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Abstract—Extreme Value Theory has been used to model
the WCET probabilistically, relying on the assumption that
probabilistic WCET (pWCET) estimates can be upper-bounded
with exponential distributions, but this is only assessed on
execution time samples with pass/fail hypothesis tests. However,
the degree of fulfilment of this hypothesis for the execution time
sample has a direct impact on the tightness of the pWCET
estimate.

This paper tackles this limitation of pass/fail tests by ap-
plying 3 alternative methods to model the distribution of high
execution times through the analysis of the number of finite
moments of execution time samples. These methods provide
information on the degree of fulfilment of the exponentiality
hypothesis, rather than a simple pass/fail response. Hence,
whenever the number of finite moments is shown to be low,
despite pass/fail tests are passed, these methods indicate that
pWCET estimates may be untight. We show that those methods
complement each other and the information obtained — number
of finite moments proven to exist — can be used to increase the
execution time sample size opportunistically to obtain tighter
pPWCET estimates.

Keywords-WCET, MBPTA, Execution time distribution, Sta-
tistical analysis

I. INTRODUCTION

The estimation of the Worst-Case Execution Time
(WCET) for mixed-criticality tasks in critical real-time em-
bedded systems (CRTES) is an increasingly complex prob-
lem in multiple domains, spanning from automotive, to
avionics, railway or space among others. Such complexity
emanates from the automation of complex functions such
as, for instance, autonomous driving in automotive and un-
manned vehicles in space/avionics. The level of performance
needed to execute these mixed-critical functions timely (100x
increase to enable autonomous driving [4]) can only be
delivered by higher performance hardware than that used
in current systems. However, complex software running on
complex hardware challenges WCET estimation [2].

Measurement-Based  Probabilistic  Timing  Analysis
(MBPTA) [11], [17], [7], [3] responds to this challenge by
enabling measurement-based timing analysis, widely adopted
by industry [24], and enabling probabilistic and statistical
means to characterize (high) execution time distributions.
In particular, a branch of research builds upon already-
commercial time-randomized processor designs [30], [18]
that relieve the user from having to control many low-level
details of the hardware/software behavior, thus facilitating
timing analysis regardless of the criticality level of the task
under analysis.

Appropriate measurement collection protocols on time-
randomized processors deliver independent and identically
distributed (i.i.d.) execution times, thus enabling a body of
statistical techniques to be used atop. Recently, MBPTA-
CV [3], a variant of MBPTA, has been proposed to deliver
probabilistic WCET (pWCET) estimates building on known
properties of the execution time distributions modelled. In
particular, real-time programs are characterized by having
an — often unknown — maximum execution time. Hence,
their high execution times can be reliably upper-bounded
with exponential tail distributions, which are the limit tail
distributions for finite distributions. However, execution time
samples may exhibit statistical characteristics different to
those of the actual execution time distribution from where
they are sampled. So far, MBPTA methods (and MBPTA-
CV in particular) only test whether those samples pass or fail
exponentiality tests, without further analyzing to what degree
the sample is compatible with the exponential assumption.
As we illustrate later in this paper, in some cases where
exponentiality tests are passed, pWCET estimates obtained
with exponential tails may be unnecessarily pessimistic.
However, in those cases, our analysis reveals that execution
time samples have particular characteristics: they have a
relatively low number of finite moments.

In this paper we introduce the use of the number of
finite moments (nfm) of statistical samples to characterize
high execution times of a distribution through the analysis
of a sample of it. We show how nfin can be estimated
and how they can be used to determine whether pWCET
estimates may be overly pessimistic, thus indicating that a
larger sample will reduce the pessimism. In particular, we
build on the fact that, the higher the nfin, the higher the
degree of exponentiality of the sample tail. Hence, we use
three different models to estimate the nfin: (1) the coefficient
of variation (CV) estimator [10], (2) the Group Estimator [8]
and the Ratio Max Sum [25]. We show that no method
delivers the highest nfin in all cases. We note that the nfin
estimates provided by those methods do not imply that a
larger nfim does not exist, but only that the particular methods
are unable to prove the existence of further finite moments.
Hence, we propose applying the three of them and using the
largest nfin found to assess whether the pWCET estimates
can be regarded as sufficiently tight or else, a increasing the
sample size is convenient. In detail, our contributions are as
follows:



o We introduce the use of three methods to estimate the
nfim of a statistical sample of execution times in the
context of real-time programs, thus with finite execution
times.

o We compare them quantitatively on several benchmark
suites and a railway case study on top of a time-
randomized platform, showing that no method is su-
perior to the others in all cases and hence, the best one
for each case must be used.

o Whenever those methods can only prove the existence
of a relatively low nfm, and given that the studied
distribution has nfm = oo by construction, we apply
data transformations to prove the existence of further
nfim, and show that increasing the sample size can lead
to tighter pWCET estimates if the nfin is still low.

