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Abstract—Computing devices became part of our daily world.
But being physically accessible they are exposed to a very
large panel of physical attacks, which are most of the time
underestimated. These systems must include protections against
these attacks in order to keep user data secret and safe.

In this work, we argue that addressing the security require-
ments of embedded processors with independent countermea-
sures is not the most efficient strategy and may introduce security
flaws in the process. Instead, we suggest a more monolithic
approach to security design. Following this idea, we propose a
new efficient and flexible memory encryption & authentication
mechanism called CONFIDAENT, that can protect code and data
in embedded processors. On the top of this primitive, we build a
strong Control Flow Integrity (CFI) countermeasure. We describe
a RISC-V instruction set extension to support these mechanisms
and the compiler support needed in the LLVM framework. This
new countermeasure is developed on a modified RISCY RISC-
V core and its performances are evaluated on a FPGA target.
We conclude that a truly high-security can be achieved, with
an overhead factor of ×2.66 up to ×3.73 on execution time of
benchmarks programs.

I. INTRODUCTION

Embedded systems are nowadays omnipresent in our lives.

They can be found in many areas from the autonomous car

to the industrial Iot where safety and security are essential.

This is nevertheless a difficult problem to solve for objects

which have strong cost constraints and which are physically

accessible to any attacker. The past has shown with the Miraï

attack [1] for example that simple connected objects such as IP

cameras could cause a global denial of service on the Internet.

A. Security Challenges

Physical access to the devices requires a strong protection

of both the confidentiality and integrity of the code as well

as the data. Memory tampering allows the recovery of the

firmware, which opens the door to reverse engineering, the

first step towards an attack allowing copyright infringement,

or the simple understanding of proprietary algorithms. The

code can also be modified during a physical access to the

memory. This modification can be done during execution with

fault injection (by voltage or clock glitches), on instructions

or registers such as the Program Counter (PC) which points

to the next instruction to be executed. The code reuse attack

and its many variants (such as ROP [2], JOP [3] or return to

libc [4]) allow to modify the Control Flow Graph (CFG) and

to reuse parts of the original code in a malicious way. Stack

overflows also allow the CFG to be compromised with a data

buffer whose boundaries are not checked. It is then possible

to overwrite a return address of a function on the stack to

send the CFG back to a shellcode injected in the faulty buffer.

We can see that a real protection of the control flow cannot be

done by simply protecting the instruction sequences, but that a

protection of the integrity of the stack data, which constitutes

the real hinge of the CFG, is essential.

B. Existing Countermeasures

All these attacks are addressed in the literature one by one

with specific countermeasures. Thus, stack overflows are pre-

vented more or less successfully by Data Execution Prevention

(DEP) (e.g. the well-known NX bit of the x86 architecture), or

by Address Space Layout Randomisation (ASLR) [5]. These

countermeasures have been quickly bypassed by code reuse

attacks which propose to use legitimate code parts (called

gadgets) to execute any instruction sequences. The response

has been to further monitor the CFG to catch deviation

from the normal behavior by using Control Flow Integrity

(CFI) mechanisms. Abadi et al [6] first propose to apply

CFI by replacing vulnerable indirect jumps by code snippets.

Then solutions involving compilers protect the forward edges

by addition of appropriate protections at direct branch site

[7]. The return instructions are traditionally verified by a

shadow stack which stores a duplication of return addresses

to be compared with usual ones [8]. These fine-grained CFIs,

supported by hardware to maintain acceptable performances,

are the most promising solutions. However, these CFIs have

shown their limitations particularly because they do not really

address the protection of the stack content which is an essential

element of the CFG and the protection against faults on code

and data.

In order to overcome both fault injections and code reuse

attacks, it has been proposed to combine a CFI with an encryp-

tion of the instructions [9], [10] and finally with authenticated

encryption. This approach first appeared with SOFIA [11],

which proposes to encrypt instructions by associating them

with their PC and the previous PC in the CFG. A Message Au-

thentication Code (MAC) is added to this encryption to ensure

integrity. This integrity is verified in the stages following the

Decode stage in the pipeline and validated by a single signal.

Unfortunately, this signal is vulnerable to a fault injection

which can validate an illegal instruction. Another more recent
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approach called SCFP [12] proposes to link the internal state of

a cryptographic sponge function with the CFG. At each branch

or function return a patch is added to the internal state allowing

a single collision and thus a unique change of direction of the

CFG. Indirect jumps are also allowed but to a restricted set

of locations and require 4 patches per call. The interrupts are

managed by saving the internal state of the AE primitive which

can potentially be cumbersome. At the end, the performance

of the solution is attractive but it is shown on an example

without authentication or even sponge function.

