
A Connected Component Labelling algorithm for
multi-pixel per clock cycle video stream

Marcin Kowalczyk
Department of Automatic Control and Robotics

AGH University of Science and Technology
Krakow, Poland

kowalczyk@agh.edu.pl

Tomasz Kryjak Senior Member IEEE
Department of Automatic Control and Robotics

AGH University of Science and Technology
Krakow, Poland

tomasz.kryjak@agh.edu.pl

Abstract—This work describes the hardware implementa-
tion of a connected component labelling (CCL) module in
reprogammable logic. The main novelty of the design is the “full”,
i.e. without any simplifications, support of a 4 pixel per clock
format (4 ppc) and real-time processing of a 4K/UltraHD video
stream (3840 x 2160 pixels) at 60 frames per second. To achieve
this, a special labelling method was designed and a functionality
that stops the input data stream in order to process pixel groups
which require writing more than one merger into the equivalence
table. The proposed module was verified in simulation and in
hardware on the Xilinx Zynq Ultrascale+ MPSoC chip on the
ZCU104 evaluation board.

Index Terms—FPGA, Zynq UltraScale+ MPSoC, 4K, UHD,
real-time video processing, connected component labelling (CCL)

I. INTRODUCTION

Connected component labelling is among the most widely
used image processing algorithms. Its purpose is to assign the
same label to all pixels that belong to one object (a connected
group of pixels). The input to the algorithm is an image after
binarisation, containing only the values 0 (the pixel belongs
to the background) or 1 (the pixel belongs to the foreground
object). On the other hand, the output is an image of the same
size, whose pixels are the values of the assigned labels. Two
pixels are assumed to belong to the same object if there is
a path between them that contains only the foreground pixels.
The operation of the algorithm depends, among others, on
the type of neighbourhood considered. Typically an 8-element
neighbourhood is used, but a 4-element neighbourhood can
also be applied.

The field of computer vision is constantly evolving. Much
of this progress is related to the development of new data
processing algorithms, but the vision sensors themselves are
also getting better. Over the years, they offered higher and
higher refresh rates and higher resolutions. Recently, Ultra
High Definition (UHD or 4K – 3840 × 2160) resolution is
getting closer to being common. Even mid-range smartphones
are already able to record an image in this resolution while
maintaining 60 frames per second. The use of high resolution

The work presented in this paper was supported by the National Science
Centre project no. 2016/23/D/ST6/01389 entitled “The development of com-
puting resources organisation in latest generation of heterogeneous reconfig-
urable devices enabling real-time processing of UHD/4K video stream”.

sensors allows not only to improve the quality of the displayed
image, but also to increase the efficiency of vision algorithms
– provide a more accurate image of an object that is further
away from the camera, and consequently increases the chances
of the correct object’s recognition. This is important, e.g.
in advanced driver assistance systems (ADAS), surveillance
systems or issues related to autonomous vehicles (cars or
UAVs).

However, increasing the resolution has a huge impact on the
amount of data needed to be processed. A video stream with
UltraHD resolution at 60 frames per second results in a data
flow of 1424MB/s. Processing this amount of data in real time
requires considerable computing power. One platform that can
meet this requirement is the Xilinx Zynq Ultrascale+ MPSoC
heterogeneous chip, which includes an ARM processor system
and reprogrammable logic (FPGA – Field Programmable Gate
Array).

According to the authors’ knowledge, the presented solution
is the only module tested in hardware, which, by processing
the video stream transmitting four pixels in one clock cycle,
allows for labelling the video stream with UltraHD resolution
and 60 frames per second in real-time. The main contributions
of this paper are:

• design of a hardware architecture that performs the
connected component labelling algorithm (CCL) of an
UltraHD resolution video stream transmitting four pixels
in one clock cycle at 60 frames per second (to the best
knowledge of the authors, this is the first such architecture
evaluated in hardware),

• utilisation of the AXI4-Steam capability to temporarily
stop the data stream in order to process the most compli-
cated pixel combinations,

• verification of the proposed architecture on the ZCU104
evaluation board equipped with the Zynq Ultrascale+
MPSoC chip by Xilinx.

This paper has been divided into the following parts: Section
II discussed research related to CCL and CCA algorithms
and their FPGA implementation. Then, in Section III the pro-
posed connected component labelling algorithm is described.
Finally, the designed architecture implementing the algorithm
is described in Section IV. Evaluation of the architecture is

ar
X

iv
:2

10
5.

09
65

8v
1 

 [
cs

.C
V

] 
 2

0 
M

ay
 2

02
1



presented in Section V. The paper ends with a conclusion and
possible further research directions.

II. PREVIOUS WORK

Connected component labelling is a fundamental algorithm
in the field of computer vision. Because of that, many articles
dealing with the problem of its hardware implementation have
been published.

We presented a comprehensive state-of-the-art review in our
previous paper [21]. Below we discuss only papers that were
not analysed in that article and briefly summarise the review.

In the work [17] an architecture that allows to process
several pixels of an image simultaneously is presented. For
this purpose, the input image is divided into several vertical
segments. Each segment is transferred to a separate data pro-
cessing module and is treated as a separate image. At the same
time, an additional module collects information on relations
between objects that span several segments. Relationships
between such objects are saved to the global segment graph
(GSG), which is created while processing the segments. This
graph allows to save information about connections between
different segments and to solve the resulting connections. The
architecture was described in the VHDL hardware description
language and tested on the FPGA Xilinx Virtex 6 VLX240T-
2 chip. The declared bandwidth of the architecture should be
sufficient to process data with UltraHD resolution in real-time.
However, no information about the operation of the system for
the real-time vision data stream is provided.

The article [18] presents a hardware architecture of the
CCL algorithm without the use of an equivalence table. For
this purpose, a structure is created mapping the connections
between the given labels. The authors claim that the pre-
sented architecture is able to process images with a resolution
256×256 in time 0.44ms, with a clock frequency of 150MHz.
This translates to 2,273 frames per second.

The authors of the article [19] provide a solution that allows
to overcome the problem of resolving conflicts at the end
of an image line by using zig-zag scanning instead of the
typical raster scan. This allows the chain of mergers to be
resolved while processing the next line of the frame. The
proposed architecture can process 1-bit binary pixel per clock
cycle. The authors report that the maximum frequency is equal
to 180MHz, which is not enough to process UltraHD at 60
frames per second video stream in real-time.

In the paper [20] a hardware implementation in reconfig-
urable of a single-pass connected component labelling and
connected component analysis module is presented. The pro-
posed design supports real-time processing of a UltraHD/4K
video stream at 60 frames per second. The architecture is
tested in a skin colour area segmentation problem. The design
processes a video stream in 4 pixels per clock cycle format,
but a major simplification was done in order to achieve this.
The proposed solution consists in connecting two adjacent
(binary) pixels using the ”OR” operator. This approach greatly
simplifies the problem, but comes down to reducing the
horizontal resolution of the input video stream.

An architecture realising the CCL algorithm was also pre-
sented in the work [21], which is a continuation and extension
of the paper [20]. In this article an analysis on possible
solutions for the UltraHD video stream labelling problem was
conducted. An architecture for processing a video stream in 2
pixels per clock cycle format was also presented. In this case
no simplifications were necessary. Drawback of this approach
is the doubled operating frequency (300MHz was used), which
results in higher energy dissipation.

Summing up the review, it should be noted that it covers
a period of 25 years (1995-2020). There was a dynamic
development of technology during that time – both in vision
sensors and FPGA devices. For example, in the work [9] from
1995, 9 Xilinx XC4010 chips were used and the image was
processed with a resolution of 512 × 512 at 30 fps (clock
frequency 10MHz). In the paper [14] from 2020, a single Zynq
SoC was used for a stream with a resolution of 2K × 2K
and over 30 fps (clock frequency around 100MHz). In our
previous work [20] we have proposed a system capable of
processing a simplified video stream in 4 pixels per clock cycle
format. Then, in [21] we designed an architecture processing
a video stream in 2 pixels per clock cycle format without any
simplification. However, until now, no architecture capable of
processing a video stream in 4 pixels per clock cycle was
presented.

It should be noted that the progress, understood as the
possibility of processing a stream with higher resolution and
fps, is firstly related to the use of newer generations of com-
puting platforms and peripherals (like HDMI 2.0 input/output
modules). However, a direct analysis of this phenomenon and
an attempt to compare (reduce to the “common denominator”)
solutions in terms of the use of different computing platforms
is not simple and was not the aim of this article. The second
factor enabling the aforementioned progress is the use of var-
ious algorithmic solutions, which consequently translate into
the hardware architecture of the CCL module. The mentioned
solutions can be divided into the following categories:

• two-pass – [9] (1995), [14] (2020),
• two-pass with pixel ”series” analysis – [1] (2010),
• single-pass – [2] (2008), [6] (2016), [18] (2017), [13]

(2019), [17] (2019), [19] (2019), [20] (2019), [21] (2021),
• single-pass with shift register – [5] (2016),
• single-pass with advanced pixel “series” analysis – [16]

(2017), [11] (2018),
• single-pass with post processing on an ARM core – [10]

(2018).

In each of the above-mentioned publications, the authors
introduce some algorithmic improvements, which, apart from
the use of newer generation equipment, allow to achieve
better video stream processing parameters. In addition, re-
cently (2016-2020) authors have been looking for algorithmic
improvements through the use of e.g. shift register and pixel
series analysis. The aim of these works is, among others, the
optimisation of resource utilisation, or the desire to eliminate
calculations during horizontal and vertical blanking. The other



Fig. 1. Neighbourhood for the processed group of four pixels.

aim of the proposed improvements is to increase the through-
put of the architecture, which enables to process more data in
the same amount of time, which is necessary to process data
from sensors of higher resolution or more frames per second.

III. THE PROPOSED CCL ALGORITHM

For UltraHD resolution and 60 frames per second, the data
stream frequency is about 600MHz. This is much more than
the maximum frequency even for modern FPGAs. A possible
solution to this issue is data transfer parallelisation – in one
clock cycle, 2 or 4 image pixels can be processed, thereby
reducing the stream frequency correspondingly two or four
times. A CCL module supporting such a parallelised video
stream was the subject of earlier works – [20], [14] and
[21]. However, so far it has not been possible to perform
a “full” connected component labelling for 4 pixels per clock
cycle, without reducing the image resolution horizontally (thus
applying some simplifications). Because of this, the proposed
two-pass connected component labelling algorithm was de-
signed.

For a 4 ppc video stream, in each clock cycle, the neigh-
bourhood of 11 pixels should be analysed. This is presented
in Figure 1.

Labels marked L and G are assumed to be known. In a given
clock cycle, however, the labels for four pixels from P3 to
P0 have to be determined. . For each pixel, a new label is
derived based on the neighbourhood from the previous row
and the label on the left. This means that the labelling must be
sequential. There is no way to parallelise the labelling process.
Then, in the next clock cycle, the label given to pixel P0 will
be saved as pixel label G.

Moreover, attention should be paid to the fact that in the
described situation up to two conflicts (two different labels
in the same neighbourhood of the currently considered pixel)
may occur in one clock cycle, which will have to be resolved
by modifying the equivalence table. An example of such
a situation is shown in Figure 2.

In the presented case, label 1 will be determined for pixel
P3 and a conflict between labels 1 and 4 will be reported. For
pixel P1, label 4 will be assigned and a conflict between labels
4 and 7 will be reported. It should be noted that when a merger
is detected, a higher label is always assigned to the lower one
in the equivalence table and the lower label is assigned to the
processed element. After processing the subsequent pixels in
the group, the labels shown in Figure 3 will be assigned.

Fig. 2. An example neighbourhood that requires the resolution of two
conflicts.

Fig. 3. Labels assigned after processing subsequent pixels in the group.

Fig. 4. Example situation of mergers chain.

In addition to labelling, two conflicts will be designated:
+4 → 1 and 7 → 4. It is necessary to analyse the detected
mergers so as not to create redundant connections in the
equivalence table. These conflicts should point to a single
label. Analysis is required only when two mergers are detected
for a pixel group. In result, the following connections are
determined: 4→ 1 and 7→ 1.

For each conflict, a decision is also made whether or not
a given conflict should be entered into the chain of mergers.
Chain of mergers is a situation when consecutive labels would
be merged to lower and lower labels. An example of such a
situation is presented in Figure 4.

In the presented situation, the following conflicts will be
detected: 9 → 7, 7 → 5, 5 → 4 and 4 → 2. The merger
chain is used to avoid creating complicated connections in
the equivalence table. They would require a frequent and
computationally demanding search for the root of the graph.
Instead, such mergers are written into the stack, which is
resolved between consecutive lines of the image. For the
considered case, as a result of the module’s operation, label 2
would be entered in the equivalence table for cells 9, 7, 5 and
4.

However, there is an additional situation when it is neces-
sary to use a merger chain. This situation is shown in Figure
5.

The first four pixels without a label form one group. In
this situation, only two conflicts should be added to the
merger chain by default. However, this will cause the indirect
connection – 5 → 3 → 2 – in the equivalence table.



Fig. 5. Example situation of additional merger chain.

Algorithm 1: Mergers analysis process
Data: merge1 - first merger

merge2 - second merger
Result: merge1 - first modified merger

merge2 - second modified merger
stack1 - first merger chain flag
stack2 - second merger chain flag

1 if merge1(1) = merge2(1) then
2 if merge1(2) > merge2(2) then
3 merge1(1)← merge1(2);
4 merge1(2)← merge2(2);
5 else
6 merge2(1)← merge2(2);
7 merge2(2)← merge1(2);

8 stack1← 1;
9 stack2← 1;

10 else if merge1(1) = merge2(2) then
11 merge2(2)← merge1(2);
12 stack1← 0;
13 stack2← 0;
14 else if merge1(2) = merge2(1) then
15 merge1(2)← merge2(2);
16 stack1← 1;
17 stack2← 1;
18 else
19 stack1← 1;
20 stack2← 0;

Such a connection would require a much more complicated
search for the corresponding label. In order to prevent indirect
connections, it was decided to enter both conflicts of a given
group into the merger chain in such a case. In this way, label
5 will be directly connected to label 2. Pseudocode of the
merger analysis process is presented in the Algorithm 1.

The assigned labels are then recoded on the basis of the
determined mergers. The final labels are shown in Figure 6.
The labels are then entered into the resulting image.

Between consecutive lines of the image, the conflicts that
were entered into the stack containing the chains of mergers
are processed and then written into the equivalence table. After
processing the entire image frame, a final recoding is neces-
sary. Polega ono na odczytaniu etykiety z każdej komórki tabl-
icy przekodowań. Dla każdej odzytanej etykiety sprawdzany
jest jej odpowiednik w tej samej tablicy. Odpowiednik ten jest
wpisywany do pierwotnej komórki. It consists in reading the

Fig. 6. Final labels after recoding – all condisterd pixels have the value ’1’

Algorithm 2: Final recoding algorithm
Data: eqTable - original equivalence table
Result: eqTable - modified equivalence table

1 foreach label ∈ eqTable do
2 label← eqTable(label);

label of each cell in the equivalence table. For each label,
its equivalent in the same table is checked. This equivalent is
entered into the original cell. The process is briefly presented
in the Algorithm 2.

Then, the image created from previously assigned labels is
recoded based on the final equivalence table.

IV. THE PROPOSED HARDWARE ARCHITECTURE

The hardware architecture realising the connected compo-
nent labelling algorithm described in Section III was designed
taking into account the specificity of the problem and the
authors’ experience acquired during the research described in
papers [20] and [21]. In the second of these works, an analysis
of potential solutions to the 4 ppc problem was presented,
which was the basis for creating the introduced algorithm. Its
schematic is shown in Figure 7.

The binary input stream VIDEO_IN uses the AXI4-Stream
interface. It contains the signals tvalid, tdata, tuser,
tready, and tlast. The LABELS output stream contains
the same signals. The output TABLE includes the signals
addr (equivalence table address), data (equivalence table
data), and valid. The parameters of the designed architecture
are the number of bits for labels (and thus the maximum
number of labels) and the resolution of the processed video
stream.

Context generator

The binary data stream enters the Context generator
module. In addition to the input data stream, the module also
receives a stream of recoded labels from the Delay Line
module, conflicts determined by the Label assigner
module, and conflicts read at the end of each line from the
stack containing the chains of mergers.

The module determines the position of the processed pixel
group in the current frame. If the group belongs to the first
line of the image (pixels L5 to L0 in the figure 1), then the
neighbourhood labels belonging to the previous line of the
image are considered to belong to the background and zeros
are inserted in their place in the context. If the group contains



Fig. 7. Diagram of the proposed hardware architecture.

the left edge of the image, 0 is put in place of L5. In this
case, the label of pixel G is changed to 0 inside the Label
assigner module. On the other hand, if the group contains
the right edge of the image, the L0 pixel label is changed to
0. In the rest of the image, the module does its default task
and passes the label values from the previous image line.

This module also checks if a group of input pixels is valid.
This situation corresponds to the high state on the tready
and tvalid signals of the input stream. If the group is
valid, it is necessary to shift and recode the groups in context.
Recoding of the context is also necessary when processing the
merger chain stack between consecutive lines of the frame.
In this case, however, new data is not received from the
VIDEO_IN data stream, so the groups in the context are not
shifted. After recoding, they must be put in the same place of
the context. This is shown in Figure 8.

The red modules only work when the pixel group of
the VIDEO_IN interface is valid. They recode the labels
in the context based on the mergers received from Label
assigner module. Labels after recoding are written into
the next group in the context. The blue modules work when
the content of the merger chain stack is analysed (between
consecutive lines of the processed frame). They recode the
labels in the context based on the mergers received from
Chain stack module. These modules write the recoded
labels back into the same place in the context. The green
pixels belong to the context and are passed to the Label
assigner module.

Label assigner

The entire Label assigner module only works for valid
pixel groups. It consists of several elements. First, the input
context and the pixel on the left are recoded based on the
conflicts determined for the previous valid pixel group. At the
beginning of the frame (determined on the basis of the tuser
signal), the global counter of the assigned labels is reset. This
counter is used to label pixels that have only background pixels
in their vicinity. There is a possibility to design a label reuse
module that would allow to recover labels that were merged
with a different one and are no longer used. Such a module
will be designed in the future version of the architecture.

Then there are four smaller modules that process the
neighbourhood of successive pixels. A given module only
works when the corresponding pixel belongs to the foreground
object. Each module creates a binary vector based on the
neighbourhood. The created vector controls a multiplexer. On
its basis, appropriate actions are performed that are needed to
determine a new label and detect a possible conflict. There
must also be a test, whether a given conflict should be entered
into the chain of mergers. The designated label is passed to the
next module. The last module also updates the global counter
of the assigned labels.

After all labels have been assigned, it is necessary to analyse
the identified conflicts. The operation of the module depends
on the number of designated conflicts. If no conflicts have
occurred, no action is required. If one conflict is detected, the
appropriate data should be simply passed to the output of the
module. For two conflicts, considerably more operations are



Fig. 8. Context generation diagram.

required. It is caused by the necessity to conduct the analysis
that was presented in the Algorithm 1. In the latter case, the
pause flag is set high for one clock cycle. It means that data
processing must be suspended. This is due to the fact that only
one cell of the equivalence table can be changed in one clock
cycle. By pausing the data pipeline, it is possible to include
both mergers in the equivalence table.

At the end of the module, the label on the right side of the
group is assigned to the G context pixel (fig. 1) if the group
is not the last in the line (signal tlast). Otherwise, pixel
G is assigned a label 0 (representing a pixel belonging to the
background). Control signals are also generated for the data
stream LABELS (fig. 7). All operations described above have
to be performed in one clock cycle. This is caused by the fact
that the detected mergers are utilised in the next clock cycle
to recode the context labels.

Merger

The Merger module is responsible for entering the appro-
priate data into the memory that stores the equivalence table.
As the input, it accepts the information about conflicts from
the Labels assigner module and the end of line signal
of the label stream. On the output, it gives addresses and write
data to the appropriate memories (equivalence table and stack
of merger chains). The module works only when the number of
input conflicts is different from 0 and the data is valid (signal
tvalid of the input merge stream).

At the end of the image line, the stack address is moved to
the beginning of the memory (address 0). The address points
to the top of the stack that is inside of the Chain stack
module (described later in this section).

The module is designed so that in one clock cycle it can
receive up to two conflicts at the input. In this case, the module
processes them for two clock cycles (this is possible thanks
to stopping the pipeline in the Labels assigner module
– flag pause). The larger label of the considered conflict is
passed as the equivalence table address to the module output,
and the smaller label is passed as the data. If a given conflict
is marked as a chain of mergers, the address pointing to the
top of the stack is incremented. Both labels are written into
the stack at that address.

Chain stack
The main element of the Chain stack module is

a BRAM, which stores the stack containing chains of mergers.
The input to the module is the address of writing to the
memory, data that should be saved at the given address and
the signal indicating the end of the image line. The output
of the module is the address and data used for updating the
equivalence table.

During processing a line, the data received from the
Merger (containing labels of the conflict) is written to
memory, and after the EOL (end of line) input signal, the data
is read from the memory. The larger of the read labels is
transferred as the write address to the equivalence table, and
the smaller one as the data to be written under this address.

Equivalence tables
The Equivalence tables module inputs are the ad-

dress and data stream from the Merger module, the same type
of stream from the Chain stack module, and the stream
of labels from the Delay Line module. The outputs of the
module are the stream of recoded labels from the delay line
and the data stream of the equivalence table at the end of each
video frame.

The main elements of the module are two memory banks,
which are swapped between successive frames (double buffer-
ing). This is due to the need to reinitialise the equivalence
tables in such a way that at the beginning of a new frame,
each cell of the table points to itself, e.g. the memory location
with the address 100 must contain the value 100. Each bank
contains five BRAM memory modules. Each memory contains
the same equivalence table.

Four memory modules are required to recode each of the
four pixels in the group received from the Delay Line
module in one clock cycle. An additional memory module
is used to recode the data read from the memory that stores
the merger chains. The same write address, data, and Write
Enable signal are passed to each memory module. This
ensures data consistency between them.

Each memory bank can be in one of three states. The first
state represents a typical bank operation, where conflicts are
written into the array and the input labels from the Delay
Line are recoded.



The second state involves the final recoding of the table. The
bank enters this state after the frame processing is completed.
The data from the first memory module of a given bank is
read sequentially and transferred as an address to the next
module. The data read from the second module is passed to
the TABLE data stream. This operations have to be done after
frame processing is finished, as doing this operation during
processing of the frame would increase the latency of writing
mergers into the equivalence table. In the proposed solution,
the data is written in one clock cycle. Additional recoding of
the label would delay solving equivalences by the read latency
of the memory. In effect, many more recoding operations
would have to be performed. This is the final equivalence table
for the previous image frame.

The third state is responsible for the initialisation of the
considered memory bank. The bank enters this state after the
final recoding is completed. The addresses of each equivalence
table cell are generated sequentially, and the same address is
passed as data to the cells. Once the initialisation is complete,
the bank waits for the frame processing to complete. Then it
goes back to the first state.

Between successive lines of the processed frame, it is
necessary to include the data from the stack of merger chains
to the equivalence table. However, the data from the chain
must first be recoded. The address (larger of the labels) does
not require recoding. For this purpose, the data received from
the Chain stack module is first passed as an address to
the fifth memory module. The read label from this memory is
transferred as write data to all modules of a given bank. The
write address is an appropriately delayed signal obtained from
the Chain stack module.

The pixel groups obtained from the Delay Line module
are transferred to the appropriate memory bank. Each pixel
label is passed as a read address to one of the four memory
modules. The group recoded in this way is transferred to the
module output. Note that the read latency of the memory
modules is equal to 1.

Delay Line

The Delay Line module accepts the stream of recoded
labels from the Labels assigner module as input. It
outputs the same labels, but delays them so that they can
be used for context generation when processing the next line
of the image. The module’s operation is based on BRAM
memory, which performs the function of a circular buffer. Its
size is equal to the number of pixel groups in one line of the
image reduced by the recoding latency, context size, Labels
assigner latency and memory read latency.

The module only works when the pixel group of the
VIDEO_IN interface is valid. For each valid pixel group, the
internal counter is incremented. However, if the value of the
counter is equal to the size of the buffer minus 1, it is reset to
0. This counter is the address of the currently processed item
in the circular buffer. The labels from this address are read
and sent to the output, and the input labels are written in the
same place (the BRAM is configured in the read first mode).

Recode

There are two Recode modules in the architecture. The
first one is responsible for recoding the labels coming from the
Label assigner module, and the second one for recoding
the labels coming from the Equivalence tables module.
The inputs of the module are the label stream and the conflict
stream. The output is a stream of recoded labels.

These recodings are necessary due to the latency of the
modules. While recoding labels from the Delay Line mod-
ule, not all conflicts have been written to the recoding table
yet, because of the write and read latency of the BRAM
memory. Therefore, conflicts not written into the equivalence
table yet must be used to recode the output labels from the
Equivalence tables module.

Input to the Delay Line module is also recoded based
on the found conflicts. The output of this module is assigned
to the LABELS output interface.

V. EVALUATION

The presented architecture is described in the hardware
description language SystemVerilog. Modules were tested sep-
arately in Vivado 2018.2 simulator. The complete system
was also tested in the simulation. Tests were conducted for
short input vectors and for whole images. These simulations
contributed to the detection of many errors at the hardware
architecture design stage. Full compliance of the simulation
results with the software model has been achieved.

Later, the architecture was tested on the Xilinx Zynq Ultra-
scale+ MPSoC chip on the ZCU104 evaluation board. Vivado
2018.2 was used for implementation of the architecture. The
input data was streamed from a graphics card of a PC to
provide appropriate test patterns (in order to compare results).

The bit width of the labels has been set to 10, which
in effect allows to assign 1023 labels. The implementation
was also done for 15 bit width (32767 labels), but no tests
were conducted for this case. The resolution of the processed
video stream was 3830× 2160 at 60 frames per second. The
frequency of the processing pipeline was set to 133.3MHz.
This frequency is sufficient to process the UltraHD resolution
video stream at 60 frames per second. The maximum clock
frequency of the created system is equal to 153MHz. The
maximum frequency depends, inter alia, on the bit width of
the labels. Power consumption of the Zynq chip is equal to
4.67W, of which 1.894W is consumed by the reprogrammable
logic. The data was taken from the Vivado power estimation.

Table I shows the resource utilisation from the Place Design
utilisation report of the module with the parameters listed
above.

The module was tested with a threshold module in order
to binarize the input data stream before the poposed CCL
module. A cumbersome test patterns were passed as an input
to the HDMI input of the ZCU104 evaluation board. These
test patterns required all modules to work as intended in
order to get a correct result. The outputs of the evaluated
architecture were connected to an Integrated Logic Analyzer,
which allows to look at the connected signals during operation



TABLE I
RESOURCE UTILISATION

Resource Pass-through CCL System
LUT 37397 (16.23%) 1588 (0.69%) 41782 (18.13%)

LUTRAM 3233 (3.18%) 0 (0.00%) 3709 (3.64%)
FF 43369 (9.41%) 714 (0.15%) 48366 (10.50%)

BRAM 6 (1.92%) 7.5 (2.40%) 35 (11.22%)
DSP 3 (0.17%) 0 (0.00%) 3 (0.17%)

BUFG 26 (4.78%) 1 (0.18%) 27 (4.96%)

of the system. The equivalence table was compared with
the reference software model of the algorithm, which was
implemented in the MATLAB computing environment. The
results were consistent. A few lines of the LABEL data stream
were also compared with the corresponding lines of the model
result. The same labels were assigned in both cases.

VI. CONCLUSIONS

In the paper, we proposed a hardware architecture for the
connected component labelling algorithm. It allows to process
4 pixels of the input stream (4 ppc format) in one clock
cycle without any simplification. The design is capable of
working with UltraHD/4K video stream at 60 frames per
second in real-time. A key issue is the functionality that allows
to temporarily stop the input data stream. It enables to process
pixel groups, which require writing two conflicts into the
equivalence table. The designed solution is utilising a small
amount of computing resources (max. 2.5% of the used chip
for the BRAM memory).

The program model of the algorithm in MATLAB computing
environment can be found on the GitHub:
https://github.com/vision-agh/CCL.

According to the authors’ knowledge, the presented solution
is the only module tested in hardware, which, by processing
the video stream transmitting four pixels in one clock cycle,
allows for labelling the video stream with UltraHD resolution
and 60 frames per second in real-time.

The concept of processing a video stream with 8K resolution
also seems worth analysing. In this case, it may be necessary
to process 8 pixels in one clock cycle with twice the frequency.
The most troublesome in this situation seems to be the Label
assigner module, which has to determine the label values
for consecutive pixels of one group in one clock cycle.
Increasing the number of pixels in this module can have a
very negative effect on the maximum operating frequency.
However, thorough tests must be carried out to unambiguously
answer this question.

The architecture will be further developed. We plan to
design an additional module responsible for the calculation
of the objects’ parameters (bounding box, area, centroid). An
additional module allowing to reuse the merged labels would
be also very beneficial for the proposed solution.

REFERENCES

[1] Appiah, Kofi and Hunter, Andrew and Dickinson, Patrick and Meng,
Hongying: Accelerated hardware video object segmentation: From fore-
ground detection to connected component labelling, Computer Vision
and Image Understanding, vol 114, no. 2, pp. 1282-1291 (2010)

[2] Ma, N. and Bailey, D. G. and Johnston, C. T.: Optimised single pass
connected components analysis, 2008 International Conference on Field-
Programmable Technology pp. 185-192 (2008)

[3] Ciarach, Piotr and Kowalczyk, Marcin and Przewlocka, Dominika
and Kryjak, Tomasz: Real-Time FPGA Implementation of Connected
Component Labelling for a 4K Video Stream, Applied Reconfigurable
Computing, pp. 165-180 (2019)

[4] Haralick, R.: Some neighborhood operations, Real Time Parallel Com-
puting Image Analysis, pp. 11–35 (1981)

[5] Jeong, Jae-won and Lee, Gil-beom and Lee, Myeong-jin and Kim,
Jae-Gon A Single-Pass Connected Component Labeler without Label
Merging Period, Journal of Signal Processing Systems, vol. 84, no. 2,
pp. 211-223 (2016)

[6] Klaiber, M. J. and Bailey, D. G. and Baroud, Y. O. and Simon, S.:
A Resource-Efficient Hardware Architecture for Connected Component
Analysis, IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 26, no. 7, pp. 1334-1349 (2016)

[7] Kolkur, S. and Kalbande, D. and Shimpi, P. and Bapat, C. and Jatakia,
J.: Human Skin Detection Using RGB, HSV and YCbCr Color Models,
International Conference on Communication and Signal Processing
2016(2016)

[8] Kowalczyk, M. and Przewlocka D. and Kryjak, T.: Real-time im-
plementation of context image processing operations for 4K video
stream in Zynq UltraScale+ MPSoC, 2018 Conference on Design and
Architectures for Signal and Image Processing (2018)

[9] Rachakonda, Ramana V. and Athanas, Peter M. and Abbott, A. Lynn:
High-speed region detection and labeling using an FPGA-based custom
computing platform, Field-Programmable Logic and Applications, pp.
86-93 (1995).

[10] Spagnolo, Fanny and Frustaci, Fabio and Perri, Stefania and Corsonello,
Pasquale: An Efficient Connected Component Labeling Architecture for
Embedded Systems, Journal of Low Power Electronics and Applications
(2018)

[11] Jia Wei Tang and Nasir Shaikh-Husin and Usman Ullah Sheikh and
M. N. Marsono: A linked list run-length-based single-pass connected
component analysis for real-time embedded hardware, Journal of Real-
Time Image Proc 15, 197–215 (2018)

[12] Tsung-Han Tsai and Yuan-Chen Ho and Chi-En Tsai : Implementation
of Real-Time Connected Component Labeling Using FPGA, 2018 IEEE
International Conference on Consumer Electronics-Taiwan, 1-2, (2018)

[13] Spagnolo, Fanny and Perri, Stefania and Corsonello, Pasquale: An
Efficient Hardware-Oriented Single-Pass Approach for Connected Com-
ponent Analysis, Sensors. 19., (2019)

[14] Perri, Stefania and Spagnolo, Fanny and Corsonello: A Parallel Con-
nected Component Labeling Architecture for Heterogeneous Systems-
on-Chip, Electronics. 9., (2020)

[15] Rosenfeld, Azriel and Pfaltz, John L.: Sequential Operations in Digital
Picture Processing, Journal of the ACM, vol. 13, no. 4, pp. 471-494
(1966)

[16] Zhao, C. and Duan, G. and Zheng, N.: A Hardware-Efficient Method
for Extracting Statistic Information of Connected Component, J Sign
Process Syst 88, 55–65 (2017)

[17] Klaiber, Michael J and Bailey, Donald G and Simon, Sven: a single-
cycle parallel multi-slice connected components analysis hardware ar-
chitecture, Journal of Real-Time Image Processing, vol. 16, no. 4, pp.
1165-1175, (2019)

[18] Ling, Luxiang and Chen, Zhong and Li, Shuai and Zhang, Xian-
min: FPGA-based connected components analysis algorithm without
equivalence-tables, International Conference on Intelligent Robotics and
Applications, pp. 543-553, (2017)

[19] Bailey, Donald G and Klaiber, Michael J: Zig-zag based single-pass
connected components analysis, Journal of Imaging vol. 5, no. 4, p. 45,
(2019)

[20] Ciarach, Piotr and Kowalczyk, Marcin and Przewlocka, Dominika and
Kryjak, Tomasz Real-time FPGA implementation of connected com-
ponent labelling for a 4K video stream International Symposium on
Applied Reconfigurable Computing pp. 165–180 (2019)

[21] Kowalczyk, Marcin and Ciarach, Piotr and Przewlocka-Rus, Dominika
and Szolc, Hubert and Kryjak, Tomasz Real-Time FPGA Implementa-
tion of Parallel Connected Component Labelling for a 4K Video Stream
Journal of Signal Processing Systems (2021)

https://github.com/vision-agh/CCL

	I Introduction
	II Previous work
	III The Proposed CCL Algorithm
	IV The Proposed Hardware Architecture
	V Evaluation
	VI Conclusions
	References

