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Abstract—To efficiently support analytical applications from a
data management perspective, in-memory column store database
systems are state-of-the art. In this kind of database system,
lossless lightweight integer compression schemes are crucial to
keep the memory storage as low as possible and to speedup query
processing. In this specific compression domain, BitPacking is
one of the most frequently applied compression scheme. How-
ever, (de)compression should not come with any additional cost
during run time, but should be provided transparently without
compromising the overall system performance. To achieve that,
we focus on acceleration of BitPacking using Field Programmable
Gate Arrays (FPGAs). Therefore, we outline several FPGA
designs for BitPacking in this paper. As we are going to show
in our evaluation, our specific designs provide the BitPacking
compression scheme with high-throughput.

Index Terms—in-memory database systems; lightweight com-
pression; BitPacking; hybrid hardware systems; FPGA

I. INTRODUCTION

Nowadays, in-memory column store database systems are
state-of-the-art for analytical workloads [1], [5], [8], [12].

These systems pursue a main memory-centric architecture

approach and assume that all relevant data (base data as

well as intermediate query results) can be fully kept in the

memory of a computer or of a computer network [1], [5],

[8], [12]. To achieve that, these systems organize relational

tables by columns rather than by rows [5]. Moreover, the

values of each column are encoded as a sequence of integers

using some kind of dictionary coding [4], [12]. Then, each

sequence of integer is compressed using lossless lightweight

integer compression algorithms [2], [15]. As we have shown

in [6], [7], there is no single-best lossless lightweight integer

compression available and the decision always depends on data

as well as on hardware properties.

Nevertheless, BitPacking (BP) is one of the most frequently
applied compression scheme is this domain, showing a very

good—not always optimal—behavior for different data prop-

erties [6], [7], [15]. The basic idea of BP is to partition a

sequence of integer values into blocks and to compress the

values within each block separately by omitting leading zeros

(null suppression). The number of bits used to represent every

value in a block is determined by the effective bit width of

the largest value in that block. Thus, BP compression consists

of the following steps: (i) partition sequence of integer values

into blocks, (ii) read values in each block to determine the bit

width of the largest value in the block, (iii) read the values

again for bit packing based on the largest bit width found in the

previous step, and (iv) write packed words to output. To reduce

the computational effort for compression and decompression,

these algorithms are usually vectorized [6], [7], [15]. Thus,

the block length depends on the used vector length [7], [15].

For example, for a vector length of 128-bit, the number of
integers per block has to be 128 to get an aligned output of
compressed values [15].

However, (de)compression is always an additional process-

ing step which should not come with additional cost during run

time. Thus, (de)compression should be provided transparently
without compromising the overall system performance. To

achieve that, advances in hardware are always offering an

interesting alternative, but represent also a major challenge. At

the moment, hardware systems are more and more changing

from homogeneous CPU systems towards hybrid systems with

different computing units. In particular, hybrid hardware sys-

tems incorporating a Field Programmable Gate Array (FPGA)

and a CPU are emerging, being very interesting from a

performance perspective to specialize to functionality on the

FPGA. Additionally, FPGAs have usually direct access to the

main memory of the CPU in such hybrid systems. In contrast

to other hybrid systems like CPU/GPUs, this direct main

memory access is unique regarding the possibility to avoid the

bottleneck of copying data between the different computing

units [10], [14].

Our Contribution and Outline:

Based on that, we focus on BitPacking compression acceler-
ation by offloading such functionality to Field Programmable

Gate Arrays (FPGAs) in a hybrid hardware system setting. In

detail, we make the following contributions in this paper:

1) In Section II, we briefly outline our FPGA-based im-

plementation approach for BitPacking compression. We
mainly focus on the compression part as a first specific

step.

2) Following that, we describe our target hardware platform

and present selective results of our exhaustive evaluation

in Section III. As we are going to show, our specific

FPGA designs achieve a very high memory throughput.

Since lightweight integer compression algorithms are

memory bound, we basically have focused our evaluation

on examining the specified memory throughput.

Finally, we close the paper with related work in Section IV

and a summary in Section V.
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Fig. 1: Custom BitPacking (CBP) Overview—Flows for Offloading Values per Pipeline Stage.

II. FPGA-AWARE BITPACKING IMPLEMENTATION

In this section, we briefly describe our developed FPGA-

aware BitPacking (BP) compression implementation and dif-
ferent hardware design approaches incorporating multiple ac-

celerators for the best possible compression throughput.

Generally, BP belongs to the Null Suppression (NS) algo-

rithm class for integer compression that means it addresses

the physical level of bits and bytes to reduce the number of

bits per integer value by omitting leading zeros [7], [15]. For

that, BP partitions a sequence of integer values into blocks

and compresses each value within the block with the same

bit width. This bit width is determined by the bit width of

the largest value per block. Thus, two similar read operations

are required—(i) for determining the bit width of the largest

value in a block and (ii) during packing the values per block.