Our results show that building on the nfm we can identify
effectively those cases where pWCET estimates are untight.
Thus, by increasing the number of measurements opportunis-
tically in those cases, tighter pWCET estimates are obtained.

Although we apply our approach on time-randomized
platforms, the method is compatible with any platform and
measurement collection protocol as long as the distribution
modelled is i.i.d. and has compact support (i.e. has a maxi-
mum value), leaving on the hands of the end user building
an argument on the representativeness of the measurements
collected w.r.t. the behavior of the system during operation.

II. BACKGROUND

MBPTA. MBPTA is intended to deliver a distribution
upper-bounding high execution times rather than a single
WCET. MBPTA builds on the concept that the likelihood of
the WCET can be ridiculously low (or even zero) and hence,
it may be simply dismissed. Thus, MBPTA aims at delivering
WCET estimates whose residual risk of exceedance can be
set to arbitrarily low levels. For instance, we could set it to
be up to 10~® deadline misses per hour. In practice, this is an
upper-bound probability and, in the context of MBPTA, this
threshold indicates that the true deadline miss rate is below
1078 per hour, being potentially zero, but no evidence is had
below such threshold.

MBPTA builds upon statistical methods to deliver a
pWCET distribution such that each execution time value
has an associated exceedance probability. Therefore, we can
use as WCET estimate the execution time value whose
exceedance probability is below the acceptable failure rate
according to the criticality of the task under analysis and the
integrity requirements imposed by the corresponding safety
standard.

MBPTA requires the platform used to have specific prop-
erties that relate to delivering i.i.d. execution times for
programs. This has been proven doable in real multicores
and more complex manycores by controlling conveniently
the sources of jitter [30], [18]. Evaluation on avionics [31]
and space [12] case studies, among others, have proven the
effectiveness and reliability of this approach.
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Fig. 1. Complementary cumulative distribution function for light, exponen-
tial and two heavy tail GPD distributions with £ = —0.1, £ = 0, £ = 0.05
and £ = 0.1 respectively, and (x = 0, o = 100) for all of them.

Most MBPTA methods devised so far build upon Extreme
Value Theory (EVT) [6] to model the pWCET distribution.
While the Central Limit Theory is intended to model the
central behavior of a distribution, EVT is intended to model
its tails. In the case of WCET estimation, EVT is used to
model the right tail of the execution time distribution (so high
execution times). Based on an execution time sample with
R measurements, one could predict, without using EVT, the
execution times occurring with probabilities down to 1/R
with decreasing confidence as the probability decreases due
to the use of fewer observations to raise such a prediction.
By using EVT, the tail of the distribution is modelled with a
suitable distribution that allows predicting (high) execution
times for arbitrarily low exceedance probabilities.

EVT. There are two main families of EVT distributions:
Generalized Extreme Value (GEV) distributions and Gener-
alized Pareto Distributions (GPD). They differ on how they
operate on the input sample to deliver a tail distribution, but
their main aspects relevant to our work are mostly common.
Therefore, for the sake of economy we only focus on one of
them, GPD. Both GEV and GPD are characterized by three
parameters: shape (£), scale (o) and location (). The shape
describes the type of tail: light tail, exponential tail or heavy
tail for GPD, and Reverse Weibull, Gumbel or Fréchet for
GEV respectively. o relates to the slope of the tail whereas
w1 indicates the value at which the exceedance probability
starts dropping. Since GPD and GEV use different methods
to select maxima, both o and y are similar but not identical
across GPD and GEV. Instead, ¢ is identical across both
distribution families.

