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Abstract—Communication structure plays a key role in the
learning capability of decentralized systems. Structural self-
adaptation, by means of self-organization, changes the order as
well as the input information of the agents’ collective decision-
making. This paper studies the role of agents’ repositioning on the
same communication structure, i.e. a tree, as the means to expand
the learning capacity in complex combinatorial optimization
problems, for instance, load-balancing power demand to prevent
blackouts or efficient utilization of bike sharing stations. The
optimality of structural self-adaptations is rigorously studied
by constructing a novel large-scale benchmark that consists of
4000 agents with synthetic and real-world data performing 4
million structural self-adaptations during which almost 320 bil-
lion learning messages are exchanged. Based on this benchmark
dataset, 124 deterministic structural criteria, applied as learning
meta-features, are systematically evaluated as well as two online
structural self-adaptation strategies designed to expand learning
capacity. Experimental evaluation identifies metrics that capture
agents with influential information and their optimal positioning.
Significant gain in learning performance is observed for the
two strategies especially under low-performing initialization.
Strikingly, the strategy that triggers structural self-adaptation
in a more exploratory fashion is the most cost-effective.

Index Terms—intelligence, learning, multi-agent system, com-
binatorial optimization, structure, adaptation, self-organization

I. INTRODUCTION

The rise of distributed pervasive intelligence in the Internet
of Things provides new unprecedented means to perform de-
centralized optimization and learning over communication net-
works [1]. Autonomous agents running on embedded devices
can collaboratively solve complex optimization and learning
problems without involvement of centralized third parties
that do not scale, are single points of failure, require trust
and privacy-sensitive data [2]. The critical role that structure
plays in conventional machine learning algorithms has been
earlier underlined, for instance, the number of layers in neural
networks or the dropout of neurons to prevent over-fitting [3],
[4]. However, little is known how communication structure
influences decentralized learning in multi-agent systems.

This paper fills this gap by studying fixed and dynamic
structural self-adaptations as the means of improving learning
performance in challenging decentralized combinatorial op-
timization problems. Fixed adaptations concern deterministic
criteria with which agents are repositioned within the same
communication structure. This influences the order and the
input information in agents’ collective decision-making. Dy-
namic adaptations concern a deterministic or random reposi-

tioning of agents during runtime to explore higher-performing
solutions and escape from suboptimal trapped solutions. A
novel methodology is introduced to study optimality of decen-
tralized collective learning under structural self-adaptations. It
relies on empirical data from real-world pilot projects for load-
balancing power demand and bike sharing stations.

The contributions of this paper are outlined as follows:
(i) A formal modeling approach of structural self-adaptation
as a bijection of isomorphic graphs. (ii) A comparison of
124 structural self-adaptation criteria used as meta-features to
improve offline or online learning performance. (iii) A model-
ing approach for designing online structural self-adaptations.
(iv) Two customizable structural self-adaptation strategies to
improve online learning performance. (v) A methodological
approach to study the optimality of large-scale combinatorial
optimization independent of data and application. (vi) An open
benchmark dataset [5] of synthetic and real-world data for op-
timality evaluation. It contains 4 million performance profiles
of structural self-adaptations generating almost 320 billion
learning interactions among 4000 agents. (vii) Findings on the
role of structural self-adaptations in learning aspects: optimal-
ity, application scenarios, network topology, self-adaptation
parameters as well as computational and communication cost.

This paper is outlined as follows: Section II positions this
work and Section III outlines related work. Section IV formal-
izes fixed and dynamic structural self-adaptations. Section V
and VI discuss each of them respectively. Two online structural
self-adaptation strategies are designed in Section VII. The
experimental methodology is outlined in Section VIII and
the experimental evaluation in Section IX. Finally, Section X
concludes this paper and outlines future work.

II. RESEARCH POSITIONING

This paper studies collective decision-making in multi-agent
systems, in which agents have a set of discrete options to
choose from. These options are resource consumption or
production plans that are used for resource scheduling and
allocation. For instance, a plan p can represent when a user
charges its electric vehicle [6], the household energy demand
over time, or the bike sharing stations from which a user picks
up a bike or leaves one [2]. In practice, plans are sequences
of real values. Each agent a has multiple plans Pa that model
the flexibility of the agent, its alternative options. Each agent
may have preferences over its plans measured by a local cost
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assigned to each plan. For instance, the distance of a user from
different bike sharing stations can measure the costs of plans.

An agent’s plan selection over the discrete planning options
can satisfy local and global objectives, which can often be
orthogonal to each other. Meeting local objectives is about
choosing the plan with the lowest local cost, while global
objectives concern the minimization of a global cost function
with input the aggregate of all selected plans, i.e. element-wise
summation. Agents can self-determine their preferences over
the two objectives. On the one hand, linear cost functions can
be minimized locally without coordinating the agents’ plan
selections. For instance, minimizing the total power demand
in the Smart Grid is a result of locally choosing the plan with
the lowest power demand. On the other hand, minimization
of quadratic cost functions, such as the minimization of vari-
ance, is a challenging non-convex combinatorial optimization
problem that is NP-hard with complexity O(kN), where k is
the number of plans per agent and N is the total number
of agents [7], [8], [2]. Coordination between the agents’
plan selections is required. The variance is used in this
paper as a balancing indicator, e.g. lowering power peaks
to prevent blackouts [9] or preserving a uniform number of
bikes available at all bike sharing stations [2]. Methods that
parallelize computations are one approach to solve such com-
plex computational problems, for instance, BnB-ADOPT [10],
NCBB [11] and DPOP [12]. However, such methods require
universal access to agents’ information and therefore they are
not designed for decentralized multi-agent systems preserving
agents’ privacy and autonomy.