Accessing main memory twice just to read the same set of

values is inefficient. As a consequence, an effective FPGA

option is to use internal buffers with a depth which equals the

block size to temporarily store the integer values. Additionally,

these buffers help filling up the pipeline stages in an FPGA-

aware BP implementation.
Fig. 1 illustrates our pipline-based FPGA accelerator for BP

called CBP (Custom BitPacking, whereas one DMA (Direct

Memory Access) is able to access the main memory with a

width of 128-bit. That means also, that our block size is 128.
Our CBP works as follows:
1 Read a 128-bit input word per clock cycle, each input
word contains four 32-bit integer values.

2 Store the input word into the buffer. In parallel, to detect

the bit width of largest value, perform bit-wise OR-
operations between input words per block to create a

combined word. Afterwards, determine the width of the

combined word by finding the left-most bit of which value

is 1. This operation is done by using predefined mask
registers to achieve a constant one clock cycle latency.

3 Packing buffer values into the output words, while each

buffer value is compressed with largest value bit width

per block by performing bit-wise Right-Shift operation.
During packing, the most significant 8-bits of each 128-

bit output word contains the bit width of the largest value

per block and the remaining 120-bit are used for packed
values.

4 Write 128-bit output word, while one output word is fully
packed with compressed values.

In our CBP, the number of values packed per output word
in a block depends on the largest value bit width per block.

During value packing, a misalignment problem may occur

when the number of values packed per output word is not

divisible by 4 as each buffer word contains 4 values. Thus, in
order to avoid this misalignment, we categorized the number

of values packed per output word in two parts: (i) Div4—the
number of values packing per output word is divisible by 4,
(ii) Div2—the number of values packing per output word is
divisible by 2. As a result, we rearranged the number of values
packed per output word for those cases which are not divisible

by 4. It is done by assigning the nearest number which is
either divisible by 4 nor by 2. For example, the number of
values packed per output word for the largest value bit width

of 7 is
⌊
120
7

⌋
= 17, which is neither divisible by 4 or 2, and

the nearest number which is divisible by 4 or 2 is 16. Thus,
the new number of values packed per output word for this

example is 16. During packing values, the left over values per
buffer word are packed in the following output word (see 3

in Fig. 1).

Based on this principle, we started with the development of

a simple straightforward single-data-channel based hardware

approach, where only one CBP is instantiated. We call this

Approach_1 as illustrated in Fig. 2. In this approach,

we use one DMA module (Direct Memory Access) between

main memory and our CBP, in order to reduce the load of
the processor and to reduce the latency of accessing main

memory. Afterwards, we developed multiple DMAs-based
hardware approaches called Approach_2, Approach_3,
Approach_4, where each DMA is accessing main memory
via an independent data channel (see Fig. 2). As a conse-

quence, we replicated our CBP and DMA up to 4 times as the
number of available main memory data channels on our target

system is 4.
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Fig. 2: Different Types of Hardware Approaches.

TABLE I: Different Categories of Data Sets.

Data Set Data Properties

D0 uniform distribution with same value bit-width based
data

D1 uniform distribution with 20% (2 to 15) bits and 80%
(16 to 30) bits value-width based data

D2 uniform distribution with 50% (2 to 15) bits and 50%
(16 to 30) bits value-width based data

D3 uniform distribution with 80% (2 to 15) bits and 20%
(16 to 30) bits value-width based data

III. EVALUATIONS

In this section, we experimentally analyze the behav-

ior regarding memory throughput between Approach 1, Ap-
proach 2, Approach 3 and Approach 4 for different cate-

gories of data sets as BitPacking compression is data distribu-
tion dependent [6], [7]. Therefore, we generated 4 categories
of data sets as described in Table I.

Our target system—Xilinx® Zynq UltraScale+™ —is a

hybrid system containing (i) a traditional FPGA within the

Programmable Logic (PL) region and (ii) an MPSoC within

the Processing System (PS) region. For this paper, in PS region

we only considered the 64-bit quad ARM® Cortex-A53 cores

of 1.5GHz frequency and DDR4-2666 main-memory with
the capacity of 4GB [19]. In addition, this system has four

dedicated high performance AXI interfaces to access the main

memory directly from the PL region, whereas we consider

these interfaces as data-channels in our respective hardware

approaches.

We start our evaluation with a D0 category data set for
2 to 30 value bit width based data on Approach 1, Ap-

proach 2, Approach 3 and Approach 4 as illustrated in Fig.3.

Approach 1 gives a symmetric throughput of 3.8GB/s (for
the value bit width of 2 to 15) and 1.9GB/s (for the value
bit width of 16 to 30), whereas these are the read or read-
write throughput without compression for CBP, respectively.
It defines two points:

1) our proposed implementation of CBP is as fast as possi-
ble, that means the latency only depends on read/write-

operations not on compressing the values

2) as the value bit width increases, the compression ratio

decreases and after value-width 15-bit the compression
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Fig. 3: Throughput Analysis on Different Hardware Ap-

proaches for a D0 Data Set.

ratio is approx. 1 (see the green curve in Fig.3)
This defines, after value bit width of 15, there is a marginal
compression happening as both input and output words may

contain the same number of values. Our other hardware

approaches achieve improved throughput compared to Ap-

proach 1 as the values are evenly distributed among the

multiple CBPs for parallel compression which increase the
throughput, except Approach 3 which provides mostly the

same throughput as Approach 2. The reason for that is,

BitPacking compresses values per block basis and the block
size is always even and divisible by the power of 2, i.e., 128,

256, 512, etc. Thus, in Approach 3 data for compression is not

evenly distributed due to block size resulting in unfavorable

parallelism which affects the memory throughput. However,

the throughput behavior in these other approaches per value

bit-width wise is not symmetrical as Approach 1. The reason

is—multiple DMAs interact with main memory in round robin
manner—while one DMA is ready to interact, main memory
may be busy with others, which affects the throughput [16].

Afterward, we evaluate all our hardware approaches for the

D1, D2 and D3 data set. As illustrated in Fig.4, throughput
in all approaches gives the maximum for D3, minimum for

D1 and D2 gives in between as expected. The reason is the
value bit width based data distribution as described in Table I.

In all cases, Approach 4 is the winner among the others as

it gives maximum throughput. However, Approach 4 utilized

maximum resources (17.52% LUTs and 7.10% Flip-Flops) of

FPGAs compared to other approaches. But still, the resource

utilization on Approach 4 is below 25%, which is affordable.
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Fig. 4: Throughput Analysis for D1, D2, D3 on Different
Hardware Approaches.
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Finally, from all our experimental evaluations, it proves that

proper pipeline-based custom BitPacking implementation on
FPGAs is advantageous in many ways—throughput-wise and

resource-wise as well. Thus, FPGA implementation should be

well-investigated for other database compression techniques in

the near future.

IV. RELATED WORKS

The main memory-based lightweight compression algo-

rithms in column-store database systems are an active re-

search field [2], [13], [20]. However, mostly the research

regarding lightweight compression algorithms only considers

an efficient implementation for CPU [18], [20]. In particular,

CPU-intensive SIMD instruction based BitPacking lightweight
compression algorithm implementation provides increased per-

formance of especially analytical database queries [2], [6],

[11]. Most research in the direction of FPGAs-based com-

pression implementation focused on heavyweight compression

algorithms [3], [9], [17]. For example, Rigler et al. presented
concepts and hardware implementations using VHDL for

Lempel-Ziv encoders and dynamic Huffman encoders which

is suitable for the implementation of GZIP [17]. Additionally,

their implementation is capable of generating compressed files

that may be decompressed using a standard implementation

of GZIP [17]. Moreover, Abdelfattah et al. explored OpenCL-
based Gzip implementation on FPGAs [3]. They showed that

a high-level compiler can provide competitive performance for

GZIP compression and significant productivity gains compared

to traditional hardware design [3]. However, Bartk et al. and
Fower et al. both implemented VHDL-based Lempel-Ziv com-
pression on FPGAs, whereby they investigate the limitations

and bottlenecks of hashing table, software pipelining overhead

of the Lempel-Ziv lossless compression algorithm [9].

Generall, increasing amount of data leads database re-

searchers to concentrate on implementation for compressed

database systems, whereas main memory-based lightweight

compression is more effective latency-wise than heavyweight

compression. In addition, lightweight compression techniques

are capable to evaluate almost all types of analytical queries

directly on the compressed form of data, i.e, BitPacking
mechanism. In [16], we already presented an FPGA-approach

to efficiently conduct a filter operation directly on bit-packed

compressed data. To the best of our knowledge, none of

the existing works investigates the domain of FPGA-based

implementation of lightweight compression algorithm or the

different categories of hardware approaches on FPGAs to

achieve high-throughput regarding compression.

V. CONCLUSION

In this paper, we have presented a brief overview of

our pipeline-oriented hardware implementation for high-

throughput BitPacking compression on FPGAs. To enable

seamless pipelining, we resolve algorithmic dependencies re-

garding read overhead and nonalignment write by introducing

internal buffering and categorized value-bit packing mech-

anism. Although these changes sacrifice some amount of

compression ratio, they enable our implementation to scale

up to approx. 7.8GB/s and 4.6GB/s throughput for same
and mixed value bit-width based data sets, respectively. We

prepared pipeline implementation for BitPacking compres-

sion in a scalable and resource-efficient way. In addition,

we explored different possible hardware approaches using

parallelism criteria and embrace resource-throughput trade-

off relations. Finally, our custom BitPacking implementation
achieves very high throughput and resource-efficiency on

hybrid CPU-FPGAs system.
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