Predictive Resource Management in
Energy-constrained Embedded Systems

Simone Crippa*, Giuseppe Massari', Federico Reghenzanif, Michele Zanellaf, William Fornaciari'
*DEIB, Politecnico di Milano, Italy, - Email: simone3.crippa@mail.polimi.it

tDEIB, Politecnico di Milano, Italy,

Abstract—The current trends in Internet of Things (IoT) lead
to the deployment of low-power devices covering a wide range of
application scenarios. These devices have the goal of executing
simple tasks, automatically, usually with strict requirements
in terms of space and cost. Typically, these devices have to
rely on batteries or by harvesting energy devices (e.g., solar
panels), in order to operate. On the other hand, IoT devices
may be equipped with powerful multi-core CPUs to achieve
performance goals, making the management of the energy budget
a challenging task. This requires the development of an effective
management system, that takes into account current and future
energy budget availability, to dynamically bound the actual
allocation of processing resources. Specifically, when exploiting
solar panels for power supply, we can leverage on the weather
forecast, to estimate the availability of energy in the near future.
This paper introduces a predictive energy budget management
system, targeting multi-core based embedded platforms. Thanks
to both local and large-scale weather information, our solution
aims at predicting the future incoming power and, accordingly,
tuning the exploitable performance level to keep the system
running under any environmental condition.

Index Terms—IoT; energy-aware; embedded system; power
management; machine learning; fault detection; solar energy;
scheduling; multi-core

I. INTRODUCTION

The use of Internet of Things (IoT) devices is increasing
in many domains, including industry, automation, communi-
cation, medicine and transportation. Many of the applications
in these domains require such devices to be small and con-
strained with respect to the energy and power usage. This in
fact, represents the main performance scaling barrier of such
systems. The challenge is indeed to maintain the ratio of power
consumption over performance constant. However, many IoT
devices run on batteries, making the energy problem also criti-
cal. An effective approach is to introduce energy-awareness in
the system operation modes: the device manages the available
energy budget by constraining its throughput or set of features,
leveraging the underneath hardware hooks to control the power
consumption over the time. This chase for energy efficiency
is also caused by a stagnation in battery technology. Although
both industrial and scientific communities are focused on
improving the energy density of batteries, these increases are
not sufficient to satisfy the constantly increasing demand of
performance. The energy problem is even exacerbated when
dealing with energy harvesting systems [18], i.e. systems
relying on an electrical power source self-harvested from the

- Email: [name].[surname]@polimi.it

environment, such as a wind turbine or a solar panel. The
constraint on the energy budget availability, in these devices,
is given by the limited battery capacity and the future quantity
of available input power, which cannot be easily predicted.
In fact, the external power sources are unreliable, since they
are heavily dependent on weather conditions, yielding to high
volatility in the exploitable energy budget. Energy harvesting
systems are usually auto-sufficient, i.e. they are designed to
guarantee the highest uptime possible with the least human
intervention possible.

A. The Role of the Resource Manager

In the design of an embedded computing system, the
exploitation of energy harvesting part introduces at least two
main points to address:

1) How to define the size of the power supply components
(capacity of the battery, size of the solar panel, etc...)?

2) How to choose the computing platform (e.g,
microcontroller-based or System-on-chip) the system
will be based on?

For the first point, we may need to take into account logistics
aspects like the constraints related to the place for the physical
installation of the system, the transportation, the maintenance
and last but not least, the costs. The choice of the platform
instead, is partially driven by the application requirements
and partially constrained by the choices made for the first
point. This means that we must manage the trade-off between
computational capabilities and power consumption, given the
aforementioned constraints.

Considering the very common approaches and given the
system requirements and constraints, we typically have two
design options: 1) to choose the power supply components,
that would guarantee the system to remain up and running
in most of the worst possible conditions; 2) to choose the
computing platform, trying to minimize the power consump-
tion requirements, such that also the size of the power supply
components could be minimized.

Such static approaches are often very conservative, hence
sub-optimal. We believe, in fact, that through a more dynamic
energy-aware adaptive approach, we can minimize the size of
the power supply components, while maximizing the capabil-
ities of the computing platform. This would be made possible
by a resource manager, in charge of varying the availability
of resources (e.g, CPU cores), on the basis the current status

of the overall system (e.g., the energy-budget availability) [1],
[2]. The resource manager, therefore, will be responsible of
pursuing a two-fold objective: 1) to guarantee the running
status of the system and 2) to control the level of performance
that can be delivered by the computing platform. This means
that, if we consider an embedded system supplied by a
combination of batteries and energy-harvesting solutions, the
resource manager must consider the energy budget available
and the amount required to run the applications, to keep the
system still running. As it should easy to guess, a similar
approach requires periodical predictions of the energy-budget
availability, such that the resource manager could make the
best possible choices. The goal of this work is to investigate
the possibilities offered by this approach.