Example GPD distributions are depicted in Figure 1 for
a light tail (¢ = —0.1), an exponential tail (£ = 0) and
two heavy tails (¢ = 0.05 and £ = 0.1 respectively). As
shown, the shape parameter is critically important for the
rate at which tails fall. @ Light tails fall sharply approaching
a maximum value asymptotically. They are regarded as
appropriate when a maximum value exists and, due to fitting
constraints, it is known to be close to those in the input
sample, which cannot be proven true in general. Hence,
fitting light tails without knowing whether values close to the



absolute maximum belong to the sample is intrinsically risky.
@ Exponential tails (§ = 0) fall at an exponential rate, thus
lacking compact support, but their exceedance probability
quickly decreases for increasingly higher values. They are
regarded as convenient when a maximum value exists but it
is unknown. In other words, exponential tails are the limit
distribution for light tails removing constraints related to
having values close to the absolute maximum. @ Finally,
heavy tails fall at a polynomial rate and are convenient for
unbounded distributions that are clearly non-normal.

The parameters of a random variable (execution times
in our case) are typically referred to as moments, being
the first moment the mean, the second central moment the
variance, etc. Exponential and light tail distributions have
infinite moments since light tails have compact support,
and so infinite moments [29], and exponential tails are the
limit distribution for light tails. In general, £ = 1/nfm if
nfm # oo, and £ < 0 otherwise. Hence, we are interested in
proving that the nfm of a given execution sample is as high
as possible. If nfm is low (so & > 0) then some tail values
are far away from the other values retained for tail modelling,
which makes that the best fitting exponential distribution has
a overly high o value (so the slope is too gentle) to minimize
the distance w.r.t. all (distant) values in the fitting process.
In statistics it is well-known that using larger samples may
include further information, thus enabling better predictions.
If £ > 0, then we know that a larger sample is very likely
to deliver tighter estimates. This occurs because more values
close to those far away will be collected and used for a
tighter estimation. Hence, fitting will eventually occur only
with the group of highest values, so ¢ will be lower and the
slope of the pWCET distribution steeper. If distant values
did not exist, increasing the sample size will not alter o
meaningfully. We refer the interested reader to [3] for details
on the causes of having few distant values with a limited
sample on time-randomized architectures.

In the remaining of this work we bring methods used
for nfin estimation in other domains to the case of pWCET
estimation. We show that their appropriate use can allow
proving that high nfin values exist, thus providing evidence
on the tightness of pWCET estimates. Whenever the nfin
proven is rather low, this indicates that the exponential tail
fit may be unnecessarily pessimistic.

III. NFM ESTIMATION FOR PWCET MODELLING

This section presents three methods to estimate the nfin
of a distribution through the analysis of a sample of it: the
Group Estimator (GE), the ratio max sum (RMS) and the
coefficient of variation (CV). Next we describe the methods
and how they have been applied for the particular problem
at hand.

A. Group Estimator (GE)

The GE was introduced by Davydov et al. [8]. GE builds
on the assumption that the distribution analyzed is heavy-
tailed. Hence, if it is exponential or light-tailed, GE will

return a very high nfm, but never co. To introduce GE,
let us consider a sample X" = {X;, Xo,...,X,} of size
n taken from a heavy-tailed distribution F'(z). We assume
that X1, X, ... X, correspond to i.i.d. random variables. As
shown later in the evaluation section, this is achievable for
some appropriate platforms [18].

In order to compute the estimator, the sample is divided
into ! groups Vi, Vs, ..., V), each group containing m ran-
dom variables, that is, n = [-m. The practical approach when
n cannot be divided by [ is simply discarding the remaining
values of the sample. Let Ml(il) = max{X,|X, € V;} (the
largest element in the group) and let M l(iZ) denote the second
largest element in the same group V. Let us denote

l
> ki
i=1

so that k;; corresponds to the ratio between the second
largest and the largest element in group V; out of [ groups,
and z; is the average across all k;; values.

Based on some assumptions related to the characteristics
of the distribution being modelled and assuming | = m =
[v/n], it has been proven that
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where nfm = a. Note that =23 stands for almost surely'.
However, those assumptions, which relate to o being neither
too close to 0 (so z; =~ 0) nor to oo (so z; ~ 1), do not
necessarily hold for execution time distributions, which can
be arbitrary. We refer the interested reader to [8] for further
details on those assumptions. Hence, an alternative method
is needed to determine the most convenient value of m (and
so [) to estimate z;, and ultimately nfin ().