The alternative approach is to introduce a self-organzing
communication structure that orchestrates in a cooperative and
decentralized way searching of the combinatorial space [13].
This paper studies the role of such an agents’ structure in
performance. It focuses on a certain structural self-adaptation
that is the repositioning of the agents in a fixed topology as the
means to explore the combinatorial solutions space. Agents’
positioning governs the input information from other agents
based on which plan selections are made. In hierarchical
structures such as trees, agents often interact in a bottom-up
and top-down fashion [14]. The agents’ positioning governs
the order of decision-making. A certain sequence of decision-
making is a actually a coordination pattern: a traversal of the
combinatorial solutions space. Different traversal strategies,
i.e. criteria of agents’ positioning, may be trapped in different
suboptimal solutions with different performance status.

It is fair to underline the challenge of determining causal
relationships between performance and structure. Algorithmic
artifacts introduce biases that are hard to distinguish from the
role that the underlying structure plays. Given this challenge,
this paper studies the decentralized collective learning system
of I-EPOS1, the Iterative Economic Planning and Optimized
Selections [2], [15]. The interactive agents of I-EPOS self-
organize in tree communication structures to coordinate plan
selections. The exact mechanics of this coordination is subject

1Available at http://epos-net.org (last accessed: March 2019).

of earlier work [2]. The structural self-adaptations studied
in this paper are independent of I-EPOS that is used as a
black box and a benchmark scenario given the following:
(i) High efficiency2 as shown in comparisons with state of
the art algorithms [2], [16], [17]. A high performance profile
provides isolation of the performance analysis on structure,
while inefficiencies by other algorithmic design choices are
minimized. (ii) The core of the algorithm does not rely on
exploration3. Therefore the effect of structural self-adaptation
as an exploration strategy can be easier isolated and studied.

III. RELATED WORK

There is evidence that structure plays a key role in explo-
ration as certain topological properties support more effec-
tive communication and information diffussion [18]. Agents’
coordinated communication in reinforcement learning can be
dynamically adapted to regulate learning performance and
communication cost in distributed constraint optimization
problems [19]. Similarly, performance of reinforcement learn-
ing can be improved by self-organizing agents into a super-
visory network on top of an agents’ learning network. The
latter is structured in dynamically formed groups via agents’
negotiation [20]. Structure may change as a result of network
uncertainties such as network failures, latency and limited
computational resources. Loss of learning performance as a
result of such structural changes can be mitigated by localizing
the learning process in part of a surviving network [21].

All aforementioned approaches involve (self-)organizational
changes to improve learning performance, i.e. topological
changes are performed. In contrast, this paper studies the
agents’ relative repositioning over a fixed network and how it
influences learning performance. Therefore, the scope of this
paper has a more foundational character, while the findings
illustrated are expected to provide new insights on the design
of self-organization mechanisms for collective intelligence.

The agents’ positioning in a fixed learning structure can
also be seen as an initialization problem of machine learning
algorithms such as choosing the number of clusters and initial
centroids in k-means that may result in slow convergence
and empty clusters [22]. Bootstrapping solutions have been
studied in this context [23]. Oscillating neural networks around
optimal solutions may be a result of exploding gradients
caused by high initializing weights [24], [25], instead of
more random ones around zero [26]. It has also been shown
that linearly non-separable data require hidden layers between
input and output layers [27], while more than three hidden
layers do not improve the learning performance of a feed-
forward multi-layer perceptron [4]. Finally, adaptation of a

2The cost-effectiveness of I-EPOS is characterized by the following [2]:
convergence to very few iterations, solutions of monotonously decreasing cost
during convergence, minimal communication cost at each learning iteration,
minimal low-overhead and privacy-preserving information exchange, i.e. only
aggregated plans are exchanged between agents. This cost-effectiveness is
feasible because of the tree communication structure [12] that can be used
to perform (i) efficient aggregation of the selected plans (N − 1 exchanged
messages) and (ii) incremental decision-making used for coordination, i.e. an
agent selects a plan based on the selected plans of its descendants.

3Well-performing but suboptimum trapped solutions are found.

http://epos-net.org


neural network structure to the dimensionality of training
data is critical to generalize and prevent over-fitting [3].
Applying these findings in the context of multi-agent systems
and decentralized learning over networks with uncertainties is
challenging and subject of ongoing research.

IV. STRUCTURAL SELF-ADAPTATION

Structural self-adaption is the repositioning of a set of agents
A in a fixed tree topology and can be formalized as a bijection
of isomorphic graphs:

Definition 1 (Bijection). Let two tree graphs G and H having
each a set of vertices V (G), V (H) and edges E (G), E (H)
such that |V (G)| = |V (H)| = |A| = N and |E (G)| =
|E (H)| = N − 1. A bijection b between the vertex sets of
graphs G and H is defined as b : V (G) → V (H) such that
two vertices v and w are adjacent in G if and only if vertices
b (v) and b (w) are adjacent in H.

Definition 2 (Isomorphism). A graph H obtained by a
bijection b on graph G is an isomorphic graph to G ' H.

These definitions determine a fixed tree topology for the
graphs G and H, whose vertices host agents in different
relative positions. There are |B| = N! possible bijections,
where B denotes all possible bijections on G. Two bijection
types are distinguished: (i) Fixed: These concern the agents’
positioning according to deterministic criteria. This paper
reviews 124 criteria derived from metrics that measure features
of the agents’ plans. They are used to sort agents in an
ascending or descending order and position agents in the tree
in a bottom-up breadth-first manner. Fixed bijections can be
compared to show how different metrics with which sorting
is performed influence learning performance. (ii) Dynamic:
These concern the random or deterministic repositioning of
the agents during learning runtime as the means to perform
exploration of the solutions space so that learning performance
improves by escaping from suboptimal trapped solutions. Four
design elements model dynamic bijections and they are used
to construct two online structural self-adaptation strategies.