B. A Motivational Use-case: A Transponder Tracking System

The transponder is an on-board device of an aircraft that
periodically broadcasts the position and other flight infor-
mation. The ADS-B system is widely used by almost all
commercial airplanes for airborne collision avoidance or for
tracking purposes. However, an ADS-B transponder is usually
too expensive and too much power-hungry for gliders and
ultralight aircraft. In this cases, a preferable choice is to use
less common technologies enabling a simpler anti-collision
system. The tracking of such an aircraft, from the ground,
requires to build a dedicated network of receivers, because
neither the government or the amateur network for ADS-B
can be exploited. Flying clubs, for example, face the necessity
to track their small aircraft, without having the financial
capability of building a network of receivers. The solution we
are currently studying in the area of Lombardy (Italy) is to
place the receivers on the tops of few mountains to cover the
largest possible area. The placement of such devices in these
remote areas limits the possibility to use the electrical grid as a
power source. Consequently, we decided to equip the devices
with a battery and a solar panel to harvest energy. The energy
source is then non-reliable for the reasons already explained.
The resource management strategy presented in this paper has
been created to guarantee the system uptime given the weather
information.

C. Paper structure and contribution

In this work, we aim at presenting a predictive energy bud-
get management system, targeting multi-core based embedded
platforms. The system, governed by a resource manager, is
able to: (a) predict the future incoming power based on a
hybrid weather forecast mechanism, (b) control the perfor-
mance capabilities of the computing platform, to satisfy the
uptime requirements given the limited energy budget. The
paper is organized as follows: in Section II, we present the
available approaches related to the key points of our work,
highlighting the difference and improvements. In Section III,
we discuss the architecture of the systems we are targeting
and our implementation. Then, in Section IV, we describe
the models implemented for energy budget prediction, while
in Section V, we discuss how our resource allocation policy

exploits such predictions. Finally, in Section VI we show the
experimental results obtained by deploying the system in a
real environment, to conclude then in Section VII with the
final remarks.

II. RELATED WORKS

This section presents some of the state-of-the-art ap-
proaches. First, we provide an overview of the works that al-
ready used weather forecasting to build energy budget predic-
tion models. Then, the literature on energy-aware scheduling
models and algorithms are presented. Finally, we discuss the
advances explored by this paper.

A. Energy budget modeling

The approaches using the weather forecast to predict the
amount of power harvested by a solar panel can be summarized
in two classes. The first one considers the direct relationship
between weather and output power. The second one, split it
into two sub-problems: (1) to extract from the weather forecast
the data that directly affect the power generations; (2) to use
such data for carrying out the power predictions. We can also
distinguish between Machine Learning (ML) and Time-Series
(TS) based approaches.

In [9] the authors addressed the problem of predicting
the charge level of the battery, according to the weather
conditions, by using different ML models on historical data. In
particular, they took into account some sun parameters and the
battery technology characteristics. Thus, they approximated
the charging curve and obtained the variation of charge, by
measuring the battery voltage. To the contrary, in [15], authors
adopted the problem-splitting approach by considering three
sub-problems to: (1) model the solar panel efficiency; (2) infer
the maximum output power of the panel; (3) penalize the
maximum output of the solar panel using an external weather
forecast provider. The final model carries out the power
generated from the solar panel. With respect to [9], it does
not consider the dependency on the battery, making the model
independent from the battery parameters and technology. The
same authors, in [16], used ML regression models, based
on weather forecast data to predict the solar irradiance. The
dataset is again based on historical data. However, the model
presents several simplifications regarding the features consid-
ered, the output value and the learned function, with respect to
the previous works. The model, in fact, does not consider the
presence of an external battery or a solar panel. Differently
from the previous ML-based works, authors in [4] described
two TS-based prediction algorithms. They require data related
to the energy flowing into the system to compute the solar
panel output given the weather conditions. In particular, one
of the algorithms improves the model accuracy, by taking into
account the relationship between the solar irradiance and the
weather conditions.