1) A Bootstrap Method to Select m: When choosing m
and [ there is a trade-off between bias and variance. If m
is too small, so data is split into many small groups, the
asymptotic basis of the model may be violated leading to
potentially significant bias. Conversely, if m is too high,
then very few groups are obtained, thus leading to high
variance. In order to avoid these problems, we build upon
the bootstrap method proposed by Markovich [22], whose
goal is minimizing both, variance and bias.

The bootstrap estimate is obtained by drawing B samples
with replacement from the original data set X™. Hence,
some observations from X" may appear more than once
whereas others may not appear. One can use smaller re-
samples {X{,X5,..., X } of size ny < n from X" to
avoid the situation where the bootstrap estimate of the bias is
equal to O regardless of the true non-zero bias of the estimator
[16]. The values ny and n may be related by:

ny =n, 0<d<1 (1)

' Almost surely, in maths terminology, means that its probability is 1,
despite there could be some exceptions whose accumulated probability is
zero.



The re-sample is divided into /; subgroups so that [; =
[n1/m4] holds. The size of subgroups my and m are related
by:

m =ma(n/n1)C, 0<ex1 (2)

Since the distribution function F'(x) is unknown, one can
find m; by minimizing the empirical bootstrap estimate of
the min square error (MSE), exploring all possible integer
values of m; in the range [2,n;], as shown below:

“ 2 — %
A[SE*Ulﬂnl)::(HXh,nn)> + Var (I, m1)
with

b ll;ml
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and

e B | B 2
Var (Iy,my) = 1Z<zl1—BZzlbl>
b=1 b=1
that are the empirical bootstrap estimates of the bias and the
variance, respectively. Then, one can determine m based on
the value of m; obtained minimizing the MSE as described
in Equation 2. In Equations 1 and 2, ¢ and d must be
chosen appropriately. Based on asymptotic theory, Hall [16]
concludes that d = 1/2 and ¢ = 2/3 lead to the most accurate
results for this bootstrap method.

B. Ratio Max Sum (RMS)

The ratio between the maximum and the sum (RMS) of
a sample has a number of properties that allow concluding
whether a sample has a finite expected value. The RMS be-
longs to classic Probabilistics theory and has been considered
for heavy tail analysis by Novak [25]. In particular, we are
interested in studying the RMS for positive random variables
and increasing values of nfin (¢ in the canonical description
of RMS below). The RMS is formulated as follows:

M)’

where SY denotes St 1 X6]", and M stands for the
largest value in the sample. Note that for each ¢ € N, the
statistic R,,(¢) provides information of the moment ¢ of the
modelled random variable.

The properties of interest of R,,(t) that allow determining
whether the particular moment ¢ exists, are as follows: (1) It
is well known that the way maxima grows in increasingly
larger samples is tightly related to the nfin. Hence, (2)
MY /n'/t tends to 0 if and only if the ¢ moment is
finite, so if and only if E|X|* < oo. Hence, R,(t) =

t
(M,(LD) /S is asymptotically small if E|X|! < co. Con-

R,(t) =

¢
versely, (3) in the case of heavy tails (MT(LD) is comparable

to S, and hence R, (t) tends to 1 for increasing values of
t. This is formally described with the following theorem:

Theorem 1. As n — oo
o« R,(t) X5 0o EIX|P < 0
o R,(t) L 0< EIX|UW(X]| < zx) is slowly varying
e R,(t) 51 P(X| > x) is slowly varying

Given that R, (t) is asymptotically small if E(X) < oo,
we can fix a confidence threshold ¢ (i.e. ¢ = 0.05) and
estimate the nfm = ¢ where ¢t € N and R,,(t) < c. Note that
R,,(t) builds upon exponentiation (see Equation 3), which
may bring numerical problems when the exponent (t) is
high. Therefore, RMS is used to obtain nfin up to a given
maximum threshold. In this paper we limit the estimation of
nfm to 50 for RMS. In any case, whenever nfin are above
50, differences in terms of £ become statistically irrelevant
in practice, so obtaining higher nfin values does not provide
any benefit in practice.

C. Coefficient of Variation (CV)

The coefficient of variation (CV) has been used to study
the tail of distribution functions [9]. The CV is obtained as
the ratio between the standard deviation and the mean of a
distribution. Therefore, the CV is independent of the location
and scale of the distribution. Formally stated, the CV of a
random variable X is obtained as follows:

V(X)
M(X)

Using the CV, we can obtain &, and hence nfin based on
the following equation:

CV(X) = )

1
VI-ZE
Note that this equation holds as long as & < 0.5, thus
meaning that the random variable has at least 2 moments
(the mean and the variance).

