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Abstract—Fractional interpolation is one of the most 

computationally complex parts of video compression standards. 

Fractional interpolation in Versatile Video Coding (VVC) 

standard has much higher computational complexity than 

fractional interpolation in previous video compression standards. 

In this paper, a reconfigurable VVC fractional interpolation 

hardware for motion compensation is designed and implemented 

using Verilog HDL. The proposed hardware is the first VVC 

fractional interpolation hardware for motion compensation in 

the literature. It interpolates necessary fractional pixels for 1/16 

pixel accuracy for all prediction unit sizes. The proposed VVC 

fractional interpolation hardware, in the worst case, can process 

66 quad full HD (3840x2160) frames per second. It has up to 77% 

less power consumption than baseline VVC fractional 

interpolation hardware. 

Keywords— VVC, motion compensation, fractional 

interpolation, hardware implementation, FPGA. 

I.  INTRODUCTION 

ITU and ISO are developing a new international video 

compression standard called Versatile Video Coding (VVC) 

[1]-[6]. VVC will have higher compression efficiency than 

High Efficiency Video Coding (HEVC) standard at the 

expense of much higher computational complexity [7]-[10]. 

One of the most computationally complex parts of VVC is 

fractional interpolation. 

HEVC standard uses 3 different 8-tap FIR filters for 

fractional interpolations and provides 1/4 fractional pixel 

accuracy. However, VVC standard uses 15 different 8-tap FIR 

filters for fractional interpolations and provides 1/16 fractional 

pixel accuracy. Therefore, VVC fractional interpolation has 

much higher computational complexity than HEVC fractional 

interpolation. 

In this paper, a reconfigurable VVC fractional interpolation 

hardware for motion compensation (MC) is proposed. The 

proposed hardware supports all prediction unit (PU) sizes. It 

interpolates necessary fractional pixels for the fractional pixel 

location in an 8x8 PU pointed by the given fractional pixel 

accurate motion vector. For larger PU sizes, the PU is divided 

into 8x8 blocks, and these blocks are interpolated separately. 

Since the proposed hardware is used for motion compensation 

stage of VVC encoder and decoder, only one fractional pixel 

per integer pixel is required. Therefore, the proposed hardware 

has a reconfigurable datapath which can be configured to 

implement any of the 15 different 8-tap FIR filters.  

The proposed VVC fractional interpolation hardware is 

implemented using Verilog HDL. The Verilog RTL code is 

verified to work at 250 MHz on a Xilinx Virtex 7 FPGA. The 

proposed VVC fractional interpolation hardware, in the worst 

case, can process 66 quad full HD (3840x2160) frames per 

second. The proposed reconfigurability reduced the power 

consumption of FPGA implementation of the proposed VVC 

fractional interpolation hardware by 77%.  

 The proposed hardware is the first VVC fractional 
interpolation hardware for motion compensation in the 
literature. Several HEVC fractional interpolation hardware 
implementations are proposed in the literature [11]-[16]. In 
Section III, the VVC fractional interpolation hardware 
proposed in this paper is compared with them. 

The rest of the paper is organized as follows. In Section II, 
VVC fractional interpolation algorithm is explained. In 
Section III, the proposed reconfigurable VVC fractional 
interpolation hardware is presented, and its implementation 
results are given. Finally, Section IV presents the conclusions.  

II. VVC FRACTIONAL INTERPOLATION ALGORITHM 

VVC standard uses 15 different 8-tap FIR filters for 
fractional pixel interpolation. The coefficients of these 15 FIR 
filters are shown in Table I. A-3 – A4 show input pixels for a 
filter where sub-indices represent the indices of coefficients. 
The F7 8-tap FIR filter equation is shown in (1) as an example. 

F7 = (-A-3 + 4*A-2 - 11*A-1 + 45*A0 + 34*A1 - 10*A2+ 
4*A3 + A4) >> 6 

(1) 

Integer pixels, fractional pixels and FIR filters used to 
interpolate these fractional pixels are shown in Fig. 1. There 
are 255 fractional (half and quarter) pixels for one integer 
pixel. There are 15 half-pixels between two neighboring 
horizontal integer pixels called horizontal half-pixels. There 
are 15 half-pixels between two neighboring vertical integer 
pixels called vertical half-pixels. These 15 horizontal and 15 
vertical half-pixels are interpolated from nearest integer pixels 
in horizontal and vertical directions, respectively, using 15 
different 8-tap FIR filters. There are 15x15=225 quarter-pixels 
between 15 horizontal and 15 vertical half-pixels. These 
quarter-pixels are interpolated from nearest horizontal half-
pixels using 15 different 8-tap FIR filters.  



TABLE I. VVC FRACTIONAL INTERPOLATION FILTERS 

Filters 
Coefficients 

A-3 A-2 A-1 A0 A1 A2 A3 A4 

1 0 1 -3 63 4 -2 1 0 

2 -1 2 -5 62 8 -3 1 0 

3 -1 3 -8 60 13 -4 1 0 

4 -1 4 -10 58 17 -5 1 0 

5 -1 4 -11 52 26 -8 3 -1 

6 -1 3 -9 47 31 -10 4 -1 

7 -1 4 -11 45 34 -10 4 -1 

8 -1 4 -11 40 40 -11 4 -1 

9 -1 4 -10 34 45 -11 4 -1 

10 -1 4 -10 31 47 -9 3 -1 

11 -1 3 -8 26 52 -11 4 -1 

12 0 1 -5 17 58 -10 4 -1 

13 0 1 -4 13 60 -8 3 -1 

14 0 1 -3 8 62 -5 2 -1 

15 0 1 -2 4 63 -3 1 0 
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Fig. 1. Integer, half and quarter pixels. 

VVC fractional interpolation algorithm used for motion 
compensation interpolates necessary fractional pixels for one 
out of 255 fractional pixel locations pointed by the given 1/16 
pixel accurate motion vector. Necessary fractional pixels are 
determined using x fraction and y fraction of the given 1/16 
pixel accurate motion vector. If either x fraction or y fraction 
is zero, only necessary half-pixels are interpolated. If neither x 
fraction nor y fraction is zero, horizontal half-pixels necessary 
to interpolate the quarter-pixels are interpolated first. Then, 
the necessary quarter-pixels are interpolated using these 
horizontal half-pixels. 

III. PROPOSED VVC FRACTIONAL INTERPOLATION 

HARDWARE 

The proposed reconfigurable VVC fractional interpolation 
hardware for all PU sizes is shown in Fig. 2. The proposed 
hardware interpolates the necessary fractional pixels for luma 
component of an 8x8 PU for a given 1/16 pixel accurate 
motion vector using integer or half-pixels. For larger PU sizes, 
the PU is divided into 8x8 blocks and these blocks are 

interpolated separately. For example, a 16x16 PU is divided 
into four 8x8 blocks and each 8x8 block is interpolated 
separately. 

Since 15x8 horizontal half-pixels are necessary for 
interpolating quarter-pixels, 15x8x8 on-chip transpose 
memory is used to store horizontal half-pixels necessary for 
interpolating quarter-pixels in certain cases. The horizontal 
half-pixels interpolated from nearest integer pixels in 
horizontal direction are stored in transpose memory 
horizontally in 15 clock cycles. Then, 15 horizontal half-pixels 
are read vertically from transpose memory in each clock cycle 
to interpolate quarter-pixels. 

The proposed hardware takes 15 integer pixels in each 
clock cycle. It interpolates 8 fractional pixels in each clock 
cycle using 8 parallel reconfigurable datapaths. If the 
necessary fractional pixels are half-pixels, 8x8 half-pixels are 
interpolated using the integer pixels in 8 clock cycles. If the 
necessary fractional pixels are quarter-pixels, 15x8 horizontal 
half-pixels are interpolated using the integer pixels in 15 clock 
cycles. Then, 8x8 quarter-pixels are interpolated using these 
horizontal half-pixels in 8 clock cycles. There are three 
pipeline stages in the proposed hardware. Therefore, the 
proposed hardware interpolates the half-pixels and quarter-
pixels for an 8x8 PU in 11 and 29 clock cycles, respectively. 

15 different 8-tap FIR filters are used to interpolate half-
pixels and quarter-pixels. Last 7 FIR filters are symmetric of 
the first 7 FIR filters. Therefore, in this paper, a reconfigurable 
datapath which implements the first 8 FIR filters is proposed. 
It can be configured to calculate output of any of the first 8 
FIR filters. To calculate output of one of the last 7 FIR filters 
using the proposed reconfigurable datapath, inputs are 
reversed and corresponding symmetric filter is selected. 

The proposed reconfigurable datapath is shown in Fig. 3. It 
implements multiplications with constant coefficients using 
adders and shifters. It has 14 adders/subtractors and their 
inputs are determined by a filter selection signal. It selects 
different input pixels with different shift amounts for each 
fractional interpolation equation using input multiplexers as 
shown in Table II. 

In this paper, a baseline VVC fractional interpolation 
hardware is also designed and implemented for comparison. 
The baseline hardware has the same architecture as the 
proposed hardware. The only difference is their datapaths. In 
the baseline hardware datapath, all 15 FIR filters are 
implemented separately and output of one FIR filter is 
selected based on filter selection signal. Therefore, the 
baseline hardware datapath has 91 adders while the proposed 
reconfigurable datapath has 14 adders. 

The proposed and the baseline VVC fractional 
interpolation hardware are implemented using Verilog HDL. 
The Verilog RTL codes are verified with RTL simulations. 
The Verilog RTL codes are synthesized and mapped to a 
Xilinx VC7VX330T-3FFG1157 FPGA using Xilinx ISE 14.7. 
The FPGA implementations are verified with post place and 
route simulations. The simulation results matched the results 
of a software implementation of VVC fractional interpolation 
algorithm.
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Fig. 2. Proposed VVC fractional interpolation hardware. 
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Fig. 3. Proposed reconfigurable datapath. 

As shown in Fig. 4, FPGA implementations are also 
verified to work correctly on a Xilinx Virtex 7 VC707 FPGA 
board which includes an FPGA, 1 GB DRAM and interfaces 
such as UART and HDMI. Microblaze processor reads video 
frames from computer, stores them to DDR memory and sends 
them to FPGA using high-speed AXI-4 bus. The proposed 
hardware interpolates the video frames. Then, interpolated 
video frames are displayed on HDMI monitor. 
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Fig. 4. FPGA board implementation. 

As shown in Table III, FPGA implementation of the 
proposed VVC fractional interpolation hardware uses 1688 
DFFs and 4467 LUTs. It can work at 250 MHz, and it can 
process 66 quad full HD (3840x2160) frames per second. 
FPGA implementation of the baseline VVC fractional 
interpolation hardware uses 5446 DFFs and 12016 LUTs. It 
can work at 238 MHz, and it can process 63 quad full HD 
(3840x2160) frames per second. 

The Verilog RTL codes of the baseline and proposed VVC 
fractional interpolation hardware are also synthesized to 
TSMC 90 nm standard cell library, and the resulting netlists 
are placed and routed. As shown in Table III, ASIC 
implementations of the baseline and proposed hardware use 



TABLE II. RECONFIGURABLE DATAPATH INPUTS 

Filters I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 

1 0 0 B 0 C<<2 D<<6 C D E<<2 0 0 F<<1 0 G 0 

2 A B<<1 0 C<<2 C<<1 D<<6 C D<<1 E<<3 0 0 F<<1 F G 0 

3 A B<<1 B C<<3 0 D<<6 0 D<<2 E<<4 E E<<2 F<<2 0 G 0 

4 A B<<2 0 C<<3 C<<1 D<<6 D<<1 D<<3 E<<4 E 0 F<<2 F G 0 

5 A B<<2 C C<<3 C<<2 D<<6 D<<2 D<<4 E<<5 E<<1 E<<3 F<<3 G G<<2 H 

6 A B<<1 B C<<3 C<<1 D<<5 D<<4 D E<<5 C E F<<3 F<<1 G<<2 H 

7 A B<<2 D C<<3 C<<1 D<<5 D<<4 D<<2 E<<5 E<<1 C F<<3 F<<1 G<<2 H 

8 A B<<2 F C<<3 C<<1 D<<5 D<<3 0 E<<5 E<<3 C F<<3 F<<2 G<<2 H 

 

TABLE IV. HARDWARE COMPARISON 

 [11] [12] [13] [14] [15] [16] Proposed 

FPGA 
Xilinx 

Virtex 6 
Xilinx 

Virtex 6 
Arria II GX 

Xilinx 
Virtex 5 

Stratix III 
Xilinx 

Virtex 6 
Xilinx 

Virtex 7 

Slices --- --- --- 2181 --- 1498 1407 

LUTs 3005 3929 18831 5017 7701 3806 4467 

Block RAMs 2 6 --- 2 --- --- --- 

Max. Freq. (MHz) 100 200 200 283 278 233 250 

Frames per Second  
64 

2560x1600 

30 

3840x2160 

60 

1920x1080 

30 

2560x1600 

60 

3840x2160 

35 

3840x2160 

66 

3840x2160 

Design Only MC ME + MC ME + MC ME + MC ME + MC ME + MC Only MC 

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC 

 

TABLE III. IMPLEMENTATION RESULTS 

 Baseline Proposed 

Technology 
Xilinx 

Virtex 7 

TSMC  

90 nm 

Xilinx 

Virtex 7 

TSMC 

90 nm 
Slice/Gate 

Count 
3630 48.3 K 1407 11.7 K 

DFF 5446 --- 1688 --- 

LUT 12016 --- 4467 --- 

Max. Freq. 

(MHz) 
238 417 250 357 

Frames per 

Second  

63 

3840x2160 

110 

3840x2160 

66 

3840x2160 

95 

3840x2160 

 

 TABLE V. POWER CONSUMPTION RESULTS 

 Baseline Proposed 

Frame Tennis Kimono Tennis Kimono 

Clock (mW) 68.33 68.33 13.84 13.84 

Signal (mW) 96.75 131.64 16.64 22.58 

Logic (mW) 99.27 135.36 32.40 40.64 

Total Power 

(mW) 
264.35 335.33 62.88 77.06 

Power Reduction --- --- 76.21 % 77.02 % 

  
48.3K and 11.7K gates, respectively, based on NAND (2x1) 
gate area excluding on-chip memory. ASIC implementations 
of the baseline and proposed hardware can work at 417 and 
357 MHz, respectively, and they can process 110 and 95 quad 
full HD frames per second, respectively. 

 

Since the proposed hardware is the first VVC fractional 

interpolation hardware for motion compensation in the 

literature, it is compared with HEVC fractional interpolation 

hardware in the literature [11]-[16]. The comparison is shown 

in Table IV. The HEVC fractional interpolation hardware 

proposed in [11] is designed for motion compensation. The 

others can be used for both motion estimation (ME) and 

motion compensation. 

Since VVC fractional interpolation has higher 

computational complexity than HEVC fractional interpolation, 

the proposed hardware has higher area than the HEVC 

fractional interpolation hardware proposed in [11]. However, 

since the proposed hardware is designed for motion 

compensation, it does not have higher area than the other 

HEVC fractional interpolation hardware in the literature. 

Power consumptions of the baseline and proposed 

hardware are estimated using Xilinx XPower Analyzer tool. 

Post place and route timing simulations are performed for 

Tennis and Kimono (1920x1080) video frames at 100 MHz 

[17].  The signal activities of these timing simulations are 

stored in VCD files, and they are used for estimating the 

power consumptions of FPGA implementations. The power 

consumptions of both the baseline and proposed hardware are 

shown in Table V. Clock, signal and logic power 

consumptions are given for detailed analysis. Total power 

consumption of the proposed hardware for Tennis and 

Kimono frames is 76.21% and 77.02% less than that of the 

baseline hardware, respectively. 



IV. CONCLUSION 

In this paper, a reconfigurable VVC fractional 
interpolation hardware for all PU sizes is proposed. It is the 
first fractional interpolation hardware for VVC motion 
compensation in the literature. The proposed VVC fractional 
interpolation hardware can process 66 quad full HD 
(3840x2160) frames per second on a Xilinx Virtex 7 FPGA. It 
has up to 77% less power consumption than baseline VVC 
fractional interpolation hardware on the same FPGA. 
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