B. Energy-aware scheduling algorithms

As aforementioned, in our work the energy budget pre-
diction obtained has to drive an energy-aware resource allo-
cation or task scheduling policy. The preemptive scheduling

algorithm presented in [6] (called Lazy Scheduling Algorithm,
LSA) is based on a static analysis of the tasks and the
management of three system power configurations (called
working modes). This means that we can apply the scheduler
to real-time tasks for which arrival time, deadline and energy
demand are known a priori. Moreover, in case of finite energy
budget source, the algorithm needs to sample the input energy
value for each execution. The algorithm, therefore, computes
the schedule and set the working mode, taking into account
the timing requirements and the energy availability. Authors
of [14] improved this work, by introducing relevant changes
to the energy management and reducing the computational
complexity. Similarly, in [19] the authors presented an al-
gorithm on the Early Deadline First (EDF) scheduler, which
exploits Dynamic Voltage and Frequency (DVFES) to manage
the performance-power trade-off. As it follows, the selected
frequency affects the Worst Case Execution Time (WCET)
estimation and the power consumption. Differently, in [13]
authors proposed two solutions to schedule tasks assuming
the presence of a rechargeable battery: a static solution using
a worst-case scenario and a dynamic one, considering extra
energy available when the worst-case does not occur. In [12],
the authors dealt with worst-case energy consumption by
directly estimating it from measurements. These probabilistic
values are then used to schedule the task according to a mixed-
criticality approach. Finally, in [8], a QoS-aware scheduler
for harvesting systems uses both short- and long-term energy
predictions in a two step algorithm. A first offline phase
computes a minimized energy budget, based only on the long
time predictions and the requested QoS level of the tasks.
However, any error made by the prediction is not identified
and mitigated, at run-time, since the budget value is fixed. The
online scheduler takes the budget to pick the jobs to schedule
or drop, minimizing QoS violations.

C. Discussion

Regarding the weather prediction model, our work follows
the Sharma et al. approach [15] of splitting the problem into
two steps, since we aim at treating separately the solar irradi-
ance prediction and the effective estimation of the harvested
power. For ML and TS methods instead, we cannot choose the
most accurate method, but can make a comparison on input
requirements and performance. In particular, the ML methods
require an initial training phase and a data collection step,
but a single sample of the current conditions is sufficient to
compute a prediction. Conversely, TS models require constant
logging as well as system energy measurements. Due to these
considerations, we decided to choose a ML method. In this
regard, we improved the [16] model with a new approach in the
data generation phase, by exploiting local sensors to mitigate
the location approximation error caused by weather providers.
Furthermore, unlike [16], we maintain a general validity of
the model removing hardware dependencies and avoiding
over-simplifications. Regarding the scheduling and allocation
policy instead, we consider an intermediate approach between
[14] and [19], by exploiting DVFS and the heterogeneous

T Weather
Solar panel e Modem
[sensors
=]
c
o
[
5 Comput
. omputing
o -
Batteries S
system

Fig. 1. Block diagram of the hardware system.

architecture of the CPU of the computing system. Finally, in
our experimental setup, similarly to [8], we tested the system
in a real environment, considering the weather forecast as input
for the energy budget computation and adapting the system
performance limits, at run-time, accordingly.

ITI. SYSTEM ARCHITECTURE

In this Section, we discuss the overall system architecture,
by considering both hardware and software aspects. We briefly
describe the implementation activities regarding the software
part, while the details of the hardware system are left to the
experimental section.

A. Hardware Architecture

In Figure 1, we sketched the typical structure of the embed-
ded systems our work focuses on. The core is represented by a
computing system, featuring a networking device (modem) for
remote control and data transmission, other than a dedicated
set of “weather sensors”. The energy budget is defined by
the power provided by a solar panel and a battery pack. A
charge controller is then responsible of the process of battery
recharging, other than regulating the power supply for the
computing platform. As we said, in such a system, the energy
budget is characterized by a certain degree of variability, given
by the weather conditions, affecting the solar panel, and by
the current level of charge of the batteries. On the system
hand, the running tasks and applications may reasonably use
a variable amount of resources (CPU, memory, etc...) over
the time, which determines also the variability of the overall
power consumption of the system.

Given the source of energy used to keep the system running,
our idea is to exploit the weather forecast to estimate the
available energy budget in the near future, and then dynami-
cally bound the maximum amount of exploitable resources.
This in order to balance between performance and power
saving modes, to meet the application requirements on one
side and preventing the system to run out of energy on the
other one. More specifically, what we want to explore is
the interplay of weather forecast information coming from a
remote service on the Web and the data provided by weather
sensors, locally connected to the system. This is motivated
by the fact that the weather forecast services typically provide
coarse-grained information, both from the spatial (city) and the
temporal perspective (one prediction per hour), although ob-
tained through accurate models and observations. The weather
sensors instead, allow the system to 1) gather data with a much

Weather Weather
forecast sensors

(web) (local)

Prediction Module

I

Resource Manager

______________________ |

Applications

Batteries
charging
status

Operating System

Fig. 2. Block diagram of the software stack of the system.

higher rate and 2) capture extremely local conditions, like,
for example, transient clouds covering the sky and decreasing
the solar irradiance for a few minutes. The objective is to
demonstrate how, by exploiting these two sources, we can
actually improve the accuracy of the energy budget estimation,
to correctly drive the choices of the resource manager. More
details about the hardware configuration of the system are
provided in Section VI-A, where we describe the components
of the actual setup built for the experiments.