We can see that if SOFIA and SCFP are looking to

effectively protect the CFG against modifications or reuse, they

give up protecting data-driven attacks such as stack overflows

even though the stack is the hub of the CFG, especially during

function calls. Moreover, their approaches are purely static and

do not handle real indirect jumps where the destination address

is only known at runtime, such as when calling a dynamic

library.

C. Contributions

In order to address all of the above vulnerabilities, we

propose, in line with SOFIA and SCFP, an approach that

breaks with the stacking of countermeasures and is more

holistic. Our solution is based on authenticated encryption of

both instructions and data. This has the merit of first detecting

fault injections such as DRAM rowhammers [13] or glitches

on the code and data and in particular on the stack. The

integrity check is no longer done at boot time like classical

secure boots which are long for small processors (it’s always

annoying to wait at boot time!) and then leaves the code

vulnerable to modifications. Integrity checking is now done

at runtime just before the Fetch stage for instructions and

before the Load/Store Unit (LSU) level for data. The CFI that

we call CONFIDAENT is done in the form of xored masks

with each instruction and which are specific to each Basic

Block. New instructions added to the RISC-V ISA ensure

the change of the mask’s root at the moment of a branch.

To manage indirect jumps, an encrypted mask is added in

the header of the first Basic Block called. Thus, there are no

restrictions on the destination of indirect jumps which can be

totally dynamic (switches, callbacks, or dynamic libraries are

managed). Finally, during function calls, the return address and

the mask necessary for decryption at this address are stored

on the stack in an encrypted way. An attacker who wants to

exploit a buffer overflow will need to know the mask used

where he wants to jump to. The guess will be difficult since

masks are secret.

We demonstrate the feasibility of this solution on FPGA

with a RISCY processor of the Pulpino platform [14] which

uses the RISC-V ISA [15]. An LLVM compilation toolchain

including the new instructions added at the backend has been

developed. The authenticated encryption step is done after the

link, which makes our solution compatible with binaries that

are already compiled (they will however not benefit from the

protections provided by our CFI). Overheads in code size and

CPU cycles number are in the same order of magnitude as

SCFP: from 0 to 36%. To this must be added a doubling of the

memory occupation for the storage of meta-data and integrity

tags.

D. Outline

In this paper, we first define a security framework with a

threat model and targeted attacks. Then, the architecture of

our solution will be described followed by a presentation of

the CFI and the required adaptation of the LLVM compiler.

Finally, we will discuss its performances and analyze its

security properties.

II. SECURITY FRAMEWORK

A. Threat Model

As we have seen, we assume that the attacker has physical

access to the device but is limited to elements that are poten-

tially external to the CPU such as RAM. He can then dump and

manipulate these memories at will, he will not have access to

the data in plain text. The inputs and outputs are accessible and

faults can be injected in the form of voltage or clock glitches

for example. On the other hand, we do not consider in our

model an invasive intrusion on the core. Similarly, we consider

side-channel attacks outside the scope of this study. Finally,

we place ourselves in the Dolev-Yao [16] threat model where

the attacker is capable of performing protocol-level attacks but

cannot break cryptographic primitives.

B. Targeted Security Properties

Faced with these threats, we define a set of security proper-

ties that our device will have to verify in the model described

in the previous section:

• Entry Protection: An attacker must not be able to jump

to any address in the code.

• Fault Attack: An attacker must not be able to inject faults

in the code or data.

• Stack Overflow: An attacker must not be able to inject

his own code.

• Code/Data integrity: An attacker must not be able to

change the code or data.

• Code reuse attack: An attacker cannot reuse existing

pieces of code.

• Code/Data confidentiality: An attacker must not be able

to decipher the code and the data.

• Replay attack: An attacker must not be able to replay

data already processed.

III. ARCHITECTURE

Encryption-based CFI hardware solutions generally consider

the encryption of instructions and not data. A joint encryption

of the two represents a challenge for the choice of the primitive

and its mode. Many constraints have to be taken into account

such as lightness in particular with the possibility of encrypt-

ing/decrypting with the same hardware block, low latency,

random access to memory byte by byte which requires a

nonce, iv or tweak and memory alignment for fast addressing.

