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Computer Engineering, Delft University of Technology
Delft, the Netherlands

Abstract—Internet of things (IoT) devices are appearing
in all aspects of our digital life. As such, they have become
prime targets for attackers and hackers. An adequate protec-
tion against attacks is only possible when the confidentiality
and integrity of the data and applications of these devices are
secured. State-of-the-art solutions mostly address software
and network attacks, but overlook physical/hardware attacks.
Such attacks can still exploit software vulnerabilities or even
introduce them. In this paper, we present embedded memory
security (EMS); it protects against physical tampering of the
memory of IoT devices. As a case study, we have equipped
a RISC-V based system-on-chip (SoC) with an EMS module.
Our experimental results show that EMS successfully can
protect the SoC against hardware tampering attacks, while
having a low performance overhead.

Index Terms—IoT, external memory protection, confiden-
tiality, integrity, hardware security

[. INTRODUCTION

The number of internet of things (IoT) devices has
grown dramatically over the past years [1]. These small
autonomous interconnected devices can be found in
all areas of the digital world, especially in consumer
products [2]. As a consequence, attacks against IoT de-
vices can result in devastating results such as crashes
and loss of data [3]. Most IoT attacks look for ways
to run malicious code on the target device [3]. This is
however not likely to happen through a network access,
when the system uses appropriate cryptographic protec-
tions, especially during software updates [4]. Software
vulnerabilities remain an issue but can be relatively
easily patched. However, it is also relatively easy for
an attacker to inject code by tampering with the device.
There are three common approaches to take control of
a device: i) code injection; ii) rogue memory; and iii)
replay attack. In code injection, the attacker uses means
like fault injection to modify or add malicious code
or data into the external memory [5, 6]. In a rogue
memory attack, the attacker either changes the content
of the whole memory, or swaps the memory chip with
a same model containing different contents [7, 8]. In a
replay attack, the attacker changes the contents of the
memory to an earlier but valid state (such as an earlier
firmware with known vulnerabilities) for exploitation [7,
8]. Evidently, protecting the external memories used in
IoT devices is of utmost importance.

Throughout the years, several memory protection
schemes have been proposed. We can classify them

into three groups: trust execution (TE) environments,
remote attestation, and usage of cryptographic primi-
tives/functions to validate integrity. An example of a TE
environment is ARM TrustZone [9]. A TE uses physical
barriers to create two physical zones in a chip: a secure
and an insecure zone. Applications running in the secure
zone can access all resources (including those residing in
the insecure zone), but not vice versa. As such, unautho-
rized data access by insecure applications are prevented.
However, this kind of a countermeasure is simply inef-
fective against any kind of hardware tampering. In the
second group, remote attestation is used to verify the
integrity of the nodes by a trusted party. The memory
verification can be made with the help of a trusted
platform module (TPM), which compares the received
data with an already stored and sealed version [10].
This method however requires a significant amount of
bandwidth for regular data exchange, which introduces
more processing power requirements in the nodes [11].
Furthermore, they are proven to be vulnerable against
time-of-check-to-time-of-use (TOCTTOU) attacks, where
an attacker modifies the code between the period of code
verification and code execution [8]. The third group uses
cryptographic functions such as encryption to obfuscate
memory contents, as well as secure hash functions to
verify the integrity of the data after decryption. For
example, in [12] the authors used Advanced Encryp-
tion Standard (AES) [13] to encrypt memory contents.
Additionally, they used a SHA-1 [14] based hash-tree
for verification. A study presented in [15] developed
a protection module that encrypts stored memory data
and augments it with random tags (that are also stored in
the memory), a random key (different per application),
and AES. The verification is done by comparing the tag
field in the decrypted memory content. Another study
presented in [16] used AES in Galois/counter mode for
encryption. To provide additional protection, it stores
the timestamps of every memory address on chip. These
timestamps are used to prevent instruction reuse: a com-
mon practice in replay attacks. Such protections indeed
offer protection against hardware tampering. However,
as these techniques rely on software encryption and de-
cryption, they introduce a large performance overhead.
In addition, storing these timestamps on chip for each
memory address creates a large overhead. None of the
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protections above are very suitable for use in IoT devices,
which require secure yet lightweight solutions.