B. Software Architecture

From the software perspective, the target system is charac-
terized by a stack like the one shown in Figure 2. In the middle,
we find the Prediction Module and the Resource Manager. The
former takes as input the weather data, coming from the web-
based forecast service and the local sensors, to predict the
output power of the solar panel, as explained later in Section
IV. The Resource Manager then, monitors the charging status
of the batteries and take the predicted incoming power value
to define the available energy budget. The “energy-aware”
resource allocation policy, which is part of the manager itself,
considers the energy budget value as input, along with the
set of applications and, optionally, further system parameters.
The policy enforces the assignment and sets the limits on the
resource usage, by exploiting the interfaces provided by the
underlying operating system. In this regard, we may have
to choose between performing dynamic voltage-frequency
scaling (DVES) of the processing cores or setting an upper-
bound on the number of exploitable cores.

C. Implementation

We implemented our experimental solution on a multi-core
based embedded development board, for which we provided
more details in Section VI-A. Most of the development effort
has been focused on implementing the Prediction Module and
extending the BarbequeRTRM run-time resource manager [3]
for the following purposes:

1) performing the periodic monitoring of the status of the

batteries (by accessing the Charge Controller interface);

2) gathering the output from the Prediction Module;

3) implementing the energy-aware resource allocation pol-

icy, described in Section V.

As shown in Figure 2, the Prediction Module retrieves the
input data from a weather forecast service (on the web) and a
set of local sensors. For the former, we chose Weatherbit.io .
The subscribed service allows us to receive an update per hour.
The weather sensors instead are located on specific hardware
modules, connected to the development board via I2C bus and
serial port and provide the following data:temperature [°C],
humidity [%], visible light [lx] and pressure [hPal].

Finally, the resource allocation policy execution is triggered
whenever an update on the energy budget value has been
carried out.

IV. ENERGY-BUDGET PREDICTION MODELS

The energy-budget is determined by two main sources: the
battery charge level and the power generated by the solar
panel, in a given time frame. We assume that the charge
controller provides us both values. However, the instantaneous
values of power coming from the solar panel do not represent
a very useful information, since the resource allocation policy
needs to take decision considering a certain time horizon.
Therefore, the first objective to achieve is to build a model
which predicts the power generated by the solar panel from
the weather conditions. Accordingly, assuming this forecast
holding for a certain time frame, we can estimate an energy
budget value for the resource allocation policy.

A solar panel generates power depending on the level of
solar irradiance hitting its surface. Similarly to [15], we split
the problem in two parts. First, we looked for a model to
bind the weather data to the solar irradiance. Then, we built
a second model to make explicit the relation between solar
irradiance and the power output of the solar panel.

A. Solar Irradiance Model

While the weather forecast service directly provides instan-
taneous values of solar irradiance (ST), for the local sensors
we need to infer it from the visible light value (L), by using
the Formula from [11]:

SI m] =0.0079 - L]lz] (1)

This carries out an approximated yet acceptable value. The
remaining sensors instead, temperature (I'), humidity (h) and
pressure (p), allows us to replace the usage of the precipitation
potential as model feature, as proposed by Razi et al. in [10].

We are looking for a function Y7 = f1(X7), where Y7 is
the vector of the solar irradiance predictions, and X; is the
vector of features, made as it follows:

Xl = {T7 h7 P, L}

A worth remarking difference with respect to the model
proposed by Sharma et al. [16] is that, in their case, the
goal is to provide a long-sighted prediction of the solar
irradiance value. Conversely, we aim at obtaining short-sighted
predictions, that are used to correct the data provided by the

Uhttps://www.weatherbit.io/

yi=<wX>+b +¢

yi=<wXxi>+b-¢€

Fig. 3. Support Vector Regression optimization problem proposed by Kleyn-
hans et Al. [7]

weather forecast service. Moreover, a further aspect to take
into account for filling the dataset for the model construction,
is that the weather sensors provide a new set of data samples
every second. Such data are often characterized by the same
values repeated over a long series of samples. This requires
an aggregation step. Therefore, we increased the time-space
between the samples in the dataset, by taking the mean value
of the samples generated by the sensors every minute.