Our encryption method must also have the ability to encrypt
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already compiled binaries. With these constraints in mind, we

looked for 128-bit security for confidentiality and 64-bit tags

for integrity. The recent NIST competition for lightweight AE

has resulted in many primitives that meet our requirements.

Most of them are defined by the update of an internal state with

which the plaintext is xored. This scheme matches well with

the encryption of a sequence of instructions. We have chosen

one of the finalists, ASCON [17], which fills our criteria.

However, if encryption must not to be the limiting factor of

CPU speed, operating instruction by instruction and data by

data is not realistic.
The data or instructions are therefore grouped in blocks

of 16 bytes (or 4×32-bit words) on our 32-bit architecture

(i.e. 128-bit ciphered text) associated with a 64-bit integrity

tag. Nevertheless the structure of the AE primitives obliges to

renew the nonce and thus requires that a part of it is stored

(Cf Figure 1). We thus put 32 bits of the nonce in a 64 bits

Fig. 1: Format of the Code or Data authenticated encryption

with a zoom on the metadata sub-block

part of metadata which is seen as authenticated data (AD

i.e. not ciphered but authenticated with the integrity tag). At

each store instruction of a new data, the nonce is changed

by taking 31 bits of the previous integrity tag. This saves an

implementation of an RNG. The missing bit is a NX bit (Non

Executable) which is set by the compiler to 1 for data and to

0 for instructions. This bit is checked by the Fetch stage of

the processor and in case this bit is equal to 1, an exception

is raised. This is a real simple proven hardware mechanism to

avoid stack overflow attack. The Nonce being on 128 bits, we

also have 32 bits which are defined by the address of the block

allowing us a random access to each data and a diversity of

encryption. The remaining 64 bits of the Nonce are considered

secret to contribute reinforcing security. With this management

by block, the writing of one byte of data can pose integrity

problems because it involves, by the decryption of a 128-bit

block (before being encrypted again), the validation of all the

other bytes. Indeed, they may not have been initialized and

therefore they must not have a valid integrity tag. To avoid

this inconvenience, we have used 16 bits (1 per byte) in the

authenticated data part that we call Encryption Validity Bit
(EVB) which goes from 0 to 1 during a valid writing of a

byte. Consequently, on reading only the bits set to 1 allow the

associated bytes to be considered as valid (provided that the

block integrity tag is also valid).
We then have a block size of 256 bits (128 bits of data/in-

structions, 64 of AD including 16 bits of EVB, 32 bits of

nonce and 16 useless bits set to 0, and 64 bits of integrity tag)

which allows a simple memory alignment to be addressed but

at the price of doubling the memory. The size of this block

can be lowered with the presence of a cache. For example, we

can have a 64 byte block of encrypted data with 16 bytes of

metadata and 16 bytes of MAC for an overhead of only 50% of

the memory occupancy but requiring the implementation of an

addition for its addressing. Figure 2 shows the position of the

encryption/decryption block between the instruction memory

and the data memory for a RISCY core. It provides an average

of just over 1 de/encryption per CPU clock cycle thanks to two

128-bit buffers at the memories input/output. The loading of

the key and the secret part of the Nonce is done through the

debug port which can be locked by a 128-bit password.

Fig. 2: RISCY Core with ASCON AE block and the two

buffers enabling a sharing between Instruction and Data

encrypted memories. Debug lock mechanism with 128-bit

password to store the cryptographic key.

IV. CONTROL FLOW INTEGRITY

A. Overview

Control Flow Integrity is ensured by a lightweight masking

scheme applied to the instructions, the latter can be built on top

of the memory encryption mechanism described previously.

In a nutshell, the fetch logic of the processor holds a mask

register named m, which is updated at each cycle by applying a

function called next (see Definition IV.1) to the current value

of m. The processor mask m is combined at each cycle with

data coming from instruction memory using a XOR to produce

the plain instruction. While our proof of concept implements

the next function as a very simple permutation, more complex

functions may be selected, such as a LFSR.

Definition IV.1. The function next : {0, 1}32 → {0, 1}32 is

defined as the 32-bit DES permutation whose bit association

is shown in Table I. Note that the hardware implementation

of such permutation has almost no cost.

TABLE I: Bit permutation, adapted from the DES cipher

0 1 2 3 4 5 6 7
0 16 7 20 21 29 12 28 17
8 1 15 23 26 5 18 31 10
16 2 8 24 14 32 27 3 9
24 19 13 30 6 22 11 4 25
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For a given sequence of instructions (i0, i1, . . . , in),
the masked instructions stored in memory (before being en-

crypted) will be: (i0⊕m0, i1⊕next(m0), . . . , in⊕next(mn−1)).
Where the initial mask m0 is picked randomly and the rest of

the sequence mi = next(mi−1) is computed by updating the

previous mask. Branchless programs can be easily executed

using this scheme: the instructions are stored in memory in

masked form, and at each cycle the processor unmasks the

instruction using m and updates it. The processor only needs

the initial mask of the sequence m0. However, when a branch

is taken, the value of m must change to the mask of the

target location. This simple observation implies two important

requirements:

1) There should be a mechanism to change the mask on

branches to a value other than next(m)
2) The mask used at the target address of any branch (both

direct and indirect) must be known

To address these requirements, we describe a RISC-V [15]

ISA extension that allows programmers to manipulate masks

using additional instructions and registers. This extension was

designed to be highly flexible and be compatible with existing

programs. Thus, this extension allows to apply CFI on very

complex programs, for example we successfully compiled

the C library Newlib [18] with CFI and run programs that

use it. While programmers can use these extra instructions

explicitly, manually managing masks can be cumbersome. A

better approach that we develop in this paper is to leverage

compiler to handle the mask management for us.

B. Instruction Set Extension

The RISC-V ISA extension we proposed is called ECR,

which stands for Encryption Control Registers. It adds a new

register bank (holding up to 16×32-bit registers) and four

new instructions: ecr.lui, ecr.addi, ecr.lw and ecr.sw. An

additional instruction ecr.enter is also reserved. It should

never be executed, its sole purpose is to reserve a mask slot

in code. Because this instruction has a unique encoding, the

masking software can detect them and replace them through

the relocation mechanism (see subsection IV-E). The instruc-

tions semantics are described in Table II. Four important ECR

registers are:

• m, the current mask value used by the Fetch stage to

retrieve the plaintext of the current instruction. This

register is implicit, its value is not directly accessible to

the programmer.

• emb, the mask value to be used as m if the next branch

is taken.

• emr, a return mask which contains the value of next(m)
when the last jal instruction was executed.

• eme, which contains the value of next(m) when the

last exception was taken. It is the analogous of emr for

exceptions.

• emt, a configuration registers which defines the masks to

be used when jumping to an exception.

The registers emr and eme are updated automatically by the

processor when executing any jump (for emr) or jumping to

an exception handler (for eme).

TABLE II: ECR instructions semantic

Instruction Pseudo-code
ecr.lui ecrd , imm20 ECR[ecrd]← imm20� 12
ecr.addi ecrd , ecrs , imm12 ECR[ecrd]← ECR[ecrs] + signext(imm12)
ecr.lw ecrd , offset(rs1) ECR[ecrd]←MEM [rs1+ signext(offset)]
ecr.sw ecrt , offset(rs1) MEM [rs1+ signext(offset)]← ECR[ecrt]

C. Transformation of common code structures

As we have seen, each Basic Block has its own m0 mask

which must be changed at each direct or indirect branches.

Conditional branches and direct jumps are managed by loading

in the emb register the new m′o mask of the Basic Block the

CPU is jumping to. As the mask is on 32 bits, the loading of

an immediate value of a register requires 2 instructions:

ecr.lui emb , m′0, 20 ecr.addi emb , m′0, 12

where m′0, 20 are the 20-bit MSB of m′0 and m′0, 12 are the LSB

12-bit of m′0 (Cf Figure 3). The next instruction is therefore

a direct jump or a conditional branch that will automatically

change the current mask register m (m ← emb). This instruction

also puts next(m) in the emr register to keep track of the mask

necessary to decipher the sequence of instructions in case of

a non-leaf function return (emr ← next(m)).

Fig. 3: Modification of the mask during a conditional branch or

a direct jump. For the ease of understanding, each instruction

has a MAC whereas it is only 1 MAC for 4 instructions in

practice

Fig. 4: Modification of the mask during an indirect jump. The

first Basic Block of the called function has a ciphered header

which is the mask required to decipher it. For the ease of

understanding, each instruction has a MAC whereas it is only

1 MAC for 4 instructions in practice

For nested function calls, the return mask is stored on

the stack along with the return address. This is done by the
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instruction ecr.sw emr , offset(rs1) which loads the mask

into emr at offset(rs1). Since the data is encrypted, the

masks stored in main memory are encrypted as well. The

attacker is then forced to make a brute force attack to find the

right mask. This structure allows us to easily manage indirect

jumps. Indeed, the instruction jalr behaves as a jal with

respect to the registers m, emb and emr. It also writes next(m)
into emr. The ecr.lw emb , offset(rs1) instruction loads the

mask stored on the stack in the register emb before any jalr

instruction. Any function can also have a mask as the header

of its first Basic Block, which can then be retrieved by the

ecr.lw instruction and thus be called indirectly (Cf Figure 4).

This approach has the advantage over the state of the art to

allow dynamic calls to libraries for example, calls to C++ class

methods via vtables, switch tables and many other things. This

mechanism does not compromise protection against code reuse

attacks because the masks remain secret and must be found

by brute force by the attacker if he wants to use parts of the

legitimate code.

On the other hand, a stack overflow attack is still possible

because an attacker can take advantage of a buffer whose

bounds are not checked to overwrite not only the return address

of the function on the stack as usual but also the return

mask with a mask of his choice with which he will have

instrumented his shellcode. This masked shellcode is then put

in the faulty buffer. It is only the hardware NX bit mechanism,

of negligible cost, that avoids the execution of this shellcode

and thus the exploitation of the vulnerability.

The proposed CFI scheme allows to handle exceptions

without trouble. Indeed, exceptions can be viewed as jumps

(to a specific handler) that can be taken before executing any

instruction. Thus, in order to take an exception the proces-

sor needs 1) to setup the mask associated with the current

exception handler and 2) when done, to restore the source

instruction mask in order to resume execution. Fortunately,

the exception return mask is already available in the ecr.eme
register. Configuring the mask of the exception handler is done

by using the ECR register emt presented previously. Thus,

a typical boot code would now have to setup the handler

appropriately using a code snippet such as (given using RISC-

V GNU assembly syntax):

_start: # Setup trap handler
la t0, handler
csrw mtvec, t0
ecr.lw emt, -4(t0)
# ...
j main

ecr.enter # Allocate a mask for the handler
handler: # Handler code

# ...
eret

This scheme can also support vectored exceptions. For that,

the processor will set the mask to emt+4 ∗ exceptionnumber.

Of course, the exception table entries must be masked appro-

priately on the compiler side.

D. Compiler Support
The CFI mechanism proposed relies on a compiler for

inserting appropriate mask manipulation instruction. We ex-

tended the LLVM [19] compiler RISC-V backend to support

this extension. The modifications are done in 3 passes:

1) A first pass allocates for each non-leaf function stack slots

for return masks

2) A second optional pass takes care of splitting basic blocks

3) A third pass inserts the appropriate ecr.* instructions,

mask saving instructions in the prologue epilogue and

pairs of ecr.addi, ecr.lui before direct jumps.

E. Applying CFI on Executable Files
While the algorithm for performing the masking is concep-

tually simple, it has lots of subtle corner cases. Thus, we make

the effort to formalize the data structures and algorithms used.
The CFI algorithm workflow is depicted in Figure 5. The

masking algorithm takes as input a sequence of CFI regions,
which are continuous regions of memory. An ELF file for

instance may contain different segments (.text, .data) that

resides at completely different memory addresses, a CFI region

is associated to each memory segment to be analyzed.
1) Analysis: A first pass performs a whole program analysis

in order to build CFI chunks and find relocations. A CFI

chunks is defined as a sequence of instructions whose masks

are only updated using the next function. Given a CFI chunk,

a single mask is generated for the first instruction, then all

other masks are derived. While creating CFI chunks, CFI re-

locations are also collected. CFI relocations are the analogous

of relocations used in linkers (such as GNU ld). Namely, a

relocation is made of a target address (or equivalently a mask,

since a single mask is associated with each program address)

and a relocation type. Three types of relocations are supported:

1) RELOC_IMM20: 20 bit relocations, the upper 20 bits of

the instruction will be replaced by the 20 upper bits of

the target mask. This relocation appears in ecr.lui in-

structions (for example, ecr.lui emb, %hi(loop)
involves such a relocation).

2) RELOC_IMM12: 12 bit relocations, the lower bits of

the instructions will be replaced by the 12 lower bits of

the target mask. This relocation appears in ecr.addi
instructions, as in ecr.lui emb, %lo(loop).

3) RELOC_IMM32: 32 bit relocations, the instruction is

completely replaced by the target mask. This type of

relocation is emitted for each ecr.enter instructions

encountered.

The algorithm for performing the analysis is shown in algo-

rithm 1. It disassembles all CFI regions and looks for ecr.*
instructions to build appropriate relocations. Furthermore, it

uses a very reduced RISC-V interpreter (called scpu in

algorithm 1) to reconstruct branch target values. Indeed, we

need to detect reliably direct jumps to the next instructions

(such as j 4), which are interpreted as explicit mask change

request. Then, CFI chunks are divided by the algorithm in two

cases: if the current instruction is an ecr.enter or when a

direct jump to the next instruction is found.
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Fig. 5: Data flow of the CFI masking algorithm

Algorithm 1: CFI Analysis Algorithm

Input: CFI Regions to be analyzed
Output: C,R, respectively a set of CFI chunks and relocations

C,R ← ∅, ∅
for (vma, instruction) ∈ CFI Region do

opcode← disassemble(instruction)
scpu.eval(instruction)

if opcode = ecr.enter then
R+ = RELOC_IMM32(vma+ 4, instruction)
Start New Chunks

else if opcode = ecr.lui then
R+ = RELOC_IMM20(vma, instruction)

else if opcode = ecr.addi then
R+ = RELOC_IMM12(vma, instruction)

Append instruction to the current chunk

if scpu.is_direct_branch(instruction) and
target = vma+ 4 then

/* Explicit mask change */
Start New Chunk

end
return B

2) Masking: Once CFI chunks are properly constructed,

the rest of the algorithm is straightforward. First, the masks

for the whole program are computed. More precisely, a RNG

is used to sample a 32-bit mask for the first instruction of

each CFI chunk. Then, the next function is called repeatedly

to generate the masks for the chunk. It is important that all

masks are computed first, as relocations might refer to mask

at any point of the program. For example, the mask of loop
in Figure 5 must be known for resolving relocations before

the loop_end label, generating only masks for chunk entry

is not sufficient since the loop label appears in the middle of

a block.

All relocations are iterated in order and applied: some bits

of the instructions are modified according to the relocation

type and the target mask. A last pass applies masks to the

whole program by doing a bitwise exclusive OR (XOR)

with the masks generated and the instructions. Obviously, the

relocations must be patched before doing the masking.

3) Use Shorter Masks: A slight modification of the algo-

rithm described above allows to use shorter masks, for instance

only represented on 20 bits. This is interesting, since shorter

masks means less size overhead and better performances

(fewer instructions are needed to modify the mask value). In

order to support shorter masks, the following modifications

are required:

• Enable Basic Block boundary splitting in the compiler

discussed in the subsection IV-D.

• Emit only ecr.lui emb for defining the mask (the

ecr.addi instruction is not emitted).

• In the analysis pass of the masking program (algo-

rithm 1), create a chunk for each direct branch entry

A full example is shown on Figure 6. Even if the masking

program generates much more CFI Chunks (4 instead of 2 for

32-bit masks), the overall number of instructions is not highly

affected. On this small example, the number of instruction

remains the same. Interestingly, the number of instructions in

the critical path (the body of loop) has two less instructions,

which will make the code faster.

Fig. 6: Difference between a program compiled with 32-bit

(left) and 20 bit masks

V. SECURITY ANALYSIS

The security of the proposed solution is ensured by a first

layer of data and code authenticated encryption based on

the ASCON primitive with a 128-bit key associated with a

32-bit part of secret nonce which ensures a complexity of

160 bits (Code/data confidentiality). The integrity tags are

64-bit long which, with the birthday paradox, reduces the

collision search to 32 bits. However for each address, the

nonce changes and thus any brute force attack has to start

again for different addresses. The security of the instructions

also relies on a second level of encryption provided by the

secret masks of each basic block. In the case of a fault injected

on a mask, the tag will not detect an error and the CPU will

continue to execute false instructions until it encounters an

illegal instruction. This happens very quickly (usually 2 to 3

instructions) given the sparse ISA of RISC V. This concern has

been well documented in the SCFP [12] solution. Changing

the mask at each instruction prevents an attacker from jumping

indiscriminately at any instruction of a basic block and from

permuting line of code(Entry Protection). On the other hand,

the integrity tag allows to efficiently avoid data faults and thus
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protect indirect jumps (Fault Attack, Data/Code Integrity).