In this study we propose a lightweight embedded
memory security (EMS) module that effectively protects
the external memories of IoT devices. EMS is a stan-
dalone hardware component inserted between the pro-
cessor/cache hierarchy and external memory to check
integrity, authenticity and confidentiality of the content
from the external memory. Our contributions are as
follows:

 Proposal of a hardware protection module that en-
sures confidentiality, integrity, and authenticity of
external memory content.

« Investigation of state-of-the-art lightweight encryp-
tion and message authentication code (MAC) func-
tions to implement the proposed solution.

e In-depth evaluation of security, performance, and
the hardware overhead of the proposed EMS mod-
ule, which is applied to a RISC-V processor and
implemented on a FPGA platform.

The remainder of this paper is organized as follows.
Section II provides a background on lightweight encryp-
tion and hash functions. Section III presents the concept,
design, and different variants of the proposed EMS mod-
ule based on lightweight encryption and hashing. There-
after, Section IV describes the experimental setup and
the performed security and performance evaluations.
Finally, Section V concludes this paper by discussing the
results.

II. BACKGROUND

This section describes the cryptographic functions con-
sidered in this work. First, Subsection II-A describes
and compares lightweight block ciphers. Next, Subsec-
tion II-B describes and compares lightweight MAC func-
tions.

A. Lightweight Block Ciphers

A block cipher is an encryption/decryption algo-
rithm that processes the input in blocks/rounds. A
lightweight block cipher is a cipher that typically re-
quires less resources; hence having a small area, low la-
tency, low power consumption, etc. A typical first choice
for encryption in security applications is the Advanced
Encryption Standard (AES) [13]. However, having a
lightweight hardware implementation was not a design
criterion during its development in 1990s. Therefore, the
area and power requirements generally do not meet
IoT criteria. As a corollary, new block ciphers were
developed as lightweight alternatives. The following
lightweight ciphers are considered in this work:

o mCrypton is a lightweight block cipher based on a
substitution-permutation network (SPN). It uses 64,
96, or 128-bit keys to encrypt 64-bit data blocks in
25 rounds [17].

o Present is one of the first lightweight block ciphers.
It is also based on an SPN, which takes 31 rounds

to process 64-bit data blocks using 80-bit or 128-bit
keys [18].

e Piccolo is based on a generalised Feistel network and
aims to create low overhead and energy consump-
tion. It processes 64-bit data blocks in 25/31 rounds
for 80/128-bit keys [19].

e Prince is designed to provide a high throughput and
low latency. It is also based on an SPN, which pro-
cesses 64-bit data blocks in 12 rounds, using a 128-
bit key. However, unlike other ciphers, it processes
a data block in a single cycle [20].

e Rectangle is a recent cipher based on an SPN. It
processes 64-bit data blocks in 25 rounds, using 80
or 128-bit keys. It is specially developed for RFID
tags, sensor nodes, and smart cards [21].

TABLE I: Hardware comparison of lightweight ciphers

Cipher ‘ Key ‘ Block ‘ Cycles/block ‘ Throughput ‘ Area (GE) ‘ Efficiency (kbps/KGE)
AES 128 128 226 48 11031 4.35
mCrypton (D) | 128 64 13 4923 4108 119.83
Present 80 64 31 206 2195 93.84
Piccolo (D) 128 64 33 193.8 1362 142.32
Prince 128 64 12 533.3 2953 180.59
Rectangle 128 64 26 ‘ 246 1787 137.66

Table I compares the lightweight ciphers (and an
AES implementation for reference). The data is taken
from [22]. The ciphers are presented in the first column.
The letter (D) signifies integrated decryption capabilities
(i.e., the same component can encrypt and decrypt and
hence, no extra component with an inverse operation is
needed). The green colored cells show the best values
among the ciphers for the criteria and area measures are
in gate equivalent (GE). According to the results, Prince
is the most efficient cipher for throughput per area.
An important point is that only mCrypton and Piccolo
have included decryption capabilities in the cipher. On
the other hand, Prince can use the same hardware for
decryption. As a result, we select Prince as the block
cipher in this work.