B. Power Generation Model

Once obtained the solar irradiance value, a further parameter
affecting the solar panel performance is the relative position
of the Sun. The most accurate value is given by the knowledge
of the Sun incidence angle on the solar panel, computed from
the panel inclination, the Sun zenith and the azimuth angles.
An alternative solution (the one adopted), consists of including
again the day of the year (D) and time of the day (¢) in the
features set, along with the solar irradiance (ST); while for the
panel inclination we provided a constant value.

Therefore, in this case, given the vector Y, of generated
power values, sampled from the panel, we are looking for a
relationship such that Y2 = f2(X3), where X5 is the set of
features defined as it follows:

X, ={SI,D,t}

Given the small set of features and the low complexity of
the problem, no feature selection was needed. This model is
expected to implicitly capture two relationships, in order to
predict the output generated power:

1) The solar panel characteristic, in particular its efficiency.

2) The relative position of the Sun with respect to day and

time.

C. Support Vector Machines (SVM)

In both cases, we based the construction of the models on
Support Vector Machines (SVM), which represent a good com-
promise between accuracy and computational requirements.
We performed a preliminary experimental analysis on our

hardware setup to evaluate the performance of such class
of models. We found out that, for sizes of problem similar
comparable to ours, we can obtain a prediction in tens of
milliseconds with a memory occupancy of a few Megabytes.

More specifically, we used a Support Vector Regression
model framework [17], based on a Radial Basis Function
(RBF) kernel. Accordingly, the models parameters are ob-
tained by solving the following optimization problem:

min %||w||2+c;<£i+si*>

Yi —(w,z5) —b<e+§ (2)
subject to (w,z;) +b—y; <e+&”
§i,&" >0

This problem, sketched in Figure 3, introduces the concept
of soft margin. Looking at the figure, the n samples are
represented by red or green circles. The red color indicates
samples beyond the margin, while the green the ones within.
Two lines, given by the functions y;, define the margin. These
functions are based on the dot product between the features
weights (w) and the features values of the sample (z;) plus b,
the bias term. The model can avoid fitting a sample inside the
margin, by paying a penalty, which is regulated through the
C parameter: the larger the C the higher the penalization term
related to the margin violation. For this reason, large values C
can lead to overfitting. Conversely, a small value of C would
lead to underfitting. Every violation of the margin corresponds
to an ¢ term related to the distance between the sample and
the margin itself. The remaining parameters are:

e v — which is related to the RBF based models only and
represents the inverse of the standard deviation of the
RBF kernel. v defines an overall scale factor for the
SVM notion of distance between two points. Therefore,
it determines how far a support vector influences the
decision boundary in its nearby neighbourhood.

e ¢ — which is the margin of error tolerated by the model.

o &,&" — the slack variables representing the distance of
the sample beyond the margin ¢, as shown in Figure 3.

These parameters, in particular C and -, allow the model to be
very flexible in the data fitting process. Finally, to verify the
performance of the model we carried out a cross-validation
phase, as explained in the next subsection.

D. Training and Validation

For the training and validation processes, we built the
dataset by merging the weather data and the values of the
power generated by the solar panel, read from the charge con-
troller interface. The dataset has been populated with samples
obtained by running the experimental system for several days,
characterized by a certain variability of weather conditions.
Then, we split it between training set and validation set.
For both the models, we decided to use % of the dataset
for the training and the remaining % for the testing. This
is a reasonable compromise, given the size of our datasets,
as the weather dataset included 75000 samples, while the

| Model [% of SV | MSE [SCC]
Solar irradiance 18.76 1651.32 [W?2/m?] | 0.968
Power generation 28.64 8.346 [W?2] 0.857
TABLE I

PERFORMANCE EVALUATION OF THE MODELS

power dataset was composed by 30000 samples. Moreover,
we did not have to further split the set for cross-validation,
since we exploited a K-Fold cross-validation approach, which
includes a shuffling phase. To comply with the constraints
given by the radial basis function kernel instead, we needed
to scale the data, in order to shape all the features as Gaussian
distributions with zero mean and unitary variance. Finally,
we carried out the cross-validation phase, by using the Grid
Search approach and providing the following vectors of values
to the parameters:

o C values: [0.1, 1, 10, 100, 1000, 10000, 100000]
o 7 values: [—L 1001, 0.1, 1, 10, 100]

e € values: [0.001, 0.01, 0.1, 1, 10, 100]

where n is the size of X. This set of values has been
experimentally chosen to maximize the exploration capabilities
of the Grid Search. Table I reports the performance, in
terms of Mean-Squared Error (MSE) and Squared Correlation
Coefficient (SCC) and the percentage of support vectors (% of
SV) obtained from the cross-validation and the training phase.

V. ENERGY-AWARE RESOURCE ALLOCATION POLICY

The resource allocation policy is based on the weather
data coming from two sources: an online weather forecasting
service (remote) and on the measurements provided by the
sensors (local). The primary source used to predict the energy
budget is the remote one, because its prediction is more
reliable on the long-term. In fact, a weather service usually
exploits large quantity of data, including satellite data, that
consequently provides an overall picture of the atmospheric
phenomena. To the contrary, the local data can be very useful
to detect phenomena with respect to spatial and temporal
locality, e.g. a small cloud over our system. The local data
is then used to verify the prediction, based on remote data
and, if there is a discrepancy, it is used for the next short
time period to provide for the estimation error. The switching
between the data sources is based on a threshold check. A
coefficient A is computed as:

1
A=<
ROC/R‘em

where P, is the power instantaneously read, P, is the
power prediction based on local sensors, and Py, is power
prediction of the remote weather service. This coefficient A
is then multiplied to the remote power prediction to adjust
it. If A = 1, then the remote prediction is considered valid
and the local data ignored. The percentage threshold x has
been set according to empirical observations on the precision
of remote weather service, as subsequently described in the
experimental Section VI

'f ‘Poc - rem‘ Pioc <
e Bl < x 3)

else

Short-term
energy energy
energy forecast forecast

............ i li

Energy budget computation

% Policy triggering

'
v

Current
battery

Long-term Online real

measurements

Adjusts

DVFS
actuator

i

Performance
state selection

Power budget computation for the
next allocation period

Fig. 4. Overall diagram of the resource management policy.

The resource management policy exploits such information
to determine the DVFS performance state to use for the CPU
cores. The Figure 4 summarizes the policy algorithm flow:
in normal condition, the energy budget over the time period
of 1 hour is predicted using the long-term information from
the remote weather service and from the battery current state.
Accordingly, the maximum power budget is computed over the
1 hour time interval and enforced via the DVFS mechanism
(in our case the Linux cpufreq module). If the long-term
prediction results unreliable (A < 1), as explained in the
previous paragraph, the short-term prediction is used and the
power budget is computed over a time interval of 5 minutes,
until the next weather information from the remote source has
been made available.

The power budget is computed with the following expres-
sion: Bougget = Pin — @ Foar, Where By is the power necessary
to charge the battery - that depends on the current charge
level - and ¢ € (0,1] is the reaction coefficient. The value
of tunes the policy behaviour: a more reactive approach by
shifting the value towards 0, or a more conservative approach
when shifting the value towards 1.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The deployment of our system in a real environment allowed
us to learn about practical issues, test robustness and improve
the reliability of the developed solutions, hence the design
of the hardware setup was a critical step in our project. We
started by focusing on the computing system, which was based
on the ODROID-XU3 development board. This is a high-
end embedded board equipped with a Samsung Exynos 5422
SoC, featuring a heterogeneous multi-core CPU, based on the
big. LITTLE architecture (4x Cortex-Al5 @ 2.0 GHz and 4x
Cortex-A7 @ 1.4 GHz). The board includes also an INA231
on-board sensor which allowed us to monitor at run-time the
power consumption of the main components of the SoC: the
two CPU clusters (big and LITTLE) the RAM and the GPU.
For the network connection, our goal was to emulate a real-
world scenario. For this reason we plugged a Siretta ZEST-N-
GPRS modem to fetch data from a weather forecast provider.

To add the ability of measuring environment parameters we
added a set of sensors, including:

o A Silicon Labs Si1132, to measure UV Index, IR and

visible light.
« A Bosch BMP180, to measure temperature and pressure.
« A Silicon Labs Si7020, to measure temperature, humidity
and pressure.

To overcome the reliability issues given by extreme weather
conditions, including high temperature and high relative hu-
midity, we plugged the above sensors into a STM32 Nucleo-
L412KB micro-controller based board. Finally, for the power
supply part of the system: the core was represented by a solar
panel, providing a peak power of 50 W, to charge a pack of
two lead-acid Absorbent Glass Mat (AGM) batteries, with a
capacity of 9 Ah each. To maximize the energy capacity of our
system, the batteries were connected in parallel. The charging
process of the battery pack was regulated through a charge
controller (the Epsolar Tracer-A 10). This controller featured
a RS485 interface, used to communicate with the computing
system through the MODBUS protocol. This allowed us to
monitor the battery pack state and the solar panel output power.

On the software hand, in order to exploit the multi-core
architecture and emulate real-world workloads, we used the
Fluidanimate parallel multi-threaded benchmark application
from the PARSEC suite [5], to properly stress the processor.

Given this hardware and software setup, we defined two
phases for this project, starting with a data collection phase
required to build our prediction models and then a benchmark
testing step, to evaluate the behaviour of our software solution.

B. Experimental Plan

Once the two aforementioned datasets has been built, as
explained in IV-D, we conducted a series of experimental
execution during the month of October 2019, when it has been
possible to test the system under variable weather conditions.
At this stage, we focused on two main goals:

1) making a comparison on the solar irradiance between
the values provided by the weather services and data
computed by local sensors;

2) observing the energy management capabilities and per-
formance level delivery of the system.

C. Irradiance Analysis

Since other solutions in the literature do not include local
sensor to catch any anomaly in the weather prediction, we
are interested in the number of prediction errors that we
are able to detect, through the usage of the sensors. To
this aim, we tested several violation thresholds in the range
& € [0.25;0.50; 0.75], which regulates how much the provided
forecast of solar irradiance can deviate from the one measured
through local sensors before considering it unreliable. The
deviation probability is higher when lower values of threshold
are used, with a direct impact on the number of energy budget
updates.

In particular, we can define the actual violations, consider-
ing only the violations given by a misprediction of the weather

service and not the ones given by the weather variability.
Furthermore, we define the false positives as the percentage
difference between all the violations and the actual ones. For
this analysis, we used all data collected during August 2019
and October 2019. Data gathered by local sensors have been
aggregated by computing the mean over a minute. The first
goal is to explore which threshold value is able to detect the
prediction errors of long-term forecast, taking into account
variations of local weather due to temporary phenomena (e.g.,
clouds). In this regard, considering a & = 0.5 threshold,
in August we reported a lower mean value (38.46%) of
actual violations with respect to October (53.82%). Moreover,
the lower percentage of false positives registered in October
(5.08%), shows that in August solar irradiance prediction is
more accurate. This leads us to consider the necessity of
setting the threshold value on the basis of the season. The
second goal is to determine the violation tolerance required to
reduce the number of false positives. We observed that, during
cloudy days, by increasing the tolerance level from £ = 0.25 to
& = 0.50, the false percentages of August (13.5%) and October
(7.42%) are significantly reduced to 9.86% (from 13.5%) and
5.08% (from 7.42%) respectively. In these cases, an additional
increase of threshold value leads to marginal improvements.
In conclusion, we need to adapt the choice of the threshold not
only considering the number of false positive, but also taking
into account a priori information on the weather variability of
the current season.

D. Policy Execution

In Figure 5a, we can observe the effects of the resource
management action on the computing system. The blue line
indicates the predictions of power budget, while the orange
one is the actual consumption of the computing system, under
the constraints set by the energy-aware resource allocation
policy. For a matter of space, we report just one of the
most interesting days, in which we experienced a certain
variability of the weather conditions. We can see how, during
the morning, the resource manager have aggressively forced
the system to operate in a “power saving mode”, minimizing
the consumption in order to facilitate the recharging process of
the batteries. This decision was also affected by the relatively
low levels of solar irradiance. Lately, around 12:45 PM, the
resource manager has relaxed the constraints (power budget
above 15W), allowing the benchmark application to squeeze
more performance from the platform (consumption of 6-7W).
The system switched back to the power saving mode, after
1:15 PM, when the charge level dropped to 35%. Around this
time, the weather conditions improved, allowing the batteries
to recharge up to 90% and to the resource manager to allocate
more processing power with respect to the previous hours.
Again, at 2:45 PM the power saving mode was set to compen-
sate the new drop of the battery charge level. This behaviour
repeated itself until 3:15 PM. From that time point onward, the
prediction module returned lower values of power budget, but
thanks to more stable weather conditions, the system reported
smoother battery charge variations until 4:30 PM. Finally, in

25/10 power data

—— powerbudget
consumption
204
15 A
=
10 A
\“ A

54 1 i
| \
[N
. 1 7 1]
11:45 12:45 13:45 14:45
time

\ \,
oW

15:45

16:45

(a) Power budget management

25/10 battery data

100

80

60

%

40 A

201

14:45 15:45 16:45

time

11:45 12:45 13:45

(b) Battery-pack charge level

Fig. 5. October 25: Resource management effects, with the energy-aware resource allocation policy running on the experimental environment.

the afternoon, the resource manager forced again a power
saving mode to retain the energy budget required to keep the
system running during the night time and then, resume the
workload execution the day after.

VII. CONCLUSIONS

We presented a novel approach to resource allocation for
energy-constrained embedded computing systems, by exploit-
ing weather forecast data from local sensors and from a remote
forecast provider. The approach is based on the combination
of the long-term prediction, provided by the remote weather
forecast service, with the correction mechanism based on the
local sensors readings. An energy-aware policy for a resource
manager has been developed and tested to verify the ability of
the system to survive even if the power source is not reliable.
A set of experiments on a realistic setup demonstrated the
adaptive behaviour of the system able to react to power source
variability. Future works may extend our approach in many
directions: for example, by improving the machine learning
algorithms on the weather prediction, by searching novel
approaches for weather sensor data fusion, or by developing
and testing different resource allocation policies.

ACKNOWLEDGMENT

This research was partially supported by RECIPE H2020
EU project (grant no. 801137). We thank Mr. Denis Molinari
for providing the experimental setup.

REFERENCES

[1] Reliable power and time-constraints-aware predictive management of
heterogeneous exascale systems. In SAMOS. ACM, 2018.

[2] The RECIPE Approach to Challenges in Deeply Heterogeneous High
Performance Systems. Microprocessors & Microsystems, 2020.

[3] P. Bellasi, G. Massari, and W. Fornaciari. Effective Runtime Resource
Management Using Linux Control Groups with the BarbequeRTRM
Framework. ACM Trans. Embed. Comput. Syst., 14(2):39:1-39:17,
March 2015.

[4] C. Bergonzini, D. Brunelli, and L. Benini. Algorithms for harvested
energy prediction in batteryless wireless sensor networks. pages 144—
149, June 2009.

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

L.Thiele C. Moser, D. Brunelli and L. Benini. Lazy Scheduling for
Energy Harvesting Sensor Nodes. IFIP International Federation for
Information Processing, January 2006.

Tania Kleynhans, Matthew Montanaro, Aaron Gerace, and Christopher
Kanan. Predicting top-of-atmosphere thermal radiance using merra-2
atmospheric data with deep learning. Remote Sensing, 9:1133, 11 2017.
H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh. Energy budget
management for energy harvesting embedded systems. In 2012 IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 320-329, 2012.

F. Kraemer, A. Ammar, D.and Briten, N. Tamkittikhun, and D. Palma.
Solar Energy Prediction for Constrained IoT Nodes Based on Public
Weather Forecasts. 10 2017.

Mohd Adib Mohammad Razi, Wardah Tahir, Noratina Alias, Lok-
man Hakim Ismail, and Junaidah Ariffin. Development of rainfall model
using meteorological data for hydrological use. International Journal of
Integrated Engineering, 5(1), Nov. 2013.

A. Nouman, A. Chokhachian, D. Santucci, and T. Auer. Prototyping
of Environmental Kit for Georeferenced Transient Outdoor Comfort
Assessment. ISPRS International Journal of Geo-Information, 8:76, 02
2019.

F. Reghenzani, G. Massari, and W. Fornaciari. A probabilistic approach
to energy-constrained mixed-criticality systems. In 2019 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
pages 1-6, 2019.

Cosmin Rusu, Rami Melhem, and Daniel Mossé. Multi-version schedul-
ing in rechargeable energy-aware real-time systems. Journal of Embed-
ded Computing, 1(2):271-283, 2005.

M. Severini, S. Squartini, and F. Piazza. Energy Aware Lazy Scheduling
Algorithm for Energy-Harvesting Sensor Nodes. Neural Computing and
Applications, 23, 12 2013.

N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy. Cloudy computing:
Leveraging weather forecasts in energy harvesting sensor systems. pages
1-9, June 2010.

N. Sharma, P. Sharma, D. Irwin, and P. Shenoy. Predicting solar
generation from weather forecasts using machine learning. pages 528-
533, Oct 2011.

A. J. Smola and B. Scholkopf. A tutorial on Support Vector Regression.
2003.

Sravanthi Chalasani and J. M. Conrad. A survey of energy harvesting
sources for embedded systems. In IEEE SoutheastCon 2008, pages 442—
447, 2008.

Y. Xie, Zuodong W., and Shaojun W. An efficient algorithm for
nonpreemptive periodic task scheduling under energy constraints. pages
128 — 131, 11 2005.

