
A Reconfigurable Fractional Interpolation Hardware

for VVC Motion Compensation

Hasan Azgin, Ahmet Can Mert, Ercan Kalali, Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences

Sabanci University

Istanbul, Turkey

{hasanazgin, ahmetcanmert, ercankalali, hamzaoglu}@sabanciuniv.edu

Abstract—Fractional interpolation is one of the most

computationally complex parts of video compression standards.

Fractional interpolation in Versatile Video Coding (VVC)

standard has much higher computational complexity than

fractional interpolation in previous video compression standards.

In this paper, a reconfigurable VVC fractional interpolation

hardware for motion compensation is designed and implemented

using Verilog HDL. The proposed hardware is the first VVC

fractional interpolation hardware for motion compensation in

the literature. It interpolates necessary fractional pixels for 1/16

pixel accuracy for all prediction unit sizes. The proposed VVC

fractional interpolation hardware, in the worst case, can process

66 quad full HD (3840x2160) frames per second. It has up to 77%

less power consumption than baseline VVC fractional

interpolation hardware.

Keywords— VVC, motion compensation, fractional

interpolation, hardware implementation, FPGA.

I. INTRODUCTION

ITU and ISO are developing a new international video

compression standard called Versatile Video Coding (VVC)

[1]-[6]. VVC will have higher compression efficiency than

High Efficiency Video Coding (HEVC) standard at the

expense of much higher computational complexity [7]-[10].

One of the most computationally complex parts of VVC is

fractional interpolation.

HEVC standard uses 3 different 8-tap FIR filters for

fractional interpolations and provides 1/4 fractional pixel

accuracy. However, VVC standard uses 15 different 8-tap FIR

filters for fractional interpolations and provides 1/16 fractional

pixel accuracy. Therefore, VVC fractional interpolation has

much higher computational complexity than HEVC fractional

interpolation.

In this paper, a reconfigurable VVC fractional interpolation

hardware for motion compensation (MC) is proposed. The

proposed hardware supports all prediction unit (PU) sizes. It

interpolates necessary fractional pixels for the fractional pixel

location in an 8x8 PU pointed by the given fractional pixel

accurate motion vector. For larger PU sizes, the PU is divided

into 8x8 blocks, and these blocks are interpolated separately.

Since the proposed hardware is used for motion compensation

stage of VVC encoder and decoder, only one fractional pixel

per integer pixel is required. Therefore, the proposed hardware

has a reconfigurable datapath which can be configured to

implement any of the 15 different 8-tap FIR filters.

The proposed VVC fractional interpolation hardware is

implemented using Verilog HDL. The Verilog RTL code is

verified to work at 250 MHz on a Xilinx Virtex 7 FPGA. The

proposed VVC fractional interpolation hardware, in the worst

case, can process 66 quad full HD (3840x2160) frames per

second. The proposed reconfigurability reduced the power

consumption of FPGA implementation of the proposed VVC

fractional interpolation hardware by 77%.

 The proposed hardware is the first VVC fractional
interpolation hardware for motion compensation in the
literature. Several HEVC fractional interpolation hardware
implementations are proposed in the literature [11]-[16]. In
Section III, the VVC fractional interpolation hardware
proposed in this paper is compared with them.

The rest of the paper is organized as follows. In Section II,
VVC fractional interpolation algorithm is explained. In
Section III, the proposed reconfigurable VVC fractional
interpolation hardware is presented, and its implementation
results are given. Finally, Section IV presents the conclusions.

II. VVC FRACTIONAL INTERPOLATION ALGORITHM

VVC standard uses 15 different 8-tap FIR filters for
fractional pixel interpolation. The coefficients of these 15 FIR
filters are shown in Table I. A-3 – A4 show input pixels for a
filter where sub-indices represent the indices of coefficients.
The F7 8-tap FIR filter equation is shown in (1) as an example.

F7 = (-A-3 + 4*A-2 - 11*A-1 + 45*A0 + 34*A1 - 10*A2+
4*A3 + A4) >> 6

(1)

Integer pixels, fractional pixels and FIR filters used to
interpolate these fractional pixels are shown in Fig. 1. There
are 255 fractional (half and quarter) pixels for one integer
pixel. There are 15 half-pixels between two neighboring
horizontal integer pixels called horizontal half-pixels. There
are 15 half-pixels between two neighboring vertical integer
pixels called vertical half-pixels. These 15 horizontal and 15
vertical half-pixels are interpolated from nearest integer pixels
in horizontal and vertical directions, respectively, using 15
different 8-tap FIR filters. There are 15x15=225 quarter-pixels
between 15 horizontal and 15 vertical half-pixels. These
quarter-pixels are interpolated from nearest horizontal half-
pixels using 15 different 8-tap FIR filters.

TABLE I. VVC FRACTIONAL INTERPOLATION FILTERS

Filters
Coefficients

A-3 A-2 A-1 A0 A1 A2 A3 A4

1 0 1 -3 63 4 -2 1 0

2 -1 2 -5 62 8 -3 1 0

3 -1 3 -8 60 13 -4 1 0

4 -1 4 -10 58 17 -5 1 0

5 -1 4 -11 52 26 -8 3 -1

6 -1 3 -9 47 31 -10 4 -1

7 -1 4 -11 45 34 -10 4 -1

8 -1 4 -11 40 40 -11 4 -1

9 -1 4 -10 34 45 -11 4 -1

10 -1 4 -10 31 47 -9 3 -1

11 -1 3 -8 26 52 -11 4 -1

12 0 1 -5 17 58 -10 4 -1

13 0 1 -4 13 60 -8 3 -1

14 0 1 -3 8 62 -5 2 -1

15 0 1 -2 4 63 -3 1 0

Filter 1
Filter 2

Filter 3
Filter 4
Filter 5
Filter 6
Filter 7
Filter 8

Filter 9
Filter 10
Filter 11
Filter 12

Filter 13
Filter 14
Filter 15

Integer Pixel Quarter PixelHorizontal Half Pixel Vertical Half Pixel

Fig. 1. Integer, half and quarter pixels.

VVC fractional interpolation algorithm used for motion
compensation interpolates necessary fractional pixels for one
out of 255 fractional pixel locations pointed by the given 1/16
pixel accurate motion vector. Necessary fractional pixels are
determined using x fraction and y fraction of the given 1/16
pixel accurate motion vector. If either x fraction or y fraction
is zero, only necessary half-pixels are interpolated. If neither x
fraction nor y fraction is zero, horizontal half-pixels necessary
to interpolate the quarter-pixels are interpolated first. Then,
the necessary quarter-pixels are interpolated using these
horizontal half-pixels.

III. PROPOSED VVC FRACTIONAL INTERPOLATION

HARDWARE

The proposed reconfigurable VVC fractional interpolation
hardware for all PU sizes is shown in Fig. 2. The proposed
hardware interpolates the necessary fractional pixels for luma
component of an 8x8 PU for a given 1/16 pixel accurate
motion vector using integer or half-pixels. For larger PU sizes,
the PU is divided into 8x8 blocks and these blocks are

interpolated separately. For example, a 16x16 PU is divided
into four 8x8 blocks and each 8x8 block is interpolated
separately.

Since 15x8 horizontal half-pixels are necessary for
interpolating quarter-pixels, 15x8x8 on-chip transpose
memory is used to store horizontal half-pixels necessary for
interpolating quarter-pixels in certain cases. The horizontal
half-pixels interpolated from nearest integer pixels in
horizontal direction are stored in transpose memory
horizontally in 15 clock cycles. Then, 15 horizontal half-pixels
are read vertically from transpose memory in each clock cycle
to interpolate quarter-pixels.

The proposed hardware takes 15 integer pixels in each
clock cycle. It interpolates 8 fractional pixels in each clock
cycle using 8 parallel reconfigurable datapaths. If the
necessary fractional pixels are half-pixels, 8x8 half-pixels are
interpolated using the integer pixels in 8 clock cycles. If the
necessary fractional pixels are quarter-pixels, 15x8 horizontal
half-pixels are interpolated using the integer pixels in 15 clock
cycles. Then, 8x8 quarter-pixels are interpolated using these
horizontal half-pixels in 8 clock cycles. There are three
pipeline stages in the proposed hardware. Therefore, the
proposed hardware interpolates the half-pixels and quarter-
pixels for an 8x8 PU in 11 and 29 clock cycles, respectively.

15 different 8-tap FIR filters are used to interpolate half-
pixels and quarter-pixels. Last 7 FIR filters are symmetric of
the first 7 FIR filters. Therefore, in this paper, a reconfigurable
datapath which implements the first 8 FIR filters is proposed.
It can be configured to calculate output of any of the first 8
FIR filters. To calculate output of one of the last 7 FIR filters
using the proposed reconfigurable datapath, inputs are
reversed and corresponding symmetric filter is selected.

The proposed reconfigurable datapath is shown in Fig. 3. It
implements multiplications with constant coefficients using
adders and shifters. It has 14 adders/subtractors and their
inputs are determined by a filter selection signal. It selects
different input pixels with different shift amounts for each
fractional interpolation equation using input multiplexers as
shown in Table II.

In this paper, a baseline VVC fractional interpolation
hardware is also designed and implemented for comparison.
The baseline hardware has the same architecture as the
proposed hardware. The only difference is their datapaths. In
the baseline hardware datapath, all 15 FIR filters are
implemented separately and output of one FIR filter is
selected based on filter selection signal. Therefore, the
baseline hardware datapath has 91 adders while the proposed
reconfigurable datapath has 14 adders.

The proposed and the baseline VVC fractional
interpolation hardware are implemented using Verilog HDL.
The Verilog RTL codes are verified with RTL simulations.
The Verilog RTL codes are synthesized and mapped to a
Xilinx VC7VX330T-3FFG1157 FPGA using Xilinx ISE 14.7.
The FPGA implementations are verified with post place and
route simulations. The simulation results matched the results
of a software implementation of VVC fractional interpolation
algorithm.

Reconfigurable
Datapath

#1

Reconfigurable
Datapath

#2

Reconfigurable
Datapath

#3

Reconfigurable
Datapath

#4

Reconfigurable
Datapath

#5

Reconfigurable
Datapath

#6

Reconfigurable
Datapath

#7

Reconfigurable
Datapath

#8

Integer Pixels
Registers

OUTPUT MEMORY

TRANSPOSE MEMORY

Fig. 2. Proposed VVC fractional interpolation hardware.

-

+

-

-

+

+

+

R
EG

R
EG

-

+

+

+

+

-

R
EG

R
EG

+ >> 6

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

F
ra

c
ti

o
n

a
l

p
ix

e
l

S
h

if
te

d
 i

n
te

g
er

 p
ix

el
s

Fig. 3. Proposed reconfigurable datapath.

As shown in Fig. 4, FPGA implementations are also
verified to work correctly on a Xilinx Virtex 7 VC707 FPGA
board which includes an FPGA, 1 GB DRAM and interfaces
such as UART and HDMI. Microblaze processor reads video
frames from computer, stores them to DDR memory and sends
them to FPGA using high-speed AXI-4 bus. The proposed
hardware interpolates the video frames. Then, interpolated
video frames are displayed on HDMI monitor.

MICROBLAZE
(Control &

Communication)

D
D

R
3

FPGA
(VVC Interpolation

Hardware)

AXI-4 BUS

HDMI
Display

Computer

Fig. 4. FPGA board implementation.

As shown in Table III, FPGA implementation of the
proposed VVC fractional interpolation hardware uses 1688
DFFs and 4467 LUTs. It can work at 250 MHz, and it can
process 66 quad full HD (3840x2160) frames per second.
FPGA implementation of the baseline VVC fractional
interpolation hardware uses 5446 DFFs and 12016 LUTs. It
can work at 238 MHz, and it can process 63 quad full HD
(3840x2160) frames per second.

The Verilog RTL codes of the baseline and proposed VVC
fractional interpolation hardware are also synthesized to
TSMC 90 nm standard cell library, and the resulting netlists
are placed and routed. As shown in Table III, ASIC
implementations of the baseline and proposed hardware use

TABLE II. RECONFIGURABLE DATAPATH INPUTS

Filters I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

1 0 0 B 0 C<<2 D<<6 C D E<<2 0 0 F<<1 0 G 0

2 A B<<1 0 C<<2 C<<1 D<<6 C D<<1 E<<3 0 0 F<<1 F G 0

3 A B<<1 B C<<3 0 D<<6 0 D<<2 E<<4 E E<<2 F<<2 0 G 0

4 A B<<2 0 C<<3 C<<1 D<<6 D<<1 D<<3 E<<4 E 0 F<<2 F G 0

5 A B<<2 C C<<3 C<<2 D<<6 D<<2 D<<4 E<<5 E<<1 E<<3 F<<3 G G<<2 H

6 A B<<1 B C<<3 C<<1 D<<5 D<<4 D E<<5 C E F<<3 F<<1 G<<2 H

7 A B<<2 D C<<3 C<<1 D<<5 D<<4 D<<2 E<<5 E<<1 C F<<3 F<<1 G<<2 H

8 A B<<2 F C<<3 C<<1 D<<5 D<<3 0 E<<5 E<<3 C F<<3 F<<2 G<<2 H

TABLE IV. HARDWARE COMPARISON

 [11] [12] [13] [14] [15] [16] Proposed

FPGA
Xilinx

Virtex 6
Xilinx

Virtex 6
Arria II GX

Xilinx
Virtex 5

Stratix III
Xilinx

Virtex 6
Xilinx

Virtex 7

Slices --- --- --- 2181 --- 1498 1407

LUTs 3005 3929 18831 5017 7701 3806 4467

Block RAMs 2 6 --- 2 --- --- ---

Max. Freq. (MHz) 100 200 200 283 278 233 250

Frames per Second
64

2560x1600

30

3840x2160

60

1920x1080

30

2560x1600

60

3840x2160

35

3840x2160

66

3840x2160

Design Only MC ME + MC ME + MC ME + MC ME + MC ME + MC Only MC

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC

TABLE III. IMPLEMENTATION RESULTS

 Baseline Proposed

Technology
Xilinx

Virtex 7

TSMC

90 nm

Xilinx

Virtex 7

TSMC

90 nm
Slice/Gate

Count
3630 48.3 K 1407 11.7 K

DFF 5446 --- 1688 ---

LUT 12016 --- 4467 ---

Max. Freq.

(MHz)
238 417 250 357

Frames per

Second

63

3840x2160

110

3840x2160

66

3840x2160

95

3840x2160

 TABLE V. POWER CONSUMPTION RESULTS

 Baseline Proposed

Frame Tennis Kimono Tennis Kimono

Clock (mW) 68.33 68.33 13.84 13.84

Signal (mW) 96.75 131.64 16.64 22.58

Logic (mW) 99.27 135.36 32.40 40.64

Total Power

(mW)
264.35 335.33 62.88 77.06

Power Reduction --- --- 76.21 % 77.02 %

48.3K and 11.7K gates, respectively, based on NAND (2x1)
gate area excluding on-chip memory. ASIC implementations
of the baseline and proposed hardware can work at 417 and
357 MHz, respectively, and they can process 110 and 95 quad
full HD frames per second, respectively.

Since the proposed hardware is the first VVC fractional

interpolation hardware for motion compensation in the

literature, it is compared with HEVC fractional interpolation

hardware in the literature [11]-[16]. The comparison is shown

in Table IV. The HEVC fractional interpolation hardware

proposed in [11] is designed for motion compensation. The

others can be used for both motion estimation (ME) and

motion compensation.

Since VVC fractional interpolation has higher

computational complexity than HEVC fractional interpolation,

the proposed hardware has higher area than the HEVC

fractional interpolation hardware proposed in [11]. However,

since the proposed hardware is designed for motion

compensation, it does not have higher area than the other

HEVC fractional interpolation hardware in the literature.

Power consumptions of the baseline and proposed

hardware are estimated using Xilinx XPower Analyzer tool.

Post place and route timing simulations are performed for

Tennis and Kimono (1920x1080) video frames at 100 MHz

[17]. The signal activities of these timing simulations are

stored in VCD files, and they are used for estimating the

power consumptions of FPGA implementations. The power

consumptions of both the baseline and proposed hardware are

shown in Table V. Clock, signal and logic power

consumptions are given for detailed analysis. Total power

consumption of the proposed hardware for Tennis and

Kimono frames is 76.21% and 77.02% less than that of the

baseline hardware, respectively.

IV. CONCLUSION

In this paper, a reconfigurable VVC fractional
interpolation hardware for all PU sizes is proposed. It is the
first fractional interpolation hardware for VVC motion
compensation in the literature. The proposed VVC fractional
interpolation hardware can process 66 quad full HD
(3840x2160) frames per second on a Xilinx Virtex 7 FPGA. It
has up to 77% less power consumption than baseline VVC
fractional interpolation hardware on the same FPGA.

REFERENCES

[1] J. Chen, Y. Chen, M. Karczewiz, X. Li, H. Liu, L. Zhang, and X. Zhao,
“Coding tools investigation for next generation video coding,” ITU-T
SG16 COM16–C806, Feb. 2015.

[2] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, and J. Boyce, “Algorithm
description of joint exploration model 7,” JVET-G1001, July 2017.

[3] H. Azgin, A. C. Mert, E. Kalali, and I. Hamzaoglu, “Reconfigurable
intra prediction hardware for future video coding,” IEEE Trans. on
Consumer Electronics, vol. 63, no. 4, pp. 419-425, Nov. 2017.

[4] A. C. Mert, E. Kalali, and I. Hamzaoglu, “ High performance 2D
transform hardware for future video coding,” IEEE Trans. on Consumer
Electronics, vol. 63, no. 2, pp. 117-125, May 2017.

[5] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An FPGA implementation of
future video coding 2D transform,” IEEE Int. Conf. on Consumer
Electronics – Berlin (ICCE-Berlin), pp. 31-36, Sep. 2017.

[6] M. J. Garrido, F. Pescador, M. Chavarrias, P. J. Lobo, and C. Sanz, “A
high performance FPGA-based architecture for the future video coding
adaptive multiple core transform,” IEEE Trans. on Consumer
Electronics, vol. 64, no. 1, pp. 53-60, Feb. 2018.

[7] J. Vanne, M. Viitanen, T.D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC

video codecs”, IEEE Trans. on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp.1885-1898, Dec. 2012.

[8] E. Kalali, Y. Adibelli, and I. Hamzaoglu, “A high performance and low
energy intra prediction hardware for high efficiency video coding,” Int.

Conf. on Field Programmable Logic and Applications (FPL), pp. 719-

722, Aug. 2012.
[9] E. Kalali, E. Ozcan, O. M. Yalcinkaya, and I. Hamzaoglu, “A low

energy HEVC inverse transform,” IEEE Trans. on Consumer

Electronics, vol. 60, no. 4, pp. 754-761, Nov. 2014.
[10] E. Kalali, A. C. Mert, and I Hamzaoglu, “A computation and energy

reduction technique for HEVC discrete cosine transform,” IEEE Trans.
on Consumer Electronics, vol. 62, no. 2, pp. 166-174, May 2016.

[11] E. Kalali, Y. Adibelli, and I. Hamzaoglu, “A reconfigurable HEVC sub-
pixel interpolation hardware”, IEEE Int. Conference on Consumer
Electronics - Berlin, Sept. 2013.

[12] E. Kalali and I. Hamzaoglu, “A low energy HEVC sub-pixel
interpolation hardware,” IEEE Int. Conference on Image Processing, pp.
1218-1222, Oct. 2014.

[13] G. Pastuszak and M. Trochimiuk, “Architecture design and efficiency
evaluation for the high-throughput interpolation in the HEVC encoder”,
16th Euromicro Conference on Digital System Design, Sep. 2013.

[14] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “A reconfigurable
hardware architecture for fractional pixel interpolation in high efficiency
video coding,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 2, pp. 238-251, Feb. 2015.

[15] H. Maich, C. Afonso, D. Franco, B. Zatt, M. Porto, and L. Agostini,
“High throughput hardware design for the HEVC fractional motion
estmation interpolation unit”, IEEE 20th International Conference on
Electronics, Circuits, and Systems, May 2014.

[16] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An HEVC fractional

interpolation hardware using memory based constant multiplication,”

IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 742-746, Jan.
2018.

[17] F. Bossen, “Common test conditions and software reference
configurations”, JCTVC-I1100, May 2012.