B. Lightweight Hash/MAC Functions

A hash function is used to map an input to a fixed-
length value, which is typically used for integrity check-
ing. A MAC is a hash function that uses a key, and
thus, can also verify the authenticity of the data as well.
As is the case for block ciphers, lightweight hash and
MAC functions require limited resources. A well-known
standardized hash function is secure hash algorithm
(SHA)-3. It is faster than its predecessors SHA-1 and
SHA-2, but has a considerably large hardware overhead.
The area optimized variants of SHA-3 still suffer from
a large delay. Hence, new lightweight functions were
developed to address these issues. The ones that we
consider in this work are described next:

o Armadillo is a general purpose cryptographic func-
tion, which can also be used as a hash. It is especially
aimed at RFID tags [23].

e PHOTON is a hash function designed for devices
with considerable hardware constraints. It is effi-



cient in hashing short messages and comes with low
area requirements [24].

e Spongent also targets RFID tags. Its construction
is based on the Present block cipher (see Subsec-
tion II-A) [25]. Among Armadillo and PHOTON,
Spongent has the lowest area requirement.

e GLUON also targets RFID tags, as well as embedded
sensor networks [26]. In most studies, it is compared
with PHOTON. Although PHOTON is considered
to be more efficient, GLUON is still relevant for
practical use.

e SipHash is a dedicated MAC function optimized for
short inputs, while aiming to be time efficient in
software and area efficient in hardware [27]. It was
originally created to protect servers against hash
collision attacks, but is currently also used in other
applications as it is much more efficient than the
popular HMAC [28].

e Chaskey is developed as a MAC algorithm [29].
It is designed to provide fast results for software
implementations that run on a microcontroller.

TABLE II: Comparison of lightweight hash functions

Name ‘ Tag size (bits) ‘ Block ‘ Cycles/block ‘ Area (GE)
SHA-3 [30] 256 1600 6750 >6500
Armadillo [23] 80 48 44 4030
PHOTON [24] 80 16 132 1168
Spongent [25] 88 8 45 1127
GLUON [26] 128 8 66 2071
SipHash [27] 64 64 12 3700
Chaskey [29] 128 128 |  NA NA

Table II compares these hash functions (with SHA-3 as
a reference implementation [30]). The data in the table is
collected from the different references provided next to
the lightweight hash functions. Note that only tag sizes
smaller or equal to 128-bit are considered. The green
colored cells indicate the optimal selections and NA
indicates unavailable data. From the table, PHOTON and
Spongent have the smallest area requirements, mainly
due to their small block size. GLUON and SipHash both
support 64-bit digests (i.e., tags). On the other hand,
SipHash has the fastest implementation. As a result, we
select SipHash as the MAC function in this work.

III. METHODOLOGY

In this section, we explain our embedded memory
security (EMS) module for IoT protection. First, Subsec-
tion III-A discusses the main concept. Second, Subsec-
tion III-B describes the design of the module. Finally,
Subsection III-C presents the variations of our module.

A. Concept

To protect the confidentiality and integrity of a
resource-constrained IoT node, we propose an EMS
module. Figure 1 illustrates the idea. Our module is
located between the processor (and caches) and the
memory interface to secure data flow. In their perspec-
tives, the module acts as a transparent buffer. It gets
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Fig. 1: Our EMS concept, where the location of the
proposed module is highlighted with green
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the incoming data from the processor/memory, pro-
cesses them, and relates them to the memory/processor.
The module ensures data confidentiality, integrity and
authenticity (i.e., prevents running tampered code or
code from another device). The module encrypts data
and stores MAC tags to guarantee correctness of data,
while the processor (and the internal caches) work on
unencrypted data, whose integrity was verified by the
module.

B. Design

This subsection provides details on the EMS module.
Figure 2 presents an in-depth look into the module and
its blocks. To illustrate its functionality, we provide the
following example.

Data
From
Caches

MAC Function

Input buffer

Controls
From/To
Caches

CONTROL MAC check Flash

(FINITