and Autosar RTE

The previous subsections introduced a set of programming
models for non real-time parallel software. In the automotive
domain, on the other hand, we currently see two diverging
trends. On one side, the real-time, statically allocated, stati-
cally configured AUTOSAR standard [11] proposes a complete
software stack including device MCAL drivers, Basic Soft-
ware, RTOS and Run Time Environment (RTE) to implement
a standard software component model. On the other side, the
infotainment world typically relies on non real-time versions
of Linux, Android, and proprietary solutions coexisting in the
same system.

One of the main goals of HERCULES project is to harness
the computational power of next-generation parallel embedded
platforms, inside a framework where AUTOSAR-compliant
real-time applications may concurrently run along with in-
fotainment and non real-time software, without affecting the
required timing guarantees.

For this reason, the project aims to support a subset of the
AUTOSAR specification by extending the operating system

with a minimal RTE support, coupled with appropriate mech-
anisms allowing the sharing of data as well as the concurrent
usage of common peripherals (see Section IV). HERCULES
operating systems layer is based on ERIKA Enterprise [17],
[18], an open-source OSEK/VDX certified OS, and the real-
time patched versions of the Linux kernel. They are discussed
more in details in Section IV-B.

By allowing the integration of AUTOSAR components to-
gether with high-performance software stacks, the consortium
aims to ensure portability of code provided by different
suppliers with different degrees of real-time support. Special
attention is also given to the possibility to run code certified
under the ISO 26262 automotive functional safety standard
[6]. Although the project does not aim to provide an ASIL
certified stack, the potential usage of the architecture proposed
in safety applications will be analyzed, and recommendations
for the creation of a certifiable stack will be produced.

IV. HERCULES SOFTWARE STACK

Figure 2 depicts the HERCULES software framework. The
HERCULES project is not tied to a specific system/SoC, yet
it targets a specific architectural template, coupling a certified
hard-real time platform and heterogeneous SoC with multi-
core host and many-core accelerator/GPU.

As seen in Section III, HERCULES aims to support on the
same architecture both real-time AUTOSAR-like applications
[11] running on top of ERIKA Enterprise [18], and non-real-
time (but high-performance) computations performed partly in
the Big.LITTLE-like subsystem and partly in the many-core
accelerator. In addition to this requirement, it aims to support
ISO 26262 certifications [6] of some of the safety critical parts.
Then, it becomes mandatory to guarantee a proper isolation
between the hard real-time parts and the rest of the system, in
order to obtain the freedom from interference required by the
standard in the part 6, annex D.

For these reasons, the hard real-time subsystems have been
properly “isolated”:

1) For high levels of safety requirements, the project is
planning the integration of an AUTOSAR subsystem
supporting an external ASIL-D compliant CPU, such
as the Tricore AURIX [19]. The external CPU will be
connected to the many-core fabric using a predictable
communication infrastructure.

2) For lower levels of safety requirements, the real-time
subsystem will be integrated in the Big.LITTLE cores.
To ensure freedom from interference, we will implement
a hypervisor, to separate and isolate the real-time sub-
system (run under the ERIKA Enterprise kernel) from
the rest of the system.

A. Virtualization in HERCULES

As for the hypervisor, the project is currently evaluating
several options, starting from existing open-source projects.
The choice of the hypervisor will be guided by a set of
requirements, such as:

1) possibility of running multiple operating systems (such
as Linux and ERIKA Enterprise [18]);

2) possibility to support core assignments (pinning) to the
single guest OS; It is important to state that we are not



Fig. 2. The HERCULES Software Stack

aiming at the cohexistence of a high number of Virtual
machines on the same CPU (as it happens in cloud
environments), but rather the typical setup will statically
allocate a single OS to one or more CPUs, to limit the
virtualization overhead, still maintaining the separation
needed by the safety standards;

3) possibility to share peripherals such as graphic cards and
busses among domains;

4) possibility to be certified, which typically means choos-
ing hypervisors which have a minimal footprint (in the
order of 10k lines of code – LoCs);

5) possibility to support heterogeneous architectures which
are typically present in the many-core systems used in
the project.

Looking at the bottom of Figure 2, we see how that
the platform subsystem might have different Instruction Set
Architectures, identifying multiple ISA sub-domains. We hide
this complexity to the programmer with a virtualization ab-
straction, composed of one module for each sub-domain. In
order to support this partitioning of the HW/SW system, we
will implement predictable communication among the multiple
subdomains (the blue horizontal arrows).

1) Virtualization of the host subsytem: Virtualization is
widely adopted in general purpose platforms, especially for
cloud computing. One of the most widely adopted open source
hypervisors is probably Xen. A recent effort to enhance Xen
with real-time capabilities is the project RT-Xen [20] (in
mainline Xen since v4.6). It implements a hierarchical real-
time scheduling framework based on global EDF scheduling,
within approximately 100K LoCs of C code. Unfortunately,
the size of the hypervisor is crucial, as the effort for system
verification, hence, certification, grows significantly with the
number of LoCs. For this reason, micro-solutions such as
Jailhouse or Nova are strongly preferred in this project.
Jailhouse [21], developed by Siemens, is a Linux-based
hypervisor oriented to real-time. Jailhouse isolates the virtual
machines in small cells with few lines of code (13513 written
in C), removing all of the unnecessary features (e.g., hooks
for diagnostic tools), and schedules the virtual machines by

pinning them to the computing cores. It also allow running
bare-metal applications aside to Linux.
NOVA OS Virtualization Architecture [22] is even smaller
(approx, 9K LoCs written in C++), and, similarly to Jailhouse,
it is capable of running virtual machines and bare metal
applications side-by-side. However, unlike Jailhouse, NOVA
is not pinning pysical cores, but it implements preemptive
priority-driven round-robin scheduler.

2) GPU management and virtualization: As GP-GPUs
became mainstream, there was a big interest of virtualizing
graphic cards, e.g., for cloud computing. Unfortunately, “hid-
ing” one or multiple GPUs under a hypervisor introduces a
serious performance penalty for crossing its software layers,
which ultimately might compromise the advantage of many-
core acceleration. For this reason, a common solution is to
provide a so-called pass-through mechanism for the CUDA
drivers, which are allowed to bypass the virtualization layers
and direct access the device. This mechanism is represented by
the arrow in Figure 2 that directly accesses the GPU, and it’s
currently supported on a limited set of GPUs, and for specific
drivers1. A number of hypervisors and virtualization schemes
exist for GPUs. Interested reader might refer to [24] as a good
survey.

B. Host Operating Systems: Erika and Linux

For the host part, we decided to start from the application
requirements we got from partners, in order to build an
innovative infrastructure which may obtain good performances
while supporting legacy code.

The choice of ERIKA Enterprise enables us to run tra-
ditional AUTOSAR applications on top of an open-source
implementation. ERIKA Enterprise [18] is currently the only
open-source OSEK/VDX certified operating system, and it
implements some of the extensions specified in the AUTOSAR
OS standard. This opens the possibility to run traditional
automotive applications with minimal or no change. For that
reason, ERIKA Enterprise will be ported on the Big.LITTLE

1For instance, NVIDIA published [23] a list of applications which are
certified for this technology (called NVIDIA Grid).



subsystem. ERIKA Enterprise as of today supports directly the
Tricore AURIX architecture. HERCULES intends to allow the
same interface between the AUTOSAR contents hosted on the
Big.LITTLE subsystem and the ASIL components running on
a separate Infineon Tricore ECU.

Linux is the best candidate to support the many-core
programming models described in Section III, opening the
potential of a seamless integration between the Big.LITTLE
subsystem and the many-core infrastructure used as accelera-
tor.

C. Scheduling of shared resources

In order to achieve predictable execution on many-core
platforms, it is be necessary to control the way how individual
cores access the shared resources such as on-chip interconnects
and memory buses. The approach proposed in HERCULES
is inspired by the so-called PRedictable Execution Model
(PREM) [25], [26], where the predictability of memory access
from the single software components (tasks) is increased
using prefetching techniques. The hypervisor will monitor
the behavior of application using performance counters, and
throttle potentially misbehaving cores, to support PREM-based
execution.

V. CONCLUSION

This paper describes the goals and organization of the
HERCULES H2020 project [4], a first attempt of building
a complete software stack for automotive systems based on
commercial-off-the-shelf components, and including ASIL-D
certified subsystem for running legacy, hard-real time work-
load.

As a summary, we hide the complexity of the underly-
ing platforms by mean of virtualization, and provide sup-
port for two kind of operating systems. On one side, the
statically configured ERIKA Enterprise (typically pinned to
one of the “little” cores), which allows running static real-
time applications typical of the automotive market. On the
other side, Linux with RT extensions (typically running on
all the remaining CPUs of the Big.LITTLE infrastructure)
for more computationally intensive dynamic workloads. The
small footprint of the adopted hypervisor (few lines of code)
opens the possibility of a functional safety certification path
following the ISO 26262 specification [6].

The integration of hypervisor, operating system and runtime
will enable the HERCULES framework to provide predictable
real-time guarantees for next-generation safety-critical appli-
cations, supported by a lightweight pragma-based application
programming interface. Widely-adopted programming models
for heterogenous architectures will be extended with real-
time semantic constructs. The ultimate goal of the project
is to enable parallel, non real-time and hard/soft real-time
workloads to run side-by-side on the same platform, while
preserving the required timing guarantees of safety-critical
applications with different performance requirements.
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