
05/05/2024 15:28

A RISC-V-based FPGA Overlay to Simplify Embedded Accelerator Deployment / Bellocchi, Gianluca;
Capotondi, Alessandro; Conti, Francesco; Marongiu, Andrea. - (2021), pp. 9-17. (Intervento presentato al
convegno 24th Euromicro Conference on Digital System Design, DSD 2021 tenutosi a Palermo nel 1-3
Settembre 2021) [10.1109/DSD53832.2021.00011].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

This is the post peer-review accepted manuscript of:

Bellocchi, G., Capotondi, A., Conti, F., & Marongiu, A. (2021, September). A RISC-V-based FPGA
Overlay to Simplify Embedded Accelerator Deployment. In 2021 24th Euromicro Conference on
Digital System Design (DSD) (pp. 9-17). IEEE.

Doi: https://doi.org/10.1109/DSD53832.2021.00011

The published version is available online at: https://ieeexplore.ieee.org/document/9556494

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works

A RISC-V-based FPGA Overlay to Simplify
Embedded Accelerator Deployment

Gianluca Bellocchi∗, Alessandro Capotondi∗, Francesco Conti †, Andrea Marongiu∗
∗University of Modena and Reggio Emilia, Modena, Italy †University of Bologna, Italy

Email: ∗name.surname@unimore.it †f.conti@unibo.it

Abstract—Modern cyber-physical systems (CPS) are increas-
ingly adopting heterogeneous systems-on-chip (HeSoCs) as a
computing platform to satisfy the demands of their sophisticated
workloads. FPGA-based HeSoCs can reach high performance and
energy efficiency at the cost of increased design complexity. High-
Level Synthesis (HLS) can ease IP design, but automated tools
still lack the maturity to efficiently and easily tackle system-
level integration of the many hardware and software blocks
included in a modern CPS. We present an innovative hardware
overlay offering plug-and-play integration of HLS-compiled or
handcrafted acceleration IPs thanks to a customizable wrapper
attached to the overlay interconnect and providing shared-memory
communication to the overlay cores. The latter are based on the
open RISC-V ISA and offer simplified software management of
the acceleration IP. Deploying the proposed overlay on a Xilinx
ZU9EG shows ≈ 20% LUT usage and ≈ 4× speedup compared
to program execution on the ARM host core.

I. INTRODUCTION

Modern cyber-physical systems (CPS) are adopting increas-
ingly high degrees of autonomy in their designs. Increased
autonomy requires adequate on-board smart sensing and com-
puting capability to support safe decision making, based on
large amounts of data that is sensed, analyzed and understood
in real-time. Key to providing such computing power within
the tight energy budget of typical CPS is the adoption of high-
end embedded systems-on-chip based on multi-core CPU plus
highly parallel acceleration logic like GPGPU or FPGA.

FPGA-based heterogeneous systems-on-chip (HeSoCs) are
being increasingly adopted in this context, particularly when
streaming data sources are involved [1] or when Machine
Learning (ML) and Deep Learning (DL) inference is con-
cerned [2], [3]. A comparative study of FPGA, GPU, and
FPGA+ASIC in-package solutions for persistent DL has shown
that FPGAs can offer 2.7× (FP32) to 8.6× (INT8) lower
latency than GPUs across RNN, GRU, and LSTM workloads
from DeepBench [4]. The capability of flexibly defining par-
allel, non-Von-Neumann processing logic and custom memory
hierarchies, all within contained power envelopes, makes the
FPGA an ideal candidate for acceleration. The main limiting
factor in the adoption of FPGAs is the arduous development
process. FPGA accelerators often leverage full-custom design
flows to achieve maximum performance, using conventional
RTL hardware design techniques, and requiring low-level hard-
ware knowledge and a long and complex design process.
Coupled with very long compilation times, this often results in
significant productivity issues. EDA tool vendors have widely
adopted High-Level Synthesis (HLS) tools to address this issue.

However, while HLS allow designers to focus on high-level
functionality instead of low-level details, automated tools still
lack the required maturity to efficiently and easily tackle
system-level integration of the many hardware and software
blocks included in a modern CPS.

One alternative technique for improving design productivity
is to use a virtual hardware representation that overlays the
original FPGA fabric, referred to as an overlay architecture [5].
Overlays are programmable, coarse-grained hardware abstrac-
tion layers on top of FPGA hardware, offering a higher-
level programming approach. Overlays also mitigate the slow
compilation problem by avoiding the complex FPGA design
flow – resulting in improved design productivity – and offer the
advantage of rapid swapping of architectural blocks, as coarse-
grained overlay architectures have smaller configuration data
sizes than fine-grained FPGAs.

In this paper, we present an innovative overlay that simpli-
fies the adoption of Commercial-off-the-Shelf (COTS), FPGA-
based HeSoCs coupling physical host CPU and DRAM with
programmable logic (PL). Our overlay is deployed on the PL
of such HeSoCs and leverages soft-cores for flexible control
of user-defined, application-specific accelerators. Different ac-
celerators can flexibly operate and re-configure their operation
without the costly need for host intervention, thus avoiding
significant performance degradation. Normal accelerator op-
eration and accelerator reconfiguration can both be achieved
via standard computation offloading from the host CPU to the
soft-cores (e.g., OpenMP v4.x+). The user can rely on any
methodology of his/her choice to design the accelerators (e.g.,
HLS); the overlay includes dedicated logic (the wrapper) to
provide plug-and-play HW/SW integration of such accelerators.

Our experimental setup explores an instance of the proposed
overlay deployed on a Xilinx ZU9EG MPSoC. The results
show that the overlay alone uses ≈ 23% LUT, ≈ 12% FF
and ≈ 3.8% BRAM resources. The performance is comparable
to heavily hand-optimized Vivado codes (obtained with much
higher developer effort compared to our solution) and 4.08×
faster than their ARM host core counterpart.

The rest of this paper is organized as follows: Section II
describes related work and introduces the architectural blocks
from which we build our proposed architecture. Section III
presents our overlay and the methodology for integrating
custom-designed accelerators. Section IV discusses our exper-
imental setup and results. Section V concludes the paper.

9

TCDM
B

an
k

B
an

k

B
an

k

B
an

k...

DMA

RV
core

RV
core

RV
core

...

Shared L1 $

Low-Latency Interconnect

Fig. 1: PULP cluster.

SOURCE/SINK

ACCELERATOR
DATAPATH

CONTROL
FSM

REGISTER
FILE

FIFO

ENGINE

SOURCE/SINK

SOURCE/SINK

... ...

IN
TE

R
C

O
N

N
EC

T

FIFO

FIFOto
 L

ow
-L

at
en

cy
In

te
rc

on
ne

ct

to Peripheral
Interconnect

STREAMER

CONTROLLER

Fig. 2: Template of a HWPE. [6].

L1 $
ARM CPU

...

MMU

L2 $

L1 $

MMU

L2 $

Coherent Interconnect

ARM Cortex-A
HOST processor

PMCA

RAB

...

L2
Mem

So
C

 B
us

System Interconnect

Memory Controller

Main Memory

L1
Mem

Cluster

L1
Mem

Cluster

ARM CPU

LEGENDA
FPGA

HARD IP

Fig. 3: HERO hardware architecture.

II. BACKGROUND

A. Related Work

System-level design (SLD) is one of the main challenges
to be faced in the construction of CPS, which are composed
of multiple hardware and software modules. The accelerator-
rich architecture of Chen et al. [7] employs an automated flow
with HLS tools, accelerator virtualization and a system-level
integration strategy to reduce the engineering cost. Differently
from our case, the architecture does not leverage HeSoCs but
employs the FPGA for verification purposes, the authors’ main
goal being to provide guidelines for ASIC implementation.

The overlay architecture proposed by Ng et al. [8] consists
of a RISC-V-based soft-core with ISA extensions to imple-
ment runtime transfer of control to a tightly-coupled hardware
accelerator. Similar to our work, the authors demonstrate that
hybrid software-hardware applications achieve comparable per-
formance to pure-hardware implementations. On the contrary,
our overlay concept embraces the whole architecture supporting
the operation of the accelerators. Mantovani et al. [9], [10]
proposed a methodology for heterogeneous SoC design that
combines a modular tile-based architecture with a variety of
flows for the design and optimization of accelerators. Lomuscio
et al. employ a library of hardware kernels that can be loaded
on-the-fly on FPGAs in partial reconfigurable PL portions [11].
The design of the kernels is accomplished with tools such
as Vivado HLS and wrapped similarly to our proposed flow.
The authors exploit an IP-Wrapper to supply the accelerator
with an interface to the surrounding environment. Our solution
adopts a cluster-based architecture, enabling important hard-
ware optimizations on the hardware kernels in terms of memory
bandwidth and computation parallelism.

Other critical aspects in the design of hardware overlays are
the target frequency and the memory bandwidth. To cope with
these problems, Gray proposes a shared-memory cluster-based
architecture [12], including a massively parallel accelerator ar-
ray based on a RISC-V core. This solution eases system design
through software implementations of heterogeneous applica-
tions, and a NoC architecture to cope with system bandwidth.
Compared to our overlay, the nature of the acceleration resource
is different since our overlay exploits hardware workloads and
a local soft-core to implement multi-accelerator interaction.

A typical downside of overlay architectures is a conspicuous
use of logic resources, resulting in considerable implementation

overheads. Interconnection networks and storage elements are
typically the most area-hungry components. Li et al. tackle
resource overhead proposing a time-multiplexed overlay so-
lution employing a simple linear interconnect [13]. Taras et
al. demonstrate that optimizing the overlay infrastructure on
the features of the underlying FPGA architecture is another
beneficial strategy to face performance and area overheads [14].

Concerning programmability, Coole et al. investigate virtual
architectures [15] implemented in between user designs and
the physical device to abstract the FPGA fabric. The strategy
enhances ease of use, system portability, and reduces compila-
tion times. Again, the main drawback is the area overhead that
the authors tackle through optimization techniques targeting
specific application domains. Wilson et al. [16] presented an
overlay-based infrastructure for FPGA development. Despite
some similarities with our design key features, this work
focuses mainly on design and implementation timing improve-
ment, with no in-depth assessment of the application-level
performance achievable with their solution. We believe our
proposed overlay architecture could synergistically co-operate
with most of these approaches.

B. The PULP Project and HERO

The Parallel Ultra Low Power (PULP) Platform is an
open, scalable HW/SW research and development platform
aimed at exploring highly parallel architectures for ultra-low-
power processing [17]. PULP includes a state-of-the-art micro-
controller system, with efficient 32-bit [18] and 64-bit imple-
mentations [19] based on the open-source RISC-V instruction
set architecture, and a multi-core platform based on a scalable
cluster architecture. A PULP cluster, depicted in Figure 1,
consists of a parametric number of cores compliant to the
RV32IMC ISA and enhanced with DSP-like extension for
performance boost and code size reduction. The cores in the
cluster share data through a multi-banked, L1 Tightly-Coupled
Data Memory (TCDM) and a low-latency interconnect. Data
are moved in and out of the TCDM via a DMA engine.
Instruction caching leverages a shared IP to minimize code
replication, given the single-program, multiple-data execution
model primarily targeted by this type of architecture [20].

Hardware Processing Elements: PULP clusters can be en-
hanced with application-specific accelerators, called Hardware
Processing Elements (HWPE) [21], to deliver higher levels of

10

Legenda
Accelerator

Datapath

Arch. PM

C

/
NB

Arch. SM
Memory

Data port

Interconnect

/

/

/

/
N

M
EM

NA

NB

NC

C
B

Dp

Dp

Dp

A

C
B Mem

NAA /

/
NC

Dp

Dp

Dp

Mem

Mem

Mem

A
cc

el
er

at
or

 d
es

ig
n

flo
w

In
te

rc
on

ne
ct

Fig. 4: Private-memory (PM) vs. Shared-memory (SM)
Accelerator-based Architecture Models.

performance and energy efficiency for specific tasks. Unlike
many accelerator designs HWPEs do not necessarily rely on an
external DMA to feed them with input data and extract output
data, and they are not tied to a single core. Instead, they operate
directly on the same TCDM that is shared by other cores in
the cluster, with memory-mapped control through a peripheral
interconnect. HWPE execution can be readily interspersed with
software running on the cores, as all that needs to be exchanged
between the two is a set of pointers.

Practical HWPE implementations have been proposed for
several applications, including convolutional [22] and binary
neural networks [23], but the concept can be generalized. Fig. 2
depicts a generic template for a HWPE. It is composed of
three distinct modules: an engine, a streamer and a controller.
The engine is the accelerator datapath itself; it is entirely
application-specific and operates on latency-insensitive streams
of data. The streamer acts as a translator between the memory-
mapped communication protocol of the TCDM and the stream-
ing protocol of the accelerator datapath. To adapt to application-
specific bandwidth requirements, on the TCDM side, the
streamer exposes a configurable number of master ports to
the low-latency interconnect. The controller allows for HWPE
programming via a memory-mapped control interface, with
control registers and a finite state machine (FSM) implementing
coarse-grained accelerator control/(re)configuration. Intuitively,
both the register file and the FSM include parts that are generic
and others that are strongly application-specific.

HERO Platform: HERO [24] is an open-source research
platform based on FPGA emulation of PULP-based heteroge-
neous many-core systems. HERO can be instantiated on FPGA
SoCs like the Xilinx Zynq family. As shown in Figure 3,
HERO combines the physical ARM Cortex-A host processor
on the SoC with a PULP-based many-core accelerator (PMCA)
deployed as a soft-IP on the FPGA. The host processor is
typically a multi-core CPU capable of running unmodified
Linux. The PMCA consists of one or more PULP clusters
interconnected via a NoC. At the top level, the clusters share a
multi-banked L2 scratchpad memory (SPM) and a remapping
address block (RAB), a simplified IOMMU [25], [26].

C. Motivation

Production-level HLS methodologies, like those offered by
Xilinx design tools, are pretty mature in terms of single-IP

development. The same does not fully hold for system-level
integration of multiple IPs [27]. To demonstrate the potential
our overlay exhibits to tackle system-level optimization and
integration of multiple HWPEs we discuss and examine: (i) a
typical HLS flow, as offered by modern tools; (ii) how different
architectural models relate to SLD.

User Perspective on a Standard HLS Flow: HLS flows
start from a high-level specification (C, C++, or SystemC)
of an accelerator, which is then compiled into custom RTL.
Several optimization knobs exist to improve the accelerator per-
formance, but their reach does not extend to inter-process spec-
ifications, thus making the design flow agnostic of the whole
system structure [28]. IP packaging is based on the IP-XACT
standard to ease system-level integration, that is carried out at
the block-level. Following this methodology, the user is asked
to create the architecture surrounding the HLS-compiled IP.
Interconnecting the latter with other system IPs is accomplished
through customizable AXI-compliant interconnects. Multiple
HLS IPs are typically composed through AXI4-Stream inter-
faces, based on a lightweight protocol for unidirectional data
streams. MicroBlaze soft-cores can be employed to implement
complex control schemes, but customization is not feasible
due to their closed-source nature. Concerning the design of
the memory subsystem, although Block RAMs (BRAMs) are
distributed across the FPGA fabric to optimize memory access
from any arbitrary mapping of the software data structures,
memory ports are limited: shared multi-bank memories are
key for scalability and to avoid the extensive memory block
replication implied by naive IP-centric designs. Accomplishing
this task in standard Xilinx tool-flows is complicated by the
IP-centric view of the approach.

Accelerator Optimization Strategies: A generic, IP-centric
design flow typically interacts with either private-memory (PM)
or shared-memory (SM) architectures, as shown in Figure 4.
Considering a set of different accelerators (A, B, and C),
the designer can optimize the memory subsystem in different
ways [29]. Typical of IP-centric methodologies, the PM archi-
tecture exploits private, multi-port memories to increase the
concurrent W/R operations, thus improving design through-
put. To this end, N∗ data ports have to be routed from the
memory banks to the datapath, as shown in Figure 4 for the
PM architecture. However, in the context of accelerator-rich
architectures IP-centric optimization of the memory subsystem
quickly eats out large portions of the accelerator area [30],
reducing the number of accelerators that can be hosted on the
programmable logic. Lastly, the way accelerators interact with
memory is of primary importance when it comes to SLD [31].
According to our experience, it is not always so straightforward
to enforce the desired data management policy in hardware. A
typical example is double-buffering, which is not so easy to
be mapped to complex computation schemes, especially if the
user wants more datapaths to co-operate on the same buffer.
In these cases, it is easier to implement such control schemes
employing software routines.

11

L2
Mem

LEGENDA
STATIC

PARAMETRIC
OVERLAY

So
C

 B
us

RAB

L1 Data Memory

Bank Bank Bank Bank

CLUSTER

IBEX
core

I$

DMA

Cluster Interconnect
HW-ACC
wrapper

RTL
ENGINE

Fig. 5: Architecture of the proposed FPGA
hardware overlay.

Testing Engine
design

Design
rules

Wrapper
specification

Templates library

HW SW HW
SUPPORT

HW-ACC
wrapper RTL-level

connection

Testing

Validation

Hardware overlay
environment

RTL
engine

Algorithm
stimuli

Engine
design flow

Hardware wrapper specialization

Fig. 6: Design flowchart: from the design rules up to the deployment of
application-specific accelerators.

III. OVERLAY ARCHITECTURE

Compared to the standard flow that exploits IP-private
memories, a multi-bank, low-latency shared memory greatly
improves area utilization, provided that the interconnection
system is carefully designed [7] [13] [14]. As shown in Fig-
ure 4 for the SM architecture, this specification implements
N∗ data ports on each accelerator interface to feed their
parallel datapaths (NA ports for accelerator A, etc.). Designing
this interface with Xilinx Vivado HLS can be achieved in
a non-straightforward manner by exploiting interleaved array
partitioning on streaming interfaces (typically employed for
accelerator design), but this is usually beyond the expertise
of the typical HLS user. Such architectural details should be
rather abstracted by the overlay architecture, along with their
careful design and implementation.

HERO constitutes a convenient starting point to implement
such overlay: being conceived as a many-core architecture,
HERO naturally complies with some of the basic requirements
to build an accelerator-rich design, most notably the cluster-
based design and the multi-bank shared memory design. How-
ever, HERO clusters are designed for general-purpose (or, at
best, signal-processing oriented) parallel execution and thus
have substantial limitations in the context of FPGA hardware
acceleration that we target. HERO uses the FPGA merely as a
medium for emulation of projects meant for IC realization. The
proposed overlay uses the FPGA as a target for acceleration.
For an overlay to be an efficient and convenient solution, it
should offer: (i) SLD capabilities; (ii) transparent accelerator
integration flow; (iii) streamlined resource usage. In the follow-
ing, we discuss how we redesign the PULP clusters to achieve
these goals and to enable plug-and-play integration of custom
accelerator logic in our overlay.

A. Overlay Architecture

Figure 5 shows an overview of the proposed overlay. At the
cluster level, there are a few key modifications that we make.
First, the cores in our proposal are not meant to serve as data
crunchers, but rather as flexible control cores. For this reason,
(i) we need far fewer cores than in the original design; (ii)
we need the cores to be much simpler. A single core might
suffice to orchestrate the operation of the accelerators and the

data movements. However, we believe a second one might be
useful when small application code parts are better executed
close to the accelerator than on the host cores. Moreover, since
the proposed overlay can be programmed with OpenMP, one
core could be in charge of executing OpenMP runtime library
code. At the same time, the other is always available to control
the accelerators or execute application code. Concerning the
simplicity of the design, we replace the original RISCY core
with an IBEX core [32], an area-optimized 32-bit RISC-V
core implementing the RV32IMC instruction set architecture
(ISA). IBEX exhibits two pipeline stages and a simpler ALU
compared to RISCY.

Since the cores in our overlay are mostly meant for Multiple-
Program, Multiple-Data (MPMD) execution, the shared in-
struction cache (I-cache) has been replaced with a private one,
which has more straightforward control logic. Atomic Memory
Operation (AMO) support modules have been removed since
parallel execution on the soft-cores is not a desired feature.

The reduction in the number of cores also implies a reduction
in the number of master ports on the TCDM interconnect,
that can be devoted to the accelerators instead. The size of
the TCDM, the number of banks or the DMA burst size are
parameters in our design to be adapted to the application’s
specific requirements at hand. Figure 5 shows blocks that can
be parameterized as dashed boxes.

The most significant modification that we propose at the
cluster level is the introduction of a parametric wrapper, which
is meant to provide plug-and-play integration of accelerators in
the platform. This is discussed in Section III-B.

At the top level, other customizable IPs are the RAB and
the L2 memory. The RAB can be removed entirely – in case
shared virtual memory is not relevant for the target system – or
reconfigured in terms of the number of TLB entries and overall
size. The L2 can be configured in size and number of banks.

B. Accelerator Integration Methodology

The integration of custom accelerators is simplified by the
definition of a communication/control interface in the form of
a wrapper. This encapsulates the functionality of an HWPE
streamer and controller modules; since both exhibit dependen-
cies on the engine implementation, it is necessary to distinguish
between their static and variable RTL components. We stress

12

that our proposal does not mandate any specific method to
design accelerator engines. Both HLS tools or manually op-
timized HDL code are supported. Once the user has defined
the fundamental properties to support its engine, the wrapper
specialization is performed via template parameterization.

Figure 6 shows an overview of the complete integration flow.
Starting from a set of design rules, the designer is equipped
with a high-level language (HLL) interface to allow wrapper
customization. An automated flow allows for the integration of
the engine logic within the wrapper, which is in turn connected
to the overlay for validation.

The following sections describe the flow through an exem-
plary integration of a Matrix Multiplication engine.

1) Wrapper Specialization: We use the Mako1 Python li-
brary for defining a list of RTL templates for the wrapper
hardware components. Hence, the integration procedure is ab-
stracted since the designer can modify the attributes of a Python
class and spread them through the entire wrapper template
library. Listing 1 shows an example of the attributes of this
class, that may either regard the engine, the streaming interface,
and both the standard and application-specific registers from
the register file: this includes the target HWPE name; the list
and number of streams incoming to/outgoing from the engine;
and the number and nature of standard and accelerator-specific
(custom) registers. These are only a subset of the knobs that
are available in the customization tool. These specifications are
propagated throughout the wrapper template library generating:
(i) System Verilog templates for all components of the wrapper;
(ii) Interface to connect with the HLS-compiled or handcrafted
engine; (iii) Software library for HWPE runtime calls.

1 c l a s s hwpe specs :
2 d e f i n i t (s e l f) :
3 s e l f . h w p e t a r g e t = ’mmult ’
4 s e l f . l i s t s i n k s t r e a m = [’ in1 ’ , ’ in2 ’]
5 s e l f . l i s t s o u r c e s t r e a m = [’ out ’]
6 s e l f . n s i n k = l e n (s e l f . l i s t s i n k s t r e a m)
7 s e l f . n s o u r c e = l e n (s e l f . l i s t s o u r c e s t r e a m)
8 s e l f . s td reg num = 5
9 s e l f . cus tom reg name = [’ custom reg ’]

10 s e l f . cus tom reg dim = [32]
11 s e l f . custom reg num = l e n (s e l f . cus tom reg name)

Listing 1: Python interface for wrapper specialization.

1 vo id mmult (d a t a t in1 [Wm] , d a t a t in2 [Wm] , d a t a t &out , d a t a t custom reg)
2 {
3 # pragma HLS INTERFACE a x i s p o r t = in1
4 # pragma HLS INTERFACE a x i s p o r t = in2
5 # pragma HLS INTERFACE a x i s p o r t =out
6
7 # pragma HLS a r r a y p a r t i t i o n v a r i a b l e = in1 c y c l i c f a c t o r =Np
8 # pragma HLS a r r a y p a r t i t i o n v a r i a b l e = in2 c y c l i c f a c t o r =Np
9

10 c o n s t u n s i g n e d mat dim = MATRIX WIDTH;
11 d a t a t r e s u l t = 0 ;
12
13 d a t a t l o c a l r e g v a l u e = custom reg ;
14
15 engine loop A : f o r (i n t i = 0 ; i < m a t s i z e ; i +=Np){
16 # pragma HLS LOOP TRIPCOUNT min=Wp max=Wp
17 # pragma HLS PIPELINE
18 engine loop B : f o r (i n t j = 0 ; j < Np ; j ++){
19 # pragma HLS LOOP TRIPCOUNT min=Np max=Np
20 r e s u l t += in1 [i + j] * in2 [i + j] ;
21 }
22 }
23 out = r e s u l t ;
24 }

Listing 2: C++ design of a Matrix Multiplication engine.

1https://www.makotemplates.org/

WRAPPER

SOURCE UNIT

CONTROL FSM

SOURCE UNIT

SINK UNIT

to
 L

ow
-L

at
en

cy
In

te
rc

on
ne

ct

to Peripheral
Interconnect

STREAMER

CONTROLLER

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

in1

standard
registers

custom
register

Wp

in2
out

...

Np
...
...
...

...

...

...
..................

Wp

Np
...
...
...

...

...

...
.................. mmult

Streaming
Mem-mapped

Fig. 7: Example of integration of a HLS-compiled Matrix
Multiplication engine inside an overlay wrapper.

2) Engine Interface: For the integration to be successful,
the engine design flow should employ an interface protocol
consistent with the one the wrapper adopts. The interface is
designed to be compatible with Vivado HLS but can also be
easily connected to a handcrafted engine. A set of four control
signals are used to notify the wrapper of the engine running
state and to modify it: start notifies the engine that it can
start processing; done notifies the wrapper that the engine
terminated its operation; idle is 1 if the engine is not active,
and ready is 1 if the engine is ready to accept inputs.

Beyond this small set of control signals, the other engine
input and output signals are fully application-specific. The first
communication class is that of direct inputs and outputs of
the datapath, expressed as streams: unidirectional data-flows
without an attached address designed to be latency-insensitive
with well-defined handshaking procedures. The aforementioned
lightweight data transfer solution is ideal for FPGA-based
accelerators. We support two similar protocols AXI4-Stream2

(used by Vivado HLS) and HWPE-Stream [6]. The number
of streaming ports can be controlled through ad-hoc wrapper
customization as explained in Section III-B1.

The wrapper comprises a configurable number of memory-
mapped custom registers. Before the datapath starts its com-
putation, these registers are written by the controlling RISC-V
core through the wrapper slave port.

3) HLS Engine Design: Listing 2 shows the HLS specifica-
tion for a Matrix Multiplication engine. The engine top module
is declared at line 1. Its name is the same specified in the
hwpe target attribute of Listing 1. The pragma directives of
lines 3-5 implement I/O arrays with an AXI4-Stream protocol.
A static algorithm-specific parameter custom reg is declared
at line 1 to be implemented as a single data port at RTL for
contexts of continuous use during the engine’s operation. The
algorithm operations are specified at lines 15-22.

As explained in Section II-C, to optimize the code are
various strategies. The specification at line 17 induces spatial
parallelism through pipelining of engine_loop_A. This au-
tomatically unrolls engine_loop_B with a parallelism factor
of NP . This way, for the engine to output a result, a total

2https://www.xilinx.com/products/intellectual-property/axi.html

13

TABLE I: Xilinx ZU9EG Resources.

Availability
LUT (K) 274
FF (K) 548
BRAM (Mb) 32.1
DSP (Slices) 2520

TABLE II: Out-of-cluster IPs and resource utilization.

LUT utilization (%) FF utilization (%)
AXI data converters 3.35 0.33
AXI read burst buffers 4.44 6.43
SoC bus 1.92 0.93
RAB 6.11 1.85
L2 memory 0.30 0.10

Fig. 8: LUT and FF utilization breakdown for the different architecture presented in Section IV-A.

of WP data are expected, where Wm = WP ∗ NP . To fully
take advantage of latter optimization, input interface arrays in1
and in2 are partitioned into NP sub-arrays at lines 7-8. Our
flow supports this optimization by automatically specializing
both the wrapper and overlay with parallelized source units
and additional master ports on the overlay interconnect. At the
same time, TCDM banks can be increased to limit memory
contention behaviour. Port interleaving is also exploitable with
proper wrapper programming.

Figure 7 shows the resulting engine integration.
4) Software Integration and Execution Model: Applications

initially run on the host processor that is in charge of allocating
the input data buffers in a dedicated non-cached, non-paged
DRAM portion that is accessible by the overlay system. The
offloading procedure is based on memory copy operations.

At this point, the overlay cluster is activated, and the overlay
core starts executing, transferring data blocks from DRAM (L3)
to TCDM (L1). If the dataset is larger than the L1 size (128kB),
the soft-core partitions data into smaller blocks.

The development of the data transfer routine is not trans-
parent to programmers to offer them free choice of implemen-
tation. Double-buffering is an example of an implementable
control routine to reach the performance entry together with
hardware optimizations pertinent to the HLS/HDL design of
the hardware accelerator. Other than transferring data, the soft-
core can process them (not its final goal, though) or control the
accelerator operation. Accelerator programming is essentially
divided into two phases. At first, the accelerator is initialized,
and the address generator is programmed. To clarify, since
the memory interface of the wrapper (namely, the streamer)
translates memory accesses into data streams (and vice versa),
it needs to be programmed according to the pattern of the L1
accesses, which is algorithm-dependent. For this reason, we
have extended the wrapper customization flow inferring a set
of registers per input and output port to offer a generalized and

practical way of programming the address generator. This is a
one-time cost as soon as accelerators employ a single working
context. Besides, if a double-buffered solution is engaged, the
wrapper controller needs to be updated with the pointer to the
data to be crunched; this represents the second and recurrent
cost associated with the accelerator programming. Besides,
accelerator execution consists of the writing to a wrapper
register to trigger execution and the waiting interval where the
core waits for the generation of an end-of-computation event
from the wrapper itself.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our overlay in terms of re-
source utilization and performance. The proposed overlay has
been synthesized and deployed on a Xilinx Zynq UltraScale+
ZU9EG MPSoC. We used Xilinx Vivado HLS v2018.2 to
design accelerated engine, Xilinx Vivado v2019.2 to synthesize
and implement RTL designs, Xilinx Petalinux v2019.2 to
deploy the application on the target board.

A. Overlay Resource Utilization

Table I shows the available LUTs, FFs, BRAMs and DSP
slices in the PL of tested MPSoC. As a first experiment, we
evaluate the relative (and absolute) use of resources implied
by our overlay measuring the resource utilization by those
components that lie outside of the cluster, which we don’t
change in the remainder of this section. Table II reports
measured values and shows that these components occupy well
below 10% of the whole available resources. Focusing on the
cluster IPs, we consider five different architecture variants to
show the impact of various blocks on resource utilization.
Hence, Figure 8 shows breakdowns of LUT (left side) and FF
(right-side) usage for the cluster IPs for different architectures.
We discuss the usage of BRAM and DSP slices in the text
since only a few IPs are concerned. Architecture O refers to the
original HERO cluster with 8 RISCY cores and only serves as

14

a baseline. Architecture A reduces the number of RISCY cores
to 2; Architecture B replaces RISCY cores with IBEX cores;
Architecture C removes atomic instructions; Architecture D
replaces the shared Instruction Cache with private ones.

The breakdown bars of Figure 8 show resource usage for
I-cache (shared or private), atomic memory operations (AMO),
TCDM (TCDM banks + logarithmic interconnect) and DMA,
while other minor IPs are collected in other. Reducing the
number of RISCY cores (ArchitO→A) impacts the occupation
of the shared I-cache (BRAM usage decreases by 26.31%), the
DMA and the AMO modules. LUTs, FFs and DSPs decrease
respectively by 43.76%, 6.06%, and 2.14%. Replacing the
RISCY cores by the IBEX ones (ArchitA→B) additionally
reduce occupation: -7.96% LUTs, -1.10% FFs, -3.51% BRAM,
and -0.63% DSPs. AMO removal (ArchitB→C) reduces LUT
by 2.48% and FF by 1.10%, while employing a private I-
cache(ArchitC→D) reduces BRAM usage by 5.81%.

To sum up, the actual implementation of our overlay cluster,
hence Architecture D together with the components reported in
Table II, results in the following occupation: LUT ≈ 23%, FF
≈ 12%, BRAM ≈ 3.8% and DSP ≈ 0%.

B. Overlay-Based Accelerators Profiling and Comparison

The second set of experiments concerns the application
level performances enabled by the proposed overlay. We use a
Matrix Multiplication (AB) kernel as a benchmark with a fixed
matrix size of 512×512 and 32-bit unsigned data elements.
The code for a basic and a blocked implementation of the
Matrix Multiplication benchmark is provided respectively by
the Listing 3 and Listing 4.

1
2 vo id mmult (d a t a t * in1 , d a t a t * in2 , d a t a t * out , i n t Wm)
3 {
4 d a t a t r e s u l t =0 ;
5 loop A : f o r (i n t i = 0 ; i < Wm; i ++){
6 loop B : f o r (i n t j = 0 ; j < Wm; j ++){
7 loop C : f o r (i n t k = 0 ; k < Wm; k ++){
8 r e s u l t += in1 [i * Wm + k] * in2 [j * Wm + k] ;
9 }

10 out [i * Wm + j] = r e s u l t ;
11 r e s u l t =0 ;
12 }
13 }
14 }

Listing 3: Matrix Multiplication algorithm.

1
2 vo id mmult (d a t a t * in1 , d a t a t * in2 , d a t a t * out , i n t Wm, i n t Hs)
3 {
4 d a t a t r e s u l t =0 ;
5 loop A : f o r (i n t i i = 0 ; i i < Wm; i i +=Hs){
6 DMA in (in1 , l o c a l i n 1) ;
7 loop B : f o r (i n t j j = 0 ; j j < Wm; j j +=Hs){
8 DMA in (in2 , l o c a l i n 2) ;
9 loop C : f o r (i n t i = 0 ; i < Hs ; i ++){

10 loop D : f o r (i n t j = 0 ; j < Hs ; j ++){
11 loop E : f o r (i n t k = 0 ; k < Wm; k ++){
12 r e s u l t += l o c a l i n 1 [i * Wm + k] * l o c a l i n 2 [j * Wm + k] ;
13 }
14 l o c a l o u t [i * Wm + j] = r e s u l t ;
15 r e s u l t =0 ;
16 }
17 }
18 }
19 DMA out (out , l o c a l o u t) ;
20 }
21 }

Listing 4: Blocked Matrix Multiplication.

1) Overlay Designs: We have implemented overlay-based
designs with the automatic flow described in Section III-B.
These tests run at a target frequency (foverlay = 90MHz)
and are shortly described in Table III. Speaking of the designs

TABLE III: Designs based on our proposed methodology.

Acronym Description

O-SW
Pure-software (SW) implementation of Listing 4. Soft-
core implements a single-buffered control routine and
process data.

O-SW-DB
Pure-software implementation of Listing 4. Soft-core
implements a double-buffered (DB) control routine and
process data.

O-HW

Hybrid hardware/software implementation of Listing 4.
Hardware (HW) acceleration is performed with no dat-
apath optimizations. Soft-core implements a double-
buffered control routine.

O-HW-PM-
Cpy

Hybrid hardware/software implementation of Listing 4.
Datapath is optimized employing partial array partition-
ing and loop unrolling to implement spatial parallelism
(PM). Soft-core implements a double-buffered control
routine.

O-HW-PM
Hybrid hardware/software implementation of Listing 4.
Datapath is optimized as in Listing 2. Soft-core imple-
ments a double-buffered control routine.

O-HW-PM
(Proj) Projection of O-HW-PM at fscaled = 150MHz.

of Table III, O-SW is a baseline. During Loop A the soft-core
programs the DMA to transfer an in1 data block from L3 to L1,
then waiting for its completion. Loop B performs the same for
in2. Loop C and Loop D implement the local buffers address-
ing for the core to read data lines. The latter are processes in
Loop E to generate an output matrix point. Results are buffered
in L1 and later transferred back to L3. O-SW-DB adds on top of
Loop A and Loop B a double-buffered implementation. In O-
HW the algorithm kernel is no more executed by the soft-core,
but, instead, an HLS-compiled matrix multiplication engine is
wrapped and integrated into the overlay, following the same
approach described in Section III-B. Engine design consists
of Loop E of Listing 4. Additionally, Loop C and Loop D
are implemented in hardware exploiting the wrapper address
generator. In O-HW-PM-Cpy, the overlay integrates an HLS-
compiled engine containing a prefetching stage, a write stage
and private BRAM buffers. Differently from O-HW, Loop C
and Loop D are used for local BRAMs addressing. Loop E
implements line processing, as for the precedent solution. As
explained in Section III-A, our overlay already comprises the
required system IPs to support hardware acceleration. Hence,
we believe most of O-HW-PM-Cpy components to be in
excess. However, this example shows our flow to be flexible
to particular user requirements. Finally, O-HW-PM integrates
the same engine as of Listing 2 with NP = 16. The wrapped
engine logically consists of Loop E, but the compiled RTL
description implements NP loop copies that occur in parallel.
Compared to O-HW-PM-Cpy, no additional private memory or
read/write stage are included.

2) Overlay Latency Analysis: Figure 9 shows the execution
time breakdown of the five different versions of the overlay-
based matrix multiplication.

Double-buffered copies of Loop A and Loop B tiles allow to

15

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

O-SW
O-SW-DB

O-HW
O-HW-PM-Cpy

O-HW-PM

La
te

nc
y

(lo
g

m
s)

Pla�orms

PL - Accelerator execu�on

PL - Accelerator programming

PL - RISCV processing

PL - DMA output

PL - DMA input

PL - Alloca�on/Cleaning

HOST - Offloading

Host - Alloca�on/Cleaning

29159.7 29058.7

1565.15
224.46 160.28

Fig. 9: Overlay application breakdown (Section IV-B2).

1.00

10.00

100.00

1000.00

10000.00

H X-HW
X-BL

X-BL-PM

X-LOOP

X-PM
O-HW-PM

O-HW-PM (Proj)

La
te

nc
y

(lo
g

m
s)

Pla�orms

Total - PL

Total - Host

223.9

1869.4 1931.8

137.93 134.37

15.66
54.84

160.28

Fig. 10: Platform comparison (Section IV-B3).

TABLE IV: Reference designs based on Xilinx design flows

Acronym Description

X-HW Standalone pure-hardware (HW) implementation of List-
ing 3. No further optimization is specified.

X-BL Hybrid hardware/software implementation of Listing 4.
Data blocking (BL) is implemented.

X-BL-PM

Hybrid hardware/software implementation of Listing 4.
Datapath is optimized employing partial array partition-
ing and loop unrolling to implement spatial parallelism
(PM).

X-LOOP Standalone pure-hardware implementation of Listing 4.
Hardware loops (LOOP) are implemented.

X-PM
Standalone pure-hardware implementation of Listing 3.
Datapath is optimized employing total array partitioning
and loop unrolling to further increase parallelism (PM).

reduce by 18.8× the visible cost of DMA transfers compared
to O-SW, as most of it gets hidden by the processing stage
(the variation of PL - RISC-V processing is negligible). O-
HW accelerates kernel execution, thus PL - RISC-V processing
transforms in PL - Accelerator execution. Processing perfor-
mance improves by a factor of 18.5×, since O-HW implements
the whole Loop E in hardware. Loop C and Loop D are
hardwired too, resulting in a small additional cost (491672
cycles, including both the one-time and recurrent costs) as-
sociated with the wrapper programming. The processing of
a single matrix point thus requires 512 accumulations and
1 store cycles to occur executed at foverlay = 90MHz.
The additional parallelism in O-HW-PM-Cpy reduces PL -
Accelerator execution by 7× compared to O-HW. O-HW-PM
show that the applied optimization permits to further improve
the accelerator execution performance, halving the perceived
latency. At the same time, the time spent waiting for the DMA
to transfer input data blocks is increased, indicating that the
DMA input bandwidth has reached saturation.

3) Comparison with Reference Designs: Figure 10 compares
our solution with a reference one implemented using the
standard Vivado HLS design flow. Each bar is expressed as
the superposition of two-timing contributes to the execution
time on the host and the FPGA accelerator. We have included a
pure-sw implementation of Listing 3 on the host processor (H).
The former runs at fhost = 1.2GHz. Besides, are included the

execution results concerning the reference designs described
in Table IV. Each bar shows the breakdown of two distinct
timing contributions: Total - PL and Total - Host, respectively
the measured latency of the portion of application executed
on the PL and host processor. Total - Host is a common
offset of about 10 ms for reference (X-*) and overlay (O-
*) designs. The lack of datapath optimizations and the costly
host control worsens X-BL performance compared to X-HW
by 62.4 ms. H implementation runs 8.35× faster than X-HW
since it exploits local cache memory to fasten data access.
X-BL-PM and X-LOOP feature additional parallelism, which
allow them to perform better than H by 1.62× and 1.67×,
respectively. X-PM is shown for completeness, but in our
opinion it is not representative of a practical solution for real-
world applications. X-PM copies entires data structures in
local memory, achieving the highest performance improvement
(14.3× faster than H) at the prohibitive expense of ≈ 81.7%
BRAM utilization. For larger data structures this approach
becomes quickly unfeasible. Concerning our overlay-based
solutions, We report results for the O-HW-PM scheme running
at 90 MHz, plus a projection (O-HW-PM (Proj)) that considers
a target frequency of fscaled = 150MHz. The latter is an
estimate of the performance of a faster instance of the overlay,
that has been obtained linearly scaling the measured breakdown
contributes. These allow a performance increase of 1.4× and
4.08×, respectively, compared to H.

V. FINAL REMARKS

In this paper we have presented an innovative overlay that
aims to simplify the adoption of COTS, FPGA-based HeSoCs.
By efficiently abstracting the FPGA hardware details, our over-
lay permits simplifying the deployment of application-specific
accelerators and the programmability of the resulting HW/SW
platform, thanks to a simple methodology that has been fully
described through a practical example of an HLS-compiled
engine. Experimental results on a Xilinx ZU9EG MPSoC show
≈ 20% LUT usage and comparable latency to what is achieved
with standard Vivado HLS design methodologies (up to 4.08×
speedup compared to program execution on the ARM host
core), with much less developer effort.

We believe our solution is a valuable option for most COTS
platforms, particularly if combined with kernel re-configuration
techniques, permitting us to accelerate a pool of compute
kernels with a transparent user experience. Furthermore, our

16

roadmap is to improve this solution’s resource overhead further,
making it appealing for resource-constrained SoC systems.

VI. ACKNOWLEDGMENTS

Authors would like to thank the EU commission for funding
the ECSEL-JU COMP4DRONES project (No. 826610).

REFERENCES

[1] M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson, Y. Mulgaonkar,
M. Arguedas, K. Sun, S. Liu, B. Pfrommer, V. Kumar, and C. J.
Taylor, “The open vision computer: An integrated sensing and
compute system for mobile robots,” version: 1. [Online]. Available:
http://arxiv.org/abs/1809.07674

[2] X. Liu, H.-A. Ounifi, A. Gherbi, W. Li, and M. Cheriet, “A hybrid
GPU-FPGA based design methodology for enhancing machine learning
applications performance,” vol. 11, no. 6, pp. 2309–2323. [Online].
Available: https://doi.org/10.1007/s12652-019-01357-4

[3] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo,
and L. Benini, “Neuraghe: exploiting cpu-fpga synergies for efficient and
flexible cnn inference acceleration on zynq socs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–
24, 2018.

[4] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok,
B. Pasca, M. Langhammer, D. Marr, and A. Dasu, “Why compete when
you can work together: FPGA-ASIC integration for persistent RNNs,” in
2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 199–207, ISSN: 2576-2621.

[5] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A time-multiplexed
fpga overlay with linear interconnect,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018, pp. 1075–1080.

[6] Hardware processing engines — hardware processing engines - interface
specifications 1.4 documentation. [Online]. Available: https://hwpe-
doc.readthedocs.io/en/latest/index.html

[7] Y.-T. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and
Y. Zou, “Accelerator-rich CMPs: From concept to real hardware,” in
2013 IEEE 31st International Conference on Computer Design (ICCD).
IEEE, pp. 169–176, event-place: Asheville, NC, USA. [Online].
Available: http://ieeexplore.ieee.org/document/6657039/

[8] H.-C. Ng, C. Liu, and H. K.-H. So, “A soft processor overlay
with tightly-coupled FPGA accelerator.” [Online]. Available: http:
//arxiv.org/abs/1606.06483

[9] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile soc devel-
opment with open esp,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[10] P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “High-level synthesis
of accelerators in embedded scalable platforms,” in 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2016,
pp. 204–211.

[11] A. Lomuscio, G. C. Cardarilli, A. Nannarelli, and M. Re, “A hardware
framework for on-chip FPGA acceleration,” in 2016 International Sym-
posium on Integrated Circuits (ISIC), pp. 1–4.

[12] J. Gray, “GRVI phalanx: A massively parallel RISC-v FPGA accelerator
accelerator,” in 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 17–20.

[13] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A time-multiplexed
FPGA overlay with linear interconnect,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 1075–1080.

[14] I. Taras and J. H. Anderson, “Impact of FPGA architecture on area and
performance of CGRA overlays,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 87–95, ISSN: 2576-2621.

[15] J. Coole and G. Stitt, “Intermediate fabrics: virtual architectures for
circuit portability and fast placement and routing,” in Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, ser. CODES/ISSS ’10. Association
for Computing Machinery, pp. 13–22. [Online]. Available: https:
//doi.org/10.1145/1878961.1878966

[16] D. Wilson and G. Stitt, “Seiba: An fpga overlay-based approach to
rapid application development,” in 2019 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2019, pp.
1–8.

[17] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “Pulp: A parallel
ultra low power platform for next generation iot applications,” in 2015
IEEE Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–39.

[18] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-v
core with DSP extensions for scalable IoT endpoint devices,” vol. 25,
no. 10, pp. 2700–2713.

[19] F. Zaruba and L. Benini, “The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-GHz 64-bit RISC-v core
in 22-nm FDSOI technology,” vol. 27, no. 11, pp. 2629–2640.

[20] I. Loi, A. Capotondi, D. Rossi, A. Marongiu, and L. Benini, “The quest
for energy-efficient i$ design in ultra-low-power clustered many-cores,”
vol. 4, no. 2, pp. 99–112.

[21] F. Conti, A. Marongiu, C. Pilkington, and L. Benini, “He-p2012:
Performance and energy exploration of architecturally heterogeneous
many-cores,” vol. 85, no. 3, pp. 325–340. [Online]. Available:
https://doi.org/10.1007/s11265-015-1056-7

[22] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast
brain-inspired vision in multicore clusters,” in 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 683–688, ISSN: 1558-
1101.

[23] F. Conti, P. D. Schiavone, and L. Benini, “XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,”
vol. 37, no. 11, pp. 2940–2951.

[24] A. Kurth, A. Capotondi, P. Vogel, L. Benini, and A. Marongiu,
“HERO: an open-source research platform for HW/SW exploration
of heterogeneous manycore systems,” in Proceedings of the 2nd
Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient
HPC Systems, ser. ANDARE ’18. Association for Computing Machinery,
pp. 1–6, event-place: New York, NY, USA. [Online]. Available:
https://doi.org/10.1145/3295816.3295821

[25] P. Vogel, A. Marongiu, and L. Benini, “Lightweight virtual memory
support for many-core accelerators in heterogeneous embedded SoCs,”
in 2015 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 45–54.

[26] A. Capotondi and A. Marongiu, “Enabling zero-copy openmp
offloading on the pulp many-core accelerator,” in Proceedings of the
20th International Workshop on Software and Compilers for Embedded
Systems, ser. SCOPES ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 68–71. [Online]. Available:
https://doi.org/10.1145/3078659.3079071

[27] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar, “High-level language tools for reconfigurable computing,”
vol. 103, no. 3, pp. 390–408, conference Name: Proceedings of the IEEE.

[28] G. Di Guglielmo, C. Pilato, and L. P. Carloni, “A design methodology
for compositional high-level synthesis of communication-centric SoCs,”
in Proceedings of the The 51st Annual Design Automation Conference
on Design Automation Conference - DAC ’14. ACM Press, pp. 1–
6, event-place: San Francisco, CA, USA. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2593069.2593071

[29] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis,
Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson,
and K. Bertels, “A survey and evaluation of FPGA high-level
synthesis tools,” vol. 35, no. 10, pp. 1591–1604. [Online]. Available:
http://ieeexplore.ieee.org/document/7368920/

[30] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “System-
level optimization of accelerator local memory for heterogeneous
systems-on-chip,” pp. 1–1. [Online]. Available: http://ieeexplore.ieee.org/
document/7572091/

[31] J. Choi, S. Brown, and J. Anderson, “Resource and memory manage-
ment techniques for the high-level synthesis of software threads into
parallel FPGA hardware,” in 2015 International Conference on Field
Programmable Technology (FPT), pp. 152–159.

[32] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, “Slow and steady wins the race? a comparison
of ultra-low-power RISC-v cores for internet-of-things applications,” in
2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), pp. 1–8.

17