To carry out a code reuse attack, the attacker will have to

guess blindly (because of the ASCON encryption) the 32-bit

mask allowing the CPU to correctly decipher the instruction

he wants to jump on. It is therefore difficult to generalize

ROP type attacks requiring several gadgets (Code Reuse
Attack). We have seen that the authenticated encryption of

code and data alone does not prevent stack overflows from

being exploited. On the other hand, the encryption structure

used with metadata allows a simple use of a hardware NX bit

which makes the stack un-executable and therefore prevents

the execution of shellcode (Stack Overflow). Finally, data

encryption requires protection against replay attacks. Data

memory integrity is generally provided by very heavy Merkle

tree structures. The implementation we have done does not

take into account this security objective for the moment.

Nevertheless, the authenticated encryption structure described

in this article opens the way to much simpler possibilities to

deal with this problem. This will be the subject of further work

(Replay attack).

VI. PERFORMANCE EVALUATION

A. Control Flow Integrity

The CFI countermeasure presented in section IV was

implemented in a RISCY core from the Pulpino project [14].

We compare the cost of the different CFI variants in terms

of execution time and program size. The RISCY core be-

ing tailored for IoT applications, we chose a subset of the

Embench-IoT benchmarks [20] for our evaluation. Some of

these benchmarks make calls to the C-library. To support them,

we successfully compile and link a Newlib [18] C-library with

CFI enabled. This highlights the robustness of the proposed

mechanism. The benchmarks are all compiled in -O2 mode,

which is the common compilation mode for general-purpose

applications. The following CFI variants are compared:

• base: the program is compiled without CFI.

• cfi: the program is compiled with CFI.

• cfi-split: the program is compiled with CFI and the mask

is changed for each basic block of the program.

• cfi-split20: same as the cfi-split mode, but only the 20

bits upper bits of the masks are used (lower bits are set

to zero).

Each benchmark is executed on the FPGA implementation of

the RISCY core, from which we retrieve the exact number

of clock cycles. The size of the executable is obtained by

measuring the size of the .text section given by GNU

binutils size tool. The binary is stripped from any uncalled

functions (using gc-sections), thus the .text section

only includes code that will be executed and no "dead" sections

from the C-library. We then compute the relative overhead in

terms of cycle and size.

The cycle overhead measurements are shown in Figure 7.

The most performant is the cfi-split20 variant, which is not

obvious since it inserts additional direct jumps to any basic

block. However, having the 20 bit masks reduces the number

instructions to setup the mask in loops and hence, improves

performances compared to the base CFI version. The overhead

for this variant ranges from 0.08% to 36% in the worst

case, which is pretty good comparing current state-of-the art

solutions. Interestingly, the cryptographic benchmarks (nettle-

aes and nettle-sha256) have a very low overhead (lower that

4%). This is due to a low number of basic blocks, as most of

the code is unrolled in such benchmarks.

(a) Graphical results
benchmark base cfi cfi-split cfi-split20

aha-mont64 4,983,621 6,536,843 (+31.17%) 7,272,503 (+45.93%) 6,311,849 (+26.65%)

crc32 4,159,221 5,645,549 (+35.74%) 5,646,133 (+35.75%) 5,348,729 (+28.60%)

edn 4,778,450 5,510,499 (+15.32%) 5,545,619 (+16.05%) 5,171,863 (+8.23%)

huffbench 3,931,101 5,028,320 (+27.91%) 5,491,008 (+39.68%) 4,786,819 (+21.77%)

matmult-int 2,808,107 3,161,533 (+12.59%) 3,166,417 (+12.76%) 2,990,772 (+6.50%)

nettle-aes 3,342,817 3,478,669 (+4.06%) 3,527,257 (+5.52%) 3,448,319 (+3.16%)

nettle-sha256 3,692,382 3,880,247 (+5.09%) 3,907,251 (+5.82%) 3,813,947 (+3.29%)

nsichneu 3,304,837 4,131,404 (+25.01%) 4,131,404 (+25.01%) 3,307,563 (+0.08%)

slre 4,510,608 6,376,640 (+41.37%) 7,225,528 (+60.19%) 6,144,376 (+36.22%)

statemate 5,212,495 6,261,268 (+20.12%) 6,458,060 (+23.90%) 5,939,445 (+13.95%)

ud 2,803,095 3,224,836 (+15.05%) 3,487,836 (+24.43%) 3,214,037 (+14.66%)

(b) Raw results

Fig. 7: Evolution the number of cycles for different bench-

marks

The size overhead measurements are shown in Figure 8. Un-

fortunately, the embench benchmarks remain "small" bench-

marks by design, thus these results should be interpreted with

care. The overall CFI overhead lies in the range 0%-40%

range. Here, the cfi and cfi-split20 variants are the best and

only differs by a few percents.

B. Memory Confidentiality and Integrity

CFI and memory encryption must be used conjointly for

the countermeasure to be secure. However, regarding per-

formance evaluation, the memory encryption mechanism can

be studied separately. The current memory encryption engine

implemented on FPGA uses a single ASCON instance shared

between the instruction and data memory. It can perform

both encryption and decryption and has a latency of 4 CPU

clock cycles. This is achieved by dividing the ASCON clock

(250 MHz) 10 times to obtain the CPU clock (25 MHz) (Cf

Figure 2). In results shown in Table III, we only provide results

for the most efficient CFI profile which uses 20-bit masks. In

our current proof of concept, the memory encryption overhead

lies between ×2.32 and ×3.27 in the worst case.
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(a) Graphical results
benchmark base cfi cfi-split cfi-split20

aha-mont64 5,264 6,756 (+28.34%) 7,548 (+43.39%) 6,776 (+28.72%)

crc32 3,152 4,120 (+30.71%) 4,384 (+39.09%) 4,096 (+29.95%)

edn 5,624 6,652 (+18.28%) 7,060 (+25.53%) 6,680 (+18.78%)

huffbench 4,584 6,216 (+35.60%) 6,900 (+50.52%) 6,156 (+34.29%)

matmult-int 4,296 5,180 (+20.58%) 5,504 (+28.12%) 5,204 (+21.14%)

nettle-aes 15,360 16,708 (+8.78%) 17,092 (+11.28%) 16,580 (+7.94%)

nettle-sha256 8,855 9,955 (+12.42%) 10,351 (+16.89%) 9,935 (+12.20%)

nsichneu 18,440 24,312 (+31.84%) 25,980 (+40.89%) 22,696 (+23.08%)

slre 7,002 9,834 (+40.45%) 11,130 (+58.95%) 9,542 (+36.28%)

statemate 8,092 10,976 (+35.64%) 11,900 (+47.06%) 10,420 (+28.77%)

ud 2,632 3,504 (+33.13%) 3,804 (+44.53%) 3,484 (+32.37%)

(b) Raw results

Fig. 8: Evolution of the size of the .text section

TABLE III: Cycle cost of memory encryption. The overhead

is computed between cfi-split20 and cfi-split20-xmem.

benchmark base cfi-split20 cfi-split20-xmem
aha-mont64 4,983,621 6,311,849 15,316,543 (+142.66%)
crc32 4,159,221 5,348,729 13,370,535 (+149.98%)
edn 4,778,450 5,171,863 13,764,446 (+166.14%)
huffbench 3,931,101 4,786,819 14,124,502 (+195.07%)
matmult-int 2,808,107 2,990,772 7,946,961 (+165.72%)
nettle-aes 3,342,817 3,448,319 8,560,447 (+148.25%)
nettle-sha256 3,692,382 3,813,947 9,253,494 (+142.62%)
nsichneu 3,304,837 3,307,563 9,847,562 (+197.73%)
slre 4,510,608 6,144,376 16,942,249 (+175.74%)
statemate 5,212,495 5,939,445 19,456,443 (+227.58%)
ud 2,803,095 3,214,037 7,461,564 (+132.16%)

VII. CONCLUSION

In this paper we show a new way to deal with the stack

of countermeasures thanks to authenticated encryption of both

code and data for assurance of confidentiality and integrity

at runtime, protection against code reuse attacks and stack

overflows. This encryption structure allows data writes at

byte granularity and the scheme enables efficient CFI by

adding a second level of masks on the instructions and new

instructions to manage them. In particular, data encryption

supports indirect jumps without restrictions allowing all the

dynamic programming subtleties offered by today’s languages

and OSes. An LLVM RISC-V compiler has been modified in

this sense with an encryption step pushed back after the linker.

This allows easy encryption of already compiled libraries. The

FPGA proof of concept on a RISCY core which shows that

the overhead in terms of code size and number of cycles is

really dependent of the program and falls between 0% to 36%

in our benchmark. The integrity of data and code forces us to

double the memory occupancy. The increase in computation

times by a factor of 2 to 3 is due to the latency introduced by

the sole ASCON instance switching between data and code.

The addition of caches or the duplication of ASCON will

drastically improve this drawback. This encryption structure

of both data and instructions gives us a glimpse of further

possibilities for lightweight protection against replay attacks

or spatial and temporal memory safety concerns.
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