In a decentralized environment in which each agent has
a partial view of other agents, bijections of isomorphic tree
graphs can be applied with two approaches: (i) migration and
(ii) self-organization. Migration is the transfer of a piece of
software and its state from one host to another. Migrations
are earlier applied to multicasting trees and wireless sensor
networks [28]. They have the advantage that no topological
changes are required in the communication network, i.e. TCP
connections are preserved. However, software migrations pose
security challenges and may consume significant bandwidth
resources. On the other hand, self-organization preserves
the software locality, while the parent-child connections are
adapted via a communication protocol. AETOS, the Adaptive
Epidemic Tree Overlay Service is an example of such a self-
organization mechanism [29]. Agents realize a bijection by
interacting with each other to discover their new parent and
children without any centralized mediating trusted party. A

new pairing of two agents can be determined by their proxim-
ity e.g. Euclidean distance, between the ranking score of the
two agents. The ranking score is calculated by deterministic
metrics, i.e. Table I, or by a random score assignment, in case
of an exploration. Decentralized building and maintenance of
tree topologies has been extensively studied in earlier work
with applications covering multimedia multicasting [30] and
distributed databases [31]. In contrast, this paper focuses on
(i) the impact of agents’ repositioning on the learning perfor-
mance by self-organization as well as (ii) how repositioning
can be triggered to improve learning performance. These
challenges are not addressed in earlier work. They are the
subject and contributions of this paper.

V. FIXED BIJECTIONS

Fixed bijections are a subset of B and they are applied by
executing the following steps: (1) Determine agents’ infor-
mation based on which the ranking score is calculated. (2)
Determine a metric to represent the agents’ information of
Step 1. (3) Calculate the ranking score of each agent with the
metric of Step 2. (4) Reposition and sort agents in a bottom-up
breadth-first manner according to their ranking score.

In Step 1, agents may determine their ranking score based
on the following: (i) the plans, (ii) the plan costs or (iii) their
preferences on the global vs. local objective. This paper fo-
cuses4 on the plans to limit the number of studied dimensions.

Step 2 determines plan representations based on which
isomorphic tree graphs are generated. Such representations
are meta-features measuring deterministic plan characteristics.
Table I introduces 62 metrics some of which include the fol-
lowing5: minimum and maximum value of the possible plans,
several correlation coefficients, metrics based on discrete sine
and cosine transformations of the possible plans as well as
metrics based on the Fourier transformation.

Next in Step 3, agents use the selected metrics to calculate
their ranking score with which a proximity between agent pairs
can be determined, e.g. Euclidean distance.

Finally, in Step 4, self-organization mechanisms, such as
AETOS [29], use the agents’ proximity information to repo-
sition agents on the same balanced tree by sorting them in a
bottom-up breadth-first manner as shown in Figure 1. Agents
can be positioned in both ascending and descending order.

Figure 1: Bottom-up, breadth-first in a balanced tree.
4Plan costs are often derived from the plans, therefore, the focus on

the plans is more generic. Determining different agents’ preferences biases
learning performance, i.e. trade-offs between global and local objectives [2].
Therefore, plan costs and preferences are left for future work.

5corrp, corrk and corrs denote the Pearson, Kendal and Spearman
correlation coefficient respectively. DST 1, DST 2 and DST 3, and respectively
dst1, dst2, dst3, indicate discrete sine transformation of type 1, 2 and 3.
Similarly, DCT 1, DCT 2 and DCT 3, and respectively dct1, dct2, dct3,
indicate discrete cosine transformation of type 1, 2 and 3.



Table I: Reference list of structural self-adaptation metrics used as meta-features to improve learning performance. The mean
operator µ· (·) iterates over the subscript elements, while σ(·) indicates the standard deviation and × the Cartesian product.

Display Name Full Name Formula

avg-stdev average standard
deviation µp∈Pa (σ (p))

max-stdev maximal standard
deviation max

p∈Pa

σ (p)

min-stdev minimal standard
deviation min

p∈Pa

σ (p)

max-value maximum value max
p∈Pa,j=1,...,d

pj

min-value minimum value min
p∈Pa,j=1,...,d

pj

avg-corr-pearson average Pearson
coefficient µp1,p2∈Pa×Pa

(
µj=1,...,d

(
corrp (p1,p2)j

))
avg-corr-kendall average Kendall

coefficient µp1,p2∈Pa×Pa

(
µj=1,...,d

(
corrk (p1,p2)j

))
avg-corr-spearman average Spearman

coefficient µp1,p2∈Pa×Pa

(
µj=1,...,d

(
corrs (p1,p2)j

))
max-avg-corr-pearson max average Pearson

coefficient max
p1,p2∈Pa×Pa

µj=1,...,d

(
corrp (p1,p2)j

)
max-avg-corr-kendall max average Kendall

coefficient max
p1,p2∈Pa×Pa

µj=1,...,d

(
corrk (p1,p2)j

)
max-avg-corr-spearman max average Spearman

coefficient max
p1,p2∈Pa×Pa

µj=1,...,d

(
corrs (p1,p2)j

)
min-avg-corr-pearson min average Pearson

coefficient min
p1,p2∈Pa×Pa

µj=1,...,d

(
corrp (p1,p2)j

)
min-avg-corr-kendall min average Kendall

coefficient min
p1,p2∈Pa×Pa

µj=1,...,d

(
corrk (p1,p2)j

)
min-avg-corr-spearman min average Spearman

coefficient min
p1,p2∈Pa×Pa

µj=1,...,d

(
corrs (p1,p2)j

)
avg-max-corr-pearson average max Pearson

coefficient µp1,p2∈Pa×Pa

(
max

j=1,...,d
corrp (p1,p2)j

)
avg-max-corr-kendall average max Kendall

coefficient µp1,p2∈Pa×Pa

(
max

j=1,...,d
corrk (p1,p2)j

)
avg-max-corr-spearman average max Spearman

coefficient µp1,p2∈Pa×Pa

(
max

j=1,...,d
corrs (p1,p2)j

)
avg-min-corr-pearson average min Pearson

coefficient µp1,p2∈Pa×Pa

(
min

j=1,...,d
corrp (p1,p2)j

)
avg-min-corr-kendall average min Kendall

coefficient µp1,p2∈Pa×Pa

(
min

j=1,...,d
corrk (p1,p2)j

)
avg-min-corr-spearman average min Spearman

coefficient µp1,p2∈Pa×Pa

(
min

j=1,...,d
corrs (p1,p2)j

)
max-corr-pearson max Pearson

coefficient max
p1,p2∈Pa×Pa

min
j=1,...,d

corrp (p1,p2)j

max-corr-kendall max Kendall
coefficient max

p1,p2∈Pa×Pa

min
j=1,...,d

corrk (p1,p2)j

max-corr-spearman max Spearman
coefficient max

p1,p2∈Pa×Pa

min
j=1,...,d

corrs (p1,p2)j

min-corr-pearson min Pearson
coefficient min

p1,p2∈Pa×Pa

min
j=1,...,d

corrp (p1,p2)j

min-corr-kendall min Kendall
coefficient min

p1,p2∈Pa×Pa

min
j=1,...,d

corrk (p1,p2)j

min-corr-spearman min Spearman
coefficient min

p1,p2∈Pa×Pa

min
j=1,...,d

corrs (p1,p2)j

avg-dct1-coeff average DCT 1
coefficient µp∈Pa

(
µj=1,...,d

(
dct1 (p)j

))
avg-dct2-coeff average DCT 2

coefficient µp∈Pa

(
µj=1,...,d

(
dct2 (p)j

))
avg-dct3-coeff average DCT 3

coefficient µp∈Pa

(
µj=1,...,d

(
dct3 (p)j

))
max-dct1-coeff max DCT 1 coefficient max

p∈Pa

max
j=1,...,d

dct1 (p)j

Display Name Full Name Formula

max-dct2-coeff max DCT 2 coefficient max
p∈Pa

max
j=1,...,d

dct2 (p)j

max-dct3-coeff max DCT 3 coefficient max
p∈Pa

max
j=1,...,d

dct3 (p)j

min-dct1-coeff min DCT 1 coefficient min
p∈Pa

min
j=1,...,d

dct1 (p)j

min-dct2-coeff min DCT 2 coefficient min
p∈Pa

min
j=1,...,d

dct2 (p)j

min-dct3-coeff min DCT 3 coefficient min
p∈Pa

min
j=1,...,d

dct3 (p)j

avg-max-dct1-coeff average max DCT 1
coefficient µp∈Pa

(
max

j=1,...,d
dct1 (p)j

)
avg-max-dct2-coeff average max DCT 2

coefficient µp∈Pa

(
max

j=1,...,d
dct2 (p)j

)
avg-max-dct3-coeff average max DCT 3

coefficient µp∈Pa

(
max

j=1,...,d
dct3 (p)j

)
avg-min-dct1-coeff average min DCT 1

coefficient µp∈Pa

(
min

j=1,...,d
dct1 (p)j

)
avg-min-dct2-coeff average min DCT 2

coefficient µp∈Pa

(
min

j=1,...,d
dct2 (p)j

)
avg-min-dct3-coeff average min DCT 3

coefficient µp∈Pa

(
min

j=1,...,d
dct3 (p)j

)
avg-dst1-coeff average DST 1

coefficient µp∈Pa

(
µj=1,...,d

(
dst1 (p)j

))
avg-dst2-coeff average DST 2

coefficient µp∈Pa

(
µj=1,...,d

(
dst2 (p)j

))
avg-dst3-coeff average DST 3

coefficient µp∈Pa

(
µj=1,...,d

(
dst3 (p)j

))
max-dst1-coeff max DST 1 coefficient max

p∈Pa

max
j=1,...,d

dst1 (p)j

max-dst2-coeff max DST 2 coefficient max
p∈Pa

max
j=1,...,d

dst2 (p)j

max-dst3-coeff max DST 3 coefficient max
p∈Pa

max
j=1,...,d

dst3 (p)j

min-dst1-coeff min DST 1 coefficient min
p∈Pa

min
j=1,...,d

dst1 (p)j

min-dst2-coeff min DST 2 coefficient min
p∈Pa

min
j=1,...,d

dst2 (p)j

min-dst3-coeff min DST 3 coefficient min
p∈Pa

min
j=1,...,d

dst3 (p)j

avg-max-dst1-coeff average max DST 1
coefficient µp∈Pa

(
max

j=1,...,d
dst1 (p)j

)
avg-max-dst2-coeff average max DST 2

coefficient µp∈Pa

(
max

j=1,...,d
dst2 (p)j

)
avg-max-dst3-coeff average max DST 3

coefficient µp∈Pa

(
max

j=1,...,d
dst3 (p)j

)
avg-min-dst1-coeff average min DST 1

coefficient µp∈Pa

(
min

j=1,...,d
dst1 (p)j

)
avg-min-dst2-coeff average min DST 2

coefficient µp∈Pa

(
min

j=1,...,d
dst2 (p)j

)
avg-min-dst3-coeff average min DST 3

coefficient µp∈Pa

(
min

j=1,...,d
dst3 (p)j

)
sum-of-0-dft-coeff sum of 0th DFT

coefficient

∣∣∣∑p∈Pa
F (p)0

∣∣∣
max-of-0-dft-coeff max of 0th DFT

coefficient

∣∣∣∣max
p∈Pa

F (p)0

∣∣∣∣
sum-non0-dft-coeff sum of non-0th DFT

coefficient

∣∣∣∑p∈Pa

∑
j=1,...,d F (p)j

∣∣∣
max-non0-dft-coeff max of non-0th DFT

coefficient

∣∣∣∣max
p∈Pa

max
j=1,...,d

F (p)j

∣∣∣∣
sum-all-dft-coeff sum of DFT coefficient

∣∣∣∑p∈Pa

∑
j=1,...,d F (p)j

∣∣∣
avg-stdev-dft-coeff average std dev

of DFT coefficients
∣∣µp∈Pa (σ (F (p)))

∣∣

To incept the impact of fixed bijections on learning perfor-
mance consider a sequence of consecutive agents’ decisions
that progresses from the leaves up to the root. Each agent that
performs its plan selection coordinates with the other agents
underneath, i.e. takes into account the aggregate selected plans
of these agents. Assume an agent with highly influential plans
in the sense that when these plans aggregate with the plans of
other agents, the global cost explodes. This can be because of
plans with extreme oscillations or plans, whose mean value is
significantly higher than the one of the other agents. The closer
to the root this agent with the influential plans is, the lower
the likelihood to adjust the aggregate selections of the agents

underneath. This is because the number of the remaining
agents above decreases and the remaining plan selections may
not be enough to lower down the global cost. Therefore,
learning performance can potentially improve if this agent is
positioned at the bottom part of the tree to preserve a higher
number of agents above to compensate and eventually drop
down the global cost.

VI. DYNAMIC BIJECTIONS

A structural self-adaptation via a bijection initializes a new
learning phase in which learning performance improves fur-
ther. Four design elements are introduced to model strategies



for structural self-adaptations: (i) A mechanism to realize a
bijection. (ii) A memory scheme of solutions for initializing
the next learning phase. (iii) A criterion to trigger structural
self-adaptation. (iv) A bijection type to apply.

A. Realizing a bijection

Agents can realize themselves a structural self-adaptation
without relying on a trusted third party. Assuming agents can
execute a migration [28] or self-organization service such as
AETOS [29], this execution can be independently triggered
by each I-EPOS agent based on system-wide criteria. For
instance, the global cost, i.e. variance, is calculated using the
final aggregate plan propagated during the top-down phase of
each learning iteration. This approach assumes common crite-
ria for all agents, otherwise agents need to reach consensus of
when to perform the bijection. Such consensus can be reached
via, for instance, voting mechanisms, which are broadly used
in distributed ledgers and blockchain technologies [32].

A migration or self-organization service can also been seen
as a black box: Each agent provides as input its ranking score
as well as its current children and parent, while it receives
as output the respective new ones. Aggregate plans become
outdated by establishing a new structure. Descendants change
and the learning process requires reinitialization. Nevertheless,
the selected plans at an earlier learning phase remain valid
and represent a (good) found solution. Therefore, the learning
process with the new agents’ positioning can be initialized
with these plans, instead of default random ones, to explore
whether this previous solution can be further improved while
preventing performance degradation. Structural self-adaptation
can be triggered multiple times to explore the solution space
until one or more conditions are met, e.g. the global cost
is lower than some threshold or until a maximal number of
learning iterations is performed.

B. Reinitialization via short-term vs. long-term memory

After structural self-adaptation, a new learning process
is initialized with selected plans from the earlier learning
phase. A (i) short-term and (ii) long-term memory scheme are
introduced that assume limited resources: memory is bounded
to the storage of a single earlier selected plan.

Short-term memory restores the selected plans from the last
iteration of the earlier learning phase. Long term memory
restores the selected plans from an iteration of the earlier phase
determined by a fixed memory offset. This offset is the learning
iteration on which the selected plans are memorized. For in-
stance, agents with an offset of 3, memorize the selected plans
at the 3rd iteration, which are restored at iteration 0 of the next
learning phase. An offset equals to the convergence iteration
is equivalent to short-term memory. Different offset values are
studied in this paper provided as learning parameters.

While short-term memory memorizes the selected plans of
a suboptimal trapped solution found on convergence, long-
term memory sacrifices6 learning performance as the means

6This performance sacrifice can be prevented by memorizing selected plans
from a larger number of iterations.

to escape from this trapped solution and potentially discover
a better performing one at the next learning phase. Between
consecutive learning phases with offset > 0, the global cost
is monotonically non-increasing: at least as low as the one of
the offset iteration during the previous learning phase.

C. Criteria to trigger structural self-adaptation

Two criteria for triggering structural self-adaptation are
introduced: (i) convergence and (ii) global cost reduction.

The convergence criterion triggers structural self-adaptation
when convergence is reached, i.e. when the global cost in
two consecutive iterations remains the same. The criterion
of global cost reduction triggers a structural self-adaptation
when global cost drops below a certain threshold, provided
as system parameter. This threshold represents a sufficient
decrease of the global cost measured by the slope. The higher
the slope, the higher the global cost reduction. Consequently,
larger reduction steps are still in progress and further learning
iterations are required for convergence. On the contrary, when
the slope is low, global cost reduction decreases and as a
result learning approaches convergence. The slope is measured
by the relative difference between the global cost G(t) and
G(t−1) of two consecutive learning iterations t and t − 1:
s = G(t−1)−G(t)

G(t−1) . The absolute difference between the global
costs at two consecutive iterations w = G(t−1) − G(t) is
referred to as a residual. The slope and the respective threshold
receive values in the range [0, 1]. A threshold value of 0
prohibits structural self-adaptation, while a value of 1 forces
such self-adaptation every two iterations, given that a current
and a previous iterations are required to compute a residual.

D. Bijection types

Two bijection types are distinguished: (i) deterministic and
(ii) random. Deterministic bijections are the ones generated
with metrics such as the ones of Table I. These metrics
calculate the ranking score of the agents based on which
sorting is performed. Determining the effectiveness of deter-
ministic bijections in online structural self-adaptations is not
straightforward as it highly depends on the memory scheme
employed as well as the shape of the combinatorial landscape,
i.e. the plans and their cost. Therefore, offline deterministic
bijections are studied to understand their primitive role on
learning performance before moving to an online context that
is subject of future work. Random bijections are generated
by assigning a random ranking score to each agent. Based on
this random score, the self-organization service returns a repo-
sitioning of the agents, a bijection b ∈ B. Random bijections
are used during the learning runtime as an exploratory strategy
to escape from suboptimum trapped solutions.

VII. ONLINE STRUCTURAL SELF-ADAPTATION

Figure 2 introduces two online structural self-adaptation
strategies based on dynamic bijections.

Figure 2a illustrates the strategy based on the convergence
criterion with long-term memory. It is shown for an offset
of 2. Convergence is detected on the 5th iteration triggering
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(a) Convergence criterion with long-
term memory.
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(b) Global cost criterion with short-
term memory.

Figure 2: The two online structural self-adaptation strategies.

structural self-adaptation. The new learning phase begins on
the 6th iteration initialized by the selected plans of the 2nd

iteration as indicated by the vertical dotted line. The process
repeats until the 13th iteration when the algorithm terminates.
The termination condition is the detection of convergence
before reaching the offset iteration.

Figure 2b shows the strategy based on the global cost
reduction criterion with short-term memory. A threshold of
25% is marked by horizontal pointers between the bars of
two consecutive iterations. The residual on the 1st iteration
is higher than the 25% threshold that prevents self-adaptation.
The slope drops below threshold on the 2nd iteration triggering
self-adaptation. The new learning phase is initialized on the
3rd iteration with the selected plans of the 2nd iteration
indicated by the vertical dotted line. Note the preservation of
the global cost reduction. The strategy criterion is met next on
the 6th iteration. Termination is detected on the 9th iteration
when no change in the slope is observed.

VIII. EXPERIMANTAL METHODOLOGY

This section introduces the evaluation methodology of fixed
and dynamic bijections. The employed synthetic and real-
world datasets are discussed, followed by the parameterization
of I-EPOS and the studied variables, i.e. number of children.
A novel evaluation methodology is introduced for assessing
the optimality of the solutions independent of the employed
dataset. This methodology allows the systematic evaluation of
the online strategies for structural self-adaptation.

A. Synthetic and real-world datasets

Table II outlines the datasets [33] and the main experimental
settings. A synthetic dataset with plan values drawn from a
Normal distribution is used as well as two real-world datasets7

from pilot projects [2]: (i) Energy–This dataset is a disaggre-
gation result of the zonal power transmission system in the
Pacific Northwest Smart Grid demonstration project [34]. The
first plan is the original disaggregated load. The following
three plans are computed by the SHUFFLE plan generation
scheme that randomly shuffles the values of the first plan. The
next three plans are computed by the SWAP-15 generation
scheme that randomly selects 15 pairs of values to swap.

7A third real-world dataset is made available [33]. It concerns the charging
power consumption of electric vehicles and the planning methodology is
introduced in earlier work [6]. This paper focuses on the synthetic, energy
and bicycle datasets due to space limitations.

The final three plans are generated respectively via SWAP-
30. Consequently, the mean and the standard deviation of
all possible plans are equal for each agent. (ii) Bicycle–This
dataset consists of the trip records of the Hubway bike sharing
system in Paris [2]. Trips match to users via the data fields of
zip code, year of birth and gender. Each plan value measures
the difference in the number of incoming and outgoing trips at
a bike station. For example, if a user cycled between stations
1 and 3, the corresponding possible plan is {−1, 0, 1, 0, ...}.
Different trips of a user are encoded as different possible plans.

Table II: An outline of the datasets and experimental settings.

Parameter Datasets [33]

Bicycle Energy Synthetic

Global cost function minimization of variance
Tree type default: binary Hb, ∀b ∈ S

Number of agents N = 1000 N = 1000 N = 1000
Number of plans |Pa| ≤ 23,∀a ∈ A |Pa| = 10, ∀a ∈ A |Pa| = 16, ∀a ∈ A
Dimension of plans d = 98 d = 144 d = 100
Number of iterations T = 40 T = 40 T = 40

B. Collective learning parameterization

I-EPOS runs by default on a binary balanced tree. A varied
number of children, from 2 to 14, is evaluated for fixed
bijections. A higher number of children for each agent results
in more informed plan selections, however, the number of
leaves that make plan selections without information from
descendants increases: for a balanced binary tree with 1000
agents, the number of leaves is 500 (50%), whereas for a 14-
ary balanced tree, the number of leaves is 928 (92.8%). I-
EPOS minimizes the global cost function that is the variance
used as a balancing criterion: reducing the power peaks and
load-balancing the utilization of the bike sharing stations. To
stretch the collective learning performance, only the global
cost function is optimized and therefore the I-EPOS parameter
of λ = 0 ignores the local cost function.

C. Evaluation approach for optimality

The empirical evaluation of optimality concerns the ranking
of the found solution in terms of global cost out of all possible
solutions in the combinatorial space that is kN. As the scale of
the combinatorial space explodes for a high number of plans
and agents, such an evaluation is particularly challenging.
Earlier work limits the optimality evaluation to a low number
of agents and plans per agent, e.g. kN = 220 = 410 [2].
This paper contributes an alternative approach that constructs
a representative sample of potentially8 high-performing solu-
tions using I-EPOS operating with random bijections applied
on isomorphic tree graphs. This approach has the following
advantages9: (i) A profiling of high-performing solutions for
different datasets using the same learning methodology, I-
EPOS, without employing other heuristics or brute-force.
(ii) An efficient computation of a large number of random

8The assumption of sampling high-performing solutions is supported by
evidence of the I-EPOS optimality when compared to brute-force search [2].

9The more naive approach of sampling solutions by random plan selections
is not considered as these solutions are not result of any optimization in
contrast to solutions derived by random bijections applied to I-EPOS.



bijections and their learning performance is feasible and can
be performed offline using parallel batch processing.

A benchmark dataset is generated using the aforementioned
approach with both deterministic and random bijections ap-
plied to I-EPOS. This dataset [5] is a contribution of this paper
and it can be used to encourage and support further research on
combinatorial optimization and learning. A total of 1 million
(|S| = 106) random bijections10 are generated for each dataset.
I-EPOS runs for 40 iterations with each of these bijections. In
total, 106 bijections ∗ 4 datasets ∗ 40 iterations ∗ (1000− 1)
∗ 2 messages per iteration calculate the total of ≈ 320 billion
learning messages. I-EPOS instances run in parallel in their
own Java virtual machine on a Hetzner dedicated server11.

The performance profiling of the solutions discovered via
random bijections depends on the application, i.e. the data
values of the plans. The ranking of the solutions, according
to global cost, can be generalized by calculating instead the
percentile12 in which a solution is found. This method assumes
a common distribution of the global cost among the different
datasets. To test this assumption, the global cost is modeled
as a random variable X that has unknown distribution but is
dependent on the random bijections B.

At first the probability density function of X is estimated
in a non-parametric way13 using the kernel density estimation
fed with the global cost of I-EPOS for all isomorphic graphs
of S. A Gaussian kernel is used with a bandwidth suggested in
earlier work [35]: n−

1
5 , which is equal to 0.0631 for n = 106.

Next the global cost as a random variable X is modeled
by a Gaussian distribution with unknown expectation and
variance that are estimated using the mean (50th percentile)
and variance of the global costs from the benchmark dataset.

If the non-parametric kernel density estimation matches the
parametric one, the learning performance based on percentiles
can be reliably compared among the different datasets. With
this methodology, the optimality of deterministic bijections
can be rigorously studied by generalizing and linking their
performance profile to the performance percentiles of random
bijections. For each of the 62 metrics of Table I, two bijections
are applied, each of them sorts agents in ascending and
descending order. From the total of 124 fixed bijections, 39 of
them are selected for illustration in this paper.

10In total 1000! possible bijections that is roughly 4.024 · 102567.
1120 parallel JVMs are deployed on a 3.5GHz CPU, 32GB RAM, 4TB HD

Hetzner machine: https://www.hetzner.com (last accessed: March 2019). Each
JVM runs I-EPOS with a random bijection. Execution lasted several months.

12It represents how close the global cost, obtained with a certain isomorphic
tree graph, is to the minimum one over the 1 million isomorphic tree graphs
generated. Percentiles receive values in the range [0, 1]. A percentile value can
be placed in a 3-D vector space with each axis corresponding to a dataset.
Isomorphic tree graphs closer to the origin of this space result in a lower
overall global cost over the three datasets. The distance to the origin can be
calculated with the Euclidean distance between the two points (x1, y1, z1)
and (x2, y2, z2) as

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, where the

coordinates represent the global cost for each dataset.
13Non-parametric estimation makes no assumptions on the underlying

distribution, hence it has no parameters.

D. Evaluation approach for self-adaptation strategies

For the evaluation of the two structural self-adaptation
strategies, I-EPOS is initialized with three random isomor-
phic tree networks corresponding to the 10th, 50th and 90th

percentile referred to as baselines, while a structural self-
adaptation is triggered with a sample of an isomorphic tree
graph from the whole set B. Due to the random sampling
involved, the execution of the two strategies repeats 100 times.
Their learning performance is evaluated with the average
relative improvement in the global cost reduction between the
baselines and the strategies over all repetitions. A positive
relative improvement results in higher learning performance
by the strategies compared to the baselines, while a negative
one results in a lower learning performance respectively. The
memory offset and the threshold for each of the two strategies
vary in the range [1, 20] and [0.1, 0.9] respectively, with a step
0.1 for the latter. The total learning runtime is 100 iterations
during which structural self-adaptations are performed.

Controlling the number of structural self-adaptations is
critical for the cost-effectiveness of learning. Repositioning
agents requires communication and computational cost, e.g.
AETOS introduces interactions between agents to discover and
connect the parent and child with the closest proximity [29].
The two strategies are also compared in terms of the number
of self-adaptation they perform until termination.

IX. EXPERIMANTAL EVALUATION

This section validates the methodology for assessing learn-
ing optimality with isomorphic tree graphs followed by the
evaluation of fixed and dynamic bijections.

A. Learning optimality with isomorphic tree graphs

The one million isomorphic graphs are sorted from high to
low according to the global cost at convergence14 for each
dataset and are shown in Figure 3a, 3b and 3c. The following
observations can be made: (i) The shape of all sorted solutions
is similar among datasets, i.e. very few solutions at extremes
while the majority decreases linearly. (ii) The solutions shape
resembles the ones obtained for small-scale networks via
brute-force as shown in Figure 21 and 22 of earlier work [2].
(iii) There is accurate correspondence of the percentiles among
the different datasets. (iv) The global cost reduction compared
to the maximal observed value is 58.6%, 71.2%, 65.07% for
the synthetic, energy and bicycle dataset respectively.

The parametric and non-parametric global cost distributions
obtained with random isomorphic graphs are compared in
Figure 3d, 3e and 3f for each dataset.

The expectation and variance of the parametric Gaussian
distribution are estimated using the benchmark dataset
constructed as follows: Xs ∼ N

(
µ = 3.1989, σ2 = 0.0771

)
,

Xe ∼ N
(
µ = 0.0913, σ2 = 0.0001

)
and Xb ∼

N
(
µ = 0.4981, σ2 = 0.0044

)
for the synthetic, energy

and bicycle dataset respectively. The kernel density estimator

14On average, convergence occurs at the 13th, 24th, and 31st iteration for
the synthetic, energy and bicycle datasets respectively.
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Figure 3: Performance profiling of 106 random bijections.

approximates very closely the parametric densities in all
three datasets without making any assumptions about the
underlying data and therefore it holds that X ∼ N

(
µ, σ2

)
.

B. Learning performance with fixed bijections

Figure 4 illustrates the learning performance of the 39
selected metrics, listed in an ascending order12. Note that
metrics such as ASC-min-corr-pearson or ASC-min-dst1-coeff have
high performance in all three datasets and they are likely
to capture fundamental structural characteristics influencing
collective learning. The metric DESC-min-value reaches the
25th percentile, while its ascending version reaches the 51st

percentile. This confirms the earlier intuition about the higher
impact of agents with influential plan values when placed
closer to the root. Note also the avg-min-dst1-coeff metric: it re-
sults in the highest performance of the 5th percentile for agents
sorted in descending order with a standard deviation of 0.004
among datasets indicating consistent behavior. In contrast, the
ascending version of this metric results in one of the lowest
performing solutions close to 73rd percentile. Respectively,
the min-dst1-coeff metric is on the 24th and 76th percentile for
descending and ascending order. This polarization on sorting
is also observed for avg-min-dst3-coeff and min-dct3-coeff.

Overall, averaging metrics do not usually perform well or
they are around the mean percentile. Discrete sine and cosine
transformations may result in alternating positive and negative
values that average to zero causing information loss. Instead,
metrics that rely on minimal or maximal values convey more
information. The ascending order maximizes or minimizes
performance and vice versa for the descending order.

Figure 5 illustrates the optimality of fixed bijections under
a varying number of children in the range [2, 14]. Although
structure does not show large influence on the synthetic and
energy dataset, for the bicycle dataset with sparser plans [2]
the agents’ positioning plays a more significant role. The
following observations can be made for the bicycle dataset:
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Figure 4: Learning performance of selected metrics for fixed
bijections sorted according to the global cost obtained with all
three datasets.

(i) On average, the learning performance improves for all
metrics by increasing the number of children per agent. (ii)
The impact of the agents’ positioning is significantly higher
for a binary tree as a higher deviation is observed among the
metrics compared to trees with more than 8 children per agent.

C. Learning performance with dynamic bijections

Figure 6 compares the two online strategies for different
datasets, baseline percentiles, memory offsets and thresholds.
The optimality of the initial tree structure significantly in-
fluences learning performance. Starting from the 10th per-
centile, self-adaptations are likely to decrease performance,
nevertheless, to a low extent and there are cases in which
performance improves as indicated by the area representing
the standard deviation. In contrast, the 90th percentile results
in significantly lower global cost. The 50th percentile shows a
low performance improvement, mainly for the bicycle dataset.
Note though that in case improved solutions are memorized
or highly performing fixed bijections are applied, as shown in
Section IX-B, learning performance can further improve.

The following observations can be made for the two strate-
gies: (i) On average, the relative improvement of the con-
vergence criterion with long-term memory is −0.3%, 0.33%
and 11.01% for the bicycle, energy and synthetic datasets
respectively. For the global cost reduction criterion with short-
term memory the respective numbers are −1.7%, 0.13% and
7.03%. (ii) High memory offsets favor initialization with a
highly performing tree structure (10th percentile), while low
memory offsets favor initialization with a low performing
tree (90th percentile). The likelihood of improving further a
high-performing learning structure is lower unless solutions
close to convergence are memorized. On the other hand,
low-performing learning structures benefit from exploration
with low memory offsets. (ii) The convergence criterion with
long-term memory and low offsets maximize performance
optimality across all baseline percentiles and datasets. (iii)
Learning can be trapped into the first suboptimal solution for
offsets higher than 10 using the convergence criterion with
long-term memory as well as for threshold values lower than
0.2 using the global cost reduction with short-term memory,
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(b) Energy dataset
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(c) Bicycle dataset

Figure 5: Learning performance of selected metrics for fixed
bijections under varying number of children and sorted ac-
cording to the global cost obtained with all three datasets.

Figure 7 illustrates the cumulative number of self-
adaptations during the learning runtime for each of the two
strategies and for different offsets, thresholds and datasets.
Results are averaged out over all benchmark percentiles.

The convergence criterion with long-term memory results in
significantly lower structural self-adaptations. I-EPOS requires
very few iterations, 10 or 15 for instance [2], to converge.
Dividing the number of iterations with the offset iteration
indicates the number of structural self-adaptation to expect.
The higher the offset, the higher the optimality of the memo-
rized solution and as a result the higher the likelihood of early
termination at the next learning phase.

The global cost reduction criterion with short-term memory
shows a higher number of self-adaptations, especially for
the energy and bicycle dataset. The termination criterion
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(c) Synthetic dataset,
90th percentile
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(i) Bicycle dataset, 90th
percentile

Figure 6: Learning performance of the two structural self-
adaptation strategies for different datasets, baseline percentiles,
memory offsets and thresholds.

measuring the slope of the global cost prevents early termi-
nation of I-EPOS by triggering self-adaptation early before
convergence. This is especially the case for higher thresholds.
Self-adaptations are triggered throughout the learning runtime
for the bicycle dataset, while termination is observed around
the 25th and 40th iteration for the synthetic and energy dataset.

X. CONCLUSION AND FUTURE WORK

This paper concludes that structure has a foundational role
for the cost-effectiveness of decentralized pervasive intelli-
gence as confirmed by the following: (i) Deterministic meta-
feature criteria with which fixed structural self-adaptations
are performed influence learning performance. (ii) Online
structural self-adaptations can improve learning performance
and prevent suboptimal trapped solutions, especially under
low-performing initialization. A large-scale benchmark dataset
for optimality evaluation is made openly available. It relies on
real-world datasets of residential power demand, bike sharing
and charging of electric vehicles. Millions of structural self-
adaptation in networks of thousands of agents exchanging bil-
lion of learning messages provide representative performance
profiles as shown with a comparison of parametric vs. non-
parametric density estimations of the solutions space.
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(e) Energy dataset, global
cost reduction criterion
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(f) Bicycle dataset, global
cost reduction criterion
with short-term memory

Figure 7: Cumulative number of self-adaptations over the
learning runtime for the different strategies, memory offsets,
thresholds and datasets.

The construction of smarter online structural self-
adaptations that consider the communication and computa-
tional cost of the agents’ repositioning is part of future work.
Studying other communication structures besides trees can
provide further insights and fundamental understanding.
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