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Abstract—This study presents a real-time depth estimation
hardware system aiming to provide high-resolution depth data
and to eliminate its noise on textureless regions without causing
any interference problem by utilizing artificial pattern projection.
The system generates up to 2K resolution depth data and reaches
up to 256 disparity range which are configurable by the end-user
owing to its parameterized design. It is capable of streaming
depth data with 21 frames per second (fps) with 2K resolution
and 128 pixel disparity range, and its throughput performance
changes depending on configuration of the output resolution and
the disparity range.

Index Terms—Real-time, trinocular disparity estimation, depth
estimation, textureless-region depth noise, stereo vision, hardware
system, embedded, FPGA.

I. INTRODUCTION

With the recent trend of stereo camera systems, visual depth

data is becoming more and more exciting topic to generate

real-time, high-resolution and noise free depth data. It is highly

requested by various video processing applications such as

3D modelling, virtual reality, robotics, autonomous vehicles,

drones etc.

Various depth estimation methods are actively studied to

satisfy this demand [1]–[9]. These methods are mainly cate-

gorized as local and global methods. Global depth estimation

methods suffer from lack of real-time output streaming, while

local depth estimation methods fail to eliminate noisy depth

result especially on textureless or poorly-textured regions

because local methods mostly rely on correlation and matching

of the pixels captured from separate camera frames. On the

other hand, Time of Flight (TOF) depth image sensors [10]

produce accurate depth map. However they suffer from low

resolution and interference problem.

Researchers examined various methods to eliminate texture-

less region depth noise while sustaining real-time and high-

resolution performance. Many studies have been conducted to

create dynamic or adaptive window size and shape, however,

they could not provide decent noise-free output results [11]–

[13]. Another approach is to model the textureless region of

a roadway [14], however, this method is designed specifically

for the roadway depth result instead of addressing the general

case scenario. Some other techniques like [7]–[9] are incapable

of providing real-time depth stream.

Regarding this problem, this paper presents novel approach

to eliminate depth noise on textureless region while sustaining

real-time and high-resolution performance. The illustration of

proposed depth estimation system is presented in figure 1.

Fig. 1: Illustration of the proposed trinocular disparity estima-

tion system

This study is enhanced version of the previously published

binocular disparity estimation algorithm which provides XGA

60 fps binocular depth output with XGA resolution and 128

disparity range [15].

II. THE PROPOSED ALGORITHM AND HARDWARE

The block diagram of the proposed system is given in

figure 2. All high performance real-time video processing is

implemented in hardware. The system captures RGB image

from 3 parallel positioned cameras and generates synchronized

RGB (24-bits) pixel values with their computed depth (8-bits)

values (RGB+D).

The cameras are initialized and configured by MicroBlaze

soft processor core via I2C interface. The three cameras are

precisely synchronized through common clock source and

common I2C module which are provided and controlled by

the FPGA. This synchronization is crucial to capture the

identical frame rates, and thereby obtaining correct disparity

matches between separate camera frames. The captured image

frames are processed by Camera Interface unit to convert

Bayer format (8-bits) to YCbCr format (24-bits). These images

are stored in FIFO to maintain synchronization and pipelining,

then they are transferred to Rectification unit. The internal

and external camera calibration parameters are calculated

offline through OpenCV toolbox [16]. These parameters are

transferred to the FPGA via UART interface and stored in

software accessible registers.
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Fig. 2: Block diagram of the proposed system

Caltech rectification algorithm [17] is applied to align image

frames coming from three cameras. YCbCr images captured

from FIFOs and 64 rows of each image are buffered in on-chip

BRAMs to enable high-speed pixel access during rectification

process. These images synchronously processed in parallel by

the Rectification unit and the rectified image pairs (center-

right and center-left) are transferred to two binocular disparity

estimation units.

Binocular disparity estimation unit consists of three sub-

modules: Reconfigurable Data Allocation (RDA), Reconfig-

urable Computation of Metrics (RCM) and Adaptive Disparity

Selection (ADS). The RDA unit buffers 39 rows of each

rectified image in single-port BRAMs to perform window-

based matching scheme. The windows size is dynamically

selected based on the texture feature around the each pixel

during disparity matching process as either 7 × 7, 13 × 13,

25 × 25 pixels. Window size is adaptively determined de-

pending on Mean absolute deviation (MAD) and threshold

values. Hardware complexity remains constant because evenly

distributed 49 contributor pixels are included to matching

calculation in each window size scheme. The RCM unit com-

putes Census and binary-window sum of absolute difference

(BW-SAD) matrixes from the 49 contributor pixels. They are

combined to form the Hybrid Cost (HC) values which are used

as metrics in disparity voting process. Moreover, Confidence

value is computed for each pixel from its best and second best

HC values and this Confidence value is stored and used in

Refinement unit. ADS unit receives these values from RCM

unit and performs disparity matching by selecting the pixel

with minimum HC value. Further details about Binocular

Disparity unit are presented in [15].

The binocular disparities of center-right and center-left

images are transferred to Fusion unit. The Fusion unit merges

these two binocular disparity maps into one trinocular disparity

map. The Fusion unit compares two binocular disparity values

and chooses the one with lower HC value by applying winner-

take-all approach. In this way, Fusion unit eliminates noisy

and incorrect depth data caused by occlusion. The trinocular

disparity map produced by Fusion unit is smoothen by Refine-

ment unit. It identifies the outliers of the disparity results in the

neighboring pixels by omitting the pixels with low confidence

values and replacing them with the most frequent disparity

value. Bilateral filtering is applied to refined disparity map

and the end-user can choose to display filtered or unfiltered 32-

bits of RGB+D output data via USB interface. The user is also

capable of monitoring only RGB, Depth data or RGB+D data.

The synchronized 32-bits RGB+D data generation provides

great convenience for practical video processing applications

like foreground detection and background subtraction. The

hardware is configurable from the PC to adjust resolution

and disparity range. The Rectification and Trinocular Dispar-

ity Estimation units avoid DDR3 memory utilization in this

algorithm to achieve an efficient and high-performance video

processing.

In addition to refinement and bilateral filtering, the proposed

system contains pico-projector to generate artificial pattern

projection. It serves to further eliminate the depth noise on

textureless region. First of all, synchronization between the

projector and the cameras is ensured so as to eliminate Moiré

effect. Regarding this, it was disassembled and its scanning

signal, which is adjusting position of the projection laser,

was extracted with the help oscilloscope by reverse engi-

neering. The projector scanning signal (projscan) is essential

for synchronization between the cameras and the Picopro.

Since projscan signal is so noisy, it was filtered via low pass

filter and FPGA glitch elimination to generate projector signal
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(projsync). The camera synchronization signal (camsync) is

produced from projsync signal to trigger the camera shutter

and to determine camera readout scan. These synchronization

signals are illustrated in figure 3. The camsync and projsync
signals have following specifications:

• camsync signal should have even duty cycle unlike

projsync signal as camera frame rates do not change over

time.

• Amplitude of the camsync signal needs to be converted

from projsync signal by voltage converter since voltage

range of the FPGA (3.3V) and the cameras (5V) are

different.

• A period of camsync signal needs to be positive integer

multiple of period of projsync signal to sustain synchro-

nization between the projector and the cameras.

• camsync signal has phase shift (ϕ) with respect to

projsync signal due to the hard-to-measure signal trans-

mission delay between the projector to the cameras

through the FPGA and the PCB.

In the light of the specifications explained below, the

relationship between camsync and projsync signals can be

formulated as:

camsync = A× projsync(
ω

N
+ ϕ) with 50% duty cycle (1)

where:

A: Amplitude constant.

N : Positive integer constant.

ω: Signal angular frequency.

ϕ: Phase shift.

Fig. 3: Illustration of the synchronization signals: projscan,

projsync, camsync.

The parameter A can be easily computed (1.51 = 5V/3.3V )

as we know voltage ranges of the FPGA and the cameras.

However, it is difficult to accurately calculate parameters of ϕ
and N because:

• Phase shift is determined by the hard-to-measure signal

transmission delay from the projector to the cameras

through the FPGA and the PCB.

• Parameter N needs to be adjusted such that the camera

frame rate and the projector display rate match.

• The camera frame rate depends on not only shutter width

but also resolution.

These parameters are manually tuned until all undesired

interferences between the cameras and the projector like Moiré

interference disappear. Considering the camera configuration

side of the synchronization, Electronic Rolling Shutter (ERS)

snapshot mode is preferred because this scheme does not only

diminish shearing affect but also gives digital tuning flexibility

for camera synchronization.

The proposed architecture is different than the hardware

presented in [15], as the proposed system: 1) utilizes trinocular

disparity estimation, 2) includes projector integration and

synchronization, 3) generates higher resolution, 4) searches

for higher disparity range, 5) provides real-time hardware

filtering, 6) enables larger bandwidth data transfer and 7) is

fully configurable in terms of resolution and disparity without

changing hardware architecture.

III. IMPLEMENTATION RESULTS

The proposed system is implemented in XILINX Virtex-

707 FPGA with 190 MHz clock frequency. It consumes 121k

Look-Up-Tables (LUT), 3483 (LUTRAM), 119k DFFs and

438 BRAMS and 92 DSP resources. MT9P031 digital image

sensor with 5 megapixels resolution and Celluon PicoPro

portable projector with HD resolution are used. The system is

capable of producing real-time depth data up to 2K resolution

and up to 256 disparity range. The resolution and disparity

range are fully configurable by the end-user. The correlation

among resolution, disparity range and output frame rate is

given in table I.

Resolution/
Disparity

XGA Full HD 2K

64 pixels 87 fps 33 fps 31 fps
128 pixels 60 fps 23 fps 21 fps
256 pixels 37 fps 14 fps 13 fps

TABLE I: The throughput performance of the system with

respect to resolution and disparity range configuration.

The captured image and its depth map is presented in figure

4a-b. The white rectangular box is taken as a region of interest

to test the performance of the artificial pattern projection as

the box has no texture on its surface. Various textures are

projected upon the region of interest, and their noise reduction

performances in the filtered and the unfiltered depth maps are

examined.

The performance comparison of the projected artificial

patterns are conducted considering the following error metrics:

errpeak =
100

256
max(|p(i, j)− g(i, j)|) (2)

erraverage =
100

256
(
∑

i,j∈S

|p(i, j)− g(i, j)|)/w (3)

errspatial =
100

255
(
∑

i,j∈S

|4p(i, j)− p(i, j + 1)− p(i, j − 1)

− p(i+ 1, j)− p(i− 1, j)|)/w (4)

where:
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S: Region of interest (white rectangular box).

w: Total number of pixels over S.

p(i, j): Depth pixel value at (i,j).

g(i, j): Ground truth depth pixel value at (i,j)

errpeak: Peak error rate in S.

errspatial: Spatial error rate in S.

erraverage: Average error rate in S.

Every error rate is multiplied by 100/256 in the formulas

to calculate percentage error rate. 256 and 100 stand for

[0,255] pixel range in grayscale image and percentage error

respectively.

These error metrics are chosen to measure the noise elimi-

nation performance of the artificial pattern projection.errpeak
defines maximum depth error rate with respect to ground truth

depth value. erraverage defines average depth error rate in the

region of interest. errspatial defines an average depth error

rate with respect to four neighbor pixels. In other words,

it indicates how much depth pixel deviates compared to its

neighbor pixels. errspatial can be calculated in the given

formula since the rectangular box is flat and it is positioned

diagonally to central camera direction, hence it is supposed

to have the same depth value on its surface. Ground truth

depth values g(i, j) are manually calculated by averaging the

depth values with high confidence and low HC values. The

textureless box with artificial patterns projected on it, their

raw depth results and their bilateral filtered depth results are

presented in figure 4. Their corresponding error metrics are

given in table II.

Pattern/
Error

#0 #1 #2 #3 #4 #5

errpeak 72.46 72.16 72.16 70.59 61.69 72.16

errspatial 4.96 3.53 2.01 4.84 0.38 2.56

erraverage 14.90 9.43 4.15 11.81 0.91 4.81

errpeak

filtered
70.59 72.16 60.39 69.02 47.06 70.20

erraverage

filtered
13.35 8.68 2.52 9.38 0.59 1.14

errspatial

filtered
0.92 0.89 0.39 1.34 0.08 0.36

TABLE II: Overall depth error summary.

Analyzing the results from figure 4 and error metrics

summary from the table II, we observe:

• Spatially repetitive patterns like Pattern#1 and Pattern#3

provides slight improvement since the repetitive texture

does not help to distinguish pixels during disparity de-

tection process.

• Denser random textures provide better accuracy as they

provide more distinctive features.

• Randomly distributed and various sized shapes like Pat-

tern#4 and Pattern#5 provides prevailing results since

they are more likely to create typical and unique features.

• Artificial pattern projection also helps the bilateral filter

for further noise reduction.

IV. CONCLUSION

In this paper, we proposed real-time 2K resolution trinocular

depth estimation system with 256 disparity range. The system

(a) Snapshot of the scene (b) Depth map without projection

(c) Pattern#0 - no pattern projection (d) Pattern#1 - repetitive dots

(e) Pattern#2 - leafs (f) Pattern#3 - repetitive lines

(g) Pattern#4 - randomly distributed and
sized lines

(h) Pattern#5 - randomly distributed and
sized dots

Fig. 4: Depth map results with several pattern projections on

region of interest (marked by green rectangle). The region of

interest, depth output and bilateral filtered depth results are

presented respectively from left to right (c-g).

provides up to 76 fps performance depending on the selected

resolution and disparity range as indicated in table I. The

system utilizes Fusion, Refinement, bilateral depth filtering

units accompanied with the artificial pattern projection in order

to efficiently eliminate depth noise including but not limited to

textureless regions. The end-user can easily configure the sys-

tem without hardware modification in terms of the resolution,

disparity range, filtering option and projected pattern by using

the PC. The cameras and the pico-projector are synchronized

to remove undesired Moiré interference effect. The projected

pattern brings about no interference issue to nearby systems

contrary to structured light based depth estimation systems.

Several artificial patterns are evaluated considering different

error metrics and the one providing the best result is chosen.

The experimental results verified that the proposed system

successfully improve the accuracy of the disparity in terms of

resolution, throughput and noise reduction performances. The

comparison between the proposed system and other similar

state-of-art depth estimation systems is presented in table III.
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System/
Property

Hierarchical
design [1]

RGBD
imager [2]

This work

Stereo type 3 views 3 views 2 or 3 views
Disparity range 32 pixels 64 pixels up to 256 pixels

Resolution 640x480 320x240 up to 2K

Frame rate 52 fps 30 fps (12-76 fps)1

TRT2 yes no yes

Depth filtering no no yes
Configurability no no yes

Platform Cyclone-IV Virtex-4 Virtex-7
1 It depends on the resolution and the disparity, refer to table I.
2 Textureless Region Tolerant.

TABLE III: The performance comparison with other similar

state-of-art depth estimation systems.
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