In practice, however, the mean and the variance of a
distribution are unknown and we can only use the mean (%)
and variance (sd?) of a particular sample, where sd stands
for the standard deviation. Therefore, the estimator of the
CV, cv, is obtained as follows:

CV(X) = )

cv(z) = (6)

and so we can obtain &, and hence the nfim building on
Equation 6, which is the empirical version of Equation 4.
In particular, we obtain cv with Equation 6, replace CV by
cv in Equation 5, and then we obtain £. Finally, as explained
before, nfm = 1/£ if £ > 0, and nfm = co otherwise.

D. Joint Considerations

The three methods to estimate the nfin build upon the
assumption that input samples correspond to i.i.d. random
variables. Therefore, this hypothesis needs hold before the
application of those methods. In this work we build upon
a hardware platform that provides those properties by con-
struction. In particular we use a hardware platform whose
execution time variations for a given program are produced



by time-randomized hardware components such as random
placement and replacement cache memories, as well as ran-
domly arbitrated shared resources [18]. The i.i.d. hypothesis
is empirically corroborated for all experiments as explained
in the evaluation section.

While the three methods, namely GE, RMS and CV, allow
estimating the nfim, GE and RMS can only deliver nfin
positive values arbitrarily high, but not infinite?>. Thus, GE
and RMS are appropriate for heavy tails only. In the case of
exponential or light tails, both GE and RMS are expected
to deliver high (but not infinite) nfmm values. Conversely,
as explained before, CV estimates ¢ directly, thus being
appropriate for any type of distribution.

Finally, those methods indicate the existence of a given
nfm. However, higher moments may also exist. Hence, if
results across methods differ, the maximum nfin across the
different methods may provide the best approach.

IV. EVALUATION

In this section we evaluate the three estimators for the
nfim. First, we describe the evaluation framework. Second,
we compare the three estimators in terms of nfm. Finally, we
quantify the benefits that their joint utilization can provide
to identify cases where the nfin is low and hence, there is
margin for obtaining tighter pWCET estimates.

A. Experimental Framework

We collect execution time measurements in a cycle-
accurate simulator based on SoCLib [28] modelling the
probabilistically-analyzable LEON3 multicore in [30], which
implements random placement and replacement cache poli-
cies, random arbitration in shared resources and time upper-
bounding for variable-latency arithmetic operations [18].

We evaluate several sets of relevant software. First, we
conduct our study on two sets of benchmarks: (1) the
EEMBC AutoBench benchmark suite [26], which is repre-
sentative of a number of critical real-time functions used
in automotive embedded systems. (2) A subset of the
Milardarlen benchmark suite [15], which includes bench-
marks intended for the evaluation of WCET analysis tools
and methods. Then, we assess our methodology on a railway
case study implementing a safety-related real-time function
from the European Train Control System (ETCS) reference
architecture. In particular, this application is in charge of
the safety functions related to travelling distance and speed
control, and is graded as Safety Integrity Level (SIL) 4
according to appropriate safety standards [1]. We evaluate
10 different input vectors leading to 10 different execution
paths, as provided by the end user (TESTO to TEST9). Each
benchmark and case study test case is run till completion
1,000 times, thus collecting 1,000 execution time measure-
ments per benchmark/test case.

2Infinite values could only occur numerically, in the case of GE, for
degenerate distributions, which are generally disregarded. Thus, neither GE
nor RMS can provide an infinite nfin.
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Fig. 2. CV-plot for matrix.

Li.d. properties hold by construction due to the way
measurements are collected in our platform, since each
measurement for any given program is obtained identically
on the same processor with the same inputs and initial state,
changing only the (random) seeds that determine placement
and replacement decisions in the caches. However, the use
of EVT imposes the assessment of statistical independence
for the data sample. Hence, we use the powerful Ljung-Box
independence test [5] to test autocorrelation for 20 different
lags simultaneously. All samples have passed the test for a
a = 0.05 significance level. Note that, statistically, we could
expect some (few) test fails (5% with o = 0.05). Since we
used 34 different programs and benchmarks, the probability
of all of them passing the test is =~ 17.5%. If the test was
failed for any of the samples, the default solution would have
been increasing the sample size until the test was passed,
which would eventually occur since the random variables
sampled are independent by construction.

B. Results for nfm

Next, we evaluate the nfin on the different samples for
the different methods. Table I shows the nfin for the three
methods as well as the maximum nfin value obtained across
them, which is the best value that can be obtained using
the three methods simultaneously. In the case of RMS, as
explained before, we obtain up to 50 nfin due to numerical
limitations of the exponentiation operation in Equation 3.
Hence, whenever nfm = 50 for RMS, it means that at
least 50 moments exist. n fm > 50 provides limited benefits
w.rt. nfm = 50 since £ = 0 (nfm = oo) and £ = 0.02
(nfm = 50) are too close to tell apart distributions whose
samples provide so similar shape values. Hence, obtaining
up to nfm = 50 for RMS is regarded as an acceptable
constraint.

EEMBC. In the case of CV, the method either does not
converge or obtains very few nfin for 4 of the 16 cases
(shaded gray cells in the table). In particular, the method fails
to converge for aifirf, canrdr, matrix and pntrch.
For those, we have obtained the CV-plot [10], which draws



TABLE I
nfim FOR THE EEMBC AND MALARDARLEN BENCHMARKS WHEN USING
GEB, RMS AND CV, MAXIMUM nfin ACROSS THE THREE METHODS,
AND PWCET ESTIMATE.

nfm pWCET
EEMBC bench GEB | RMS | CV | Max. 1079
al2time 47 33 (o) o] 2.11
aifftr 28 16 21 28 1.66
aifirf 16 12 0 16 1.29
aiifft 28 21 44 44 1.70
basefp 227 50 0o 00 1.45
bitmnp 54 50 o) 00 1.69
cacheb 5 5 e’} 00 1.29
canrdr 54 28 0o 00 1.45
idctrn 114 50 00 ) 1.28
iirflt 116 50 0o 00 1.59
matrix 20 21 0o 00 1.10
pntrch 41 23 00 00 1.40
puwmod 163 50 [e) 00 1.49
rspeed 46 40 19 46 1.76
tblock 57 50 [e's] 00 2.06
ttsprk 53 42 26 53 1.79
Milardarlen bench | GEB | RMS CV | Max. 1079
adpcm 239 50 e 00 1.27
bs 89 50 0 89 1.01
cnt 181 50 8 181 1.17
crc 284 50 31 284 1.15
fir 123 50 8 123 1.14
lcdnum 51 31 0 51 1.04
ns 353 50 | 156 353 1.05
prime 223 50 e’} 00 1.05

the residual coefficient of variation (rcv) as observations are
excluded from the sample, where rcv = 1 for exponential
tails, rcv < 1 for light tails and rcv > 1 for heavy tails. Such
estimator is regarded as inaccurate whenever rcv > 1.41.
For instance, Figure 2 shows the CV-plot for matrix. As
shown, the rcv (blue line in the plot) is sustainedly above
1.41, the value above which the CV estimator is regarded as
unreliable.

In those cases, we have directly tested whether the expo-
nentiality assumption (and so n fm = oo) is acceptable with
alternatives methods. In order to obtain the nfin for all those
cases where the CV method does not converge, data should
be transformed as suggested in [9]*. Such data transformation
makes heavy tails be non-heavy for their analysis. Then, the
sign of the £’ value obtained with transformed data needs to
be changed to obtain a reliable estimate of ¢ for the original
data so that £ = —¢’. Based on the & obtained following
this approach, we obtain nfim for those 4 benchmarks. Those
are the values reported in Table I for these benchmarks. As
shown, the data transformation allows to prove the existence
of infinite nfm in three cases. In the remaining one, aifirf,
even the data transformation fails to converge, so CV fails
to support the existence of nfin.

As shown, the best method changes across applications.
CV shows to be the best choice for 12 out of 16 benchmarks
since it is the only one able to prove that nfm is infinite (11
out of those 12 benchmarks). However, for 4 benchmarks it

3The new variable, Y is obtained from the original X, as follows: Y =
—1/(X+c)+1/c where ¢ = /€. Note that ¢ and £ are the two parameters
describing a GPD when the two-parameter formulation is used [6].

delivers lower nfin values (or no nfin at all as for aifirf)
than, at least, one of the other methods. In those cases, GEB
delivers the highest nfin results. RMS, instead, is not the
best method for any individual application, but for some
applications it delivers better results than one of the other
methods. Hence, RMS may potentially outperform both,
GEB and CV, for other applications.

Milardarlen. As for EEMBC, CV does not manage to
prove the existence of any nfin in some cases (bs and
lcdnum), and neither does the aforementioned data trans-
formation. When considering the 3 methods together, we
realize that, differently to the case of EEMBC, GEB provides
the best results for Milardarlen since it deliver the highest
nfm in 6 out of 8 cases. CV is the best technique in the
remaining 2 cases. As before, RMS does not provide the
highest nfim count in any of the benchmarks considered, but
this may be related to the numerical limitations that prevent
from obtaining n fm > 50 for RMS.

C. pWCET Estimation

In Table I (rightmost column) we show the results in
the form of ratio of the pWCET value obtained for the
exponential fit with an exceedance probability of 10~ per
run w.r.t. the maximum observed execution time (MOET) in
the sample.

EEMBC. As shown, pWCET estimates are, on average,
1.59x higher than their MOET. In some cases, the different
methods for estimating nfin have difficulties to prove the
existence of many nfin, as it is the case for aifirf and
aifftr, for which we can only prove the existence of 16
and 28 nfm respectively. In these cases, we expect that the
pWCET estimates obtained may be potentially untight. Based
on the reasoning provided before, by increasing the size of
the sample we should obtain tighter pWCET estimates.

We have collected 10,000 execution time measurements
for these two benchmarks, aifirf and aifftr, and, as
expected, pWCET estimates decreased noticeably. In particu-
lar, the pWCET for aifirf decreased from 1.29x to 1.13x
(w.r.t. the MOET in 1,000 runs), thus being much tighter.
Similarly, the pWCET for aifftr decreased from 1.66x to
1.51x, showing also a noticeable improvement.

When analyzing the nfin, we realize that in the case of
aifftr the value increased from 28 to 40. In this case,
the CV method is the one obtaining the 40 nfin. Note that
this value is already high since & = 1/nfm = 0.025.
In the case of aifirf, despite the improved tightness of
the pWCET estimate, the nfim only grew from 16 to 17,
being still GEB the method providing the highest nfm. This
relates to the fact that the number of high measurements
increased, thus leading to a lower o and hence, a steeper
pWCET distribution. However, some of the highest values
still stay far away from the other measurements, as illustrated
in Figure 3 with the tail distribution (aka empirical comple-
mentary cumulative distribution function or simply ECCDF)
of the 10,000 measurements sample, which does not allow
to prove the existence of a higher nfin. As explained before,
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Fig. 3. ECCDF for aifirf with 10,000 runs.

the different methods provide evidence of the existence of
a nfim value, but do not tell anything about whether more
nfim exist. In the case of aifirf, despite the nfin is still
relatively low, the fact that the pWCET estimate is already
close to the MOET limits the gains that could be obtained
by further increasing the sample size.

Miilardarlen. pWCET estimates for Milardarlen are
much lower than for EEMBC and, on average, they are
only 1.11x higher than their respective MOET values, thus
showing that they are pretty tight. This is completely con-
sistent with the nfin obtained, which is at least 51 for all
benchmarks. Therefore, none of these benchmarks requires
increasing the sample size, as indicated by the estimation of
their nfm.

D. Railway Case Study

TABLE II
nfin FOR THE RAILWAY CASE STUDY WHEN USING GEB, RMS AND CV,
MAXIMUM nfim ACROSS THE THREE METHODS, AND PWCET ESTIMATE.

nfim pWCET
Test case | GEB | RMS | CV | Max 10~7
TESTO 67 40 00 o) 1.64
TEST1 107 50 ) [e%S) 1.68
TEST2 40 44 00 0o 1.60
TEST3 67 40 00 00 1.66
TEST4 73 41 00 00 1.64
TEST5 121 44 00 00 1.68
TEST6 75 43 o] o) 1.65
TEST7 198 50 00 00 1.66
TESTS 271 43 0o e} 1.73
TEST9 42 30 00 00 1.72

We have conducted the analysis in terms of nfim for the
10 test cases of the railway case study. Results are shown
in Table II, where we can see that all methods are able to
prove the existence of a high number of nfin. In particular,
CV proves the existence of an infinite number of nfin for all
test cases. Due to the characteristics of this case study, we
know that execution time variability can be pretty small due
to the fact that most data fits in first level caches and hence,
little variability can occur due to cache conflicts in both,
relative and absolute terms. This leads to compact execution

time distributions in all samples, where highest execution
times observed are very close to the bulk of measurements
and none of them departs away from the median. Hence, it
is easy to prove the existence of large nfin for all methods,
as shown in the table.

pWCET estimates are consistently in the range 1.6x to
1.75x w.r.t. the MOET in all test cases, but due to the
existence of an infinite number of nfin we do not expect
further reductions by increasing the sample size. In order to
assess this point, we have repeated the analysis on enlarged
samples with 5,000 measurements instead of 1,000 and
results showed pWCET variations within 5% in all cases,
thus corroborating our expectations.

We have also analyzed the source for the relatively high
pWCET estimates w.r.t. the MOET. We realized that, the
execution time variability of these test cases is low and,
in fact, actual measurements are very close to the absolute
WCET by construction. This makes that a tight pWCET fit
could be obtained with a light tail (see black straight line
in Figure 1) instead of with an exponential tail (see green
dashed line in Figure 1). However, as discussed in Section II,
light tails (GPD) and Reverse Weibull distributions (GEV)
are intrinsically risky if no guarantees are had on whether
the absolute maximum value is close enough to the data in
the sample, and such guarantees cannot be had in the general
case. Thus, we resorted to exponential tails, which provide
relatively high pWCET estimates in this case, but that cannot
be made tighter by increasing the sample size.

V. RELATED WORK

The use of statistical methods to model WCET estimates
has received increasing attention during last years. As dis-
cussed in Section II, some efforts have been made to model
pWCET distributions with either exponential tails only [11],
[17], [7], [3] or with more general EVT distributions [20],
[19].

The application of EVT requires input data to be i.i.d. [13],
[17], [14]. However, the use of some platforms or some
data collection methods, as the ones in [27], may break the
independence requirement. Melani et al. [23] investigate the
factors that may cause dependencies, including scheduling
policies and processor state, and conclude that they can be
conveniently leveraged in pWCET estimates. In that line,
Santinelli et al. [27] investigate stationary processes and
also analyze how to account for dependencies in pWCET
estimation. Yue et al. [21] propose alternative methods to
collect measurements, based on retaining only maxima, to
remove dependencies. Also, Lima and Bate [19] propose
methods to deal with discrete data that, to some extent, may
mitigate dependencies.

The platform to use has also been subject of discus-
sion. Some authors build upon Commercial Off-The-Shelf
(COTS) platforms [21], [27] whose timing behavior may
fail to provide i.i.d. properties and where representativeness
between analysis conditions and operation conditions is hard
to sustain. Instead, other platforms, such as those building



upon time randomization and time upper-bounding [18], have
been shown to address these concerns by construction. Thus,
these are the platforms considered in this work which, by
construction, avoid dependencies across measurements.
Different methods exist that use EVT to model the pWCET
of programs. Some of them target programs whose execution
time may not be upper-bounded [20], [19]. Therefore, any tail
model is possible, including very heavy tails. In this paper we
target real-time programs, which have a finite execution time
by construction. Therefore, their execution time distributions
can be reliably modelled with exponential tails. This is the
approach followed already in some works [11], [17], [7], [3].

VI. CONCLUSIONS

The use of EVT for WCET estimation has become pop-
ular. A family of MBPTA techniques building upon EVT
has proven that exponential tails are appropriate to model
high execution times, and platforms providing the required
properties have reached commercial products and industrial
case studies. However, while the required properties hold
for the modelled distributions, the actual properties of the
execution time samples used to model high execution times
have only been assessed against pass/fail tests, which provide
limited information.

In this paper we analyze and apply different methods to
quantify the number of finite moments to statistical samples.
This allows obtaining evidence on whether samples are suffi-
ciently close to the exponential distribution to regard pWCET
estimates as tight enough. We have applied the different
methods, with appropriate data transformations whenever
needed, which allowed to prove the existence of an infinite
number of finite moments for almost all benchmarks and test
cases for a railway case study, thus supporting the tightness
of their pWCET estimates. In few cases our these methods
indicate that pWCET estimates can be untight. We, therefore,
increased the sample size in those cases and, as expected,
pWCET estimates became tighter.

Overall, the approach presented in this paper allows assess-
ing the tightness of pWCET estimates with multiple methods,
which allows devoting effort to collect larger samples only
in those cases where gains are foreseen based on the number
of finite moments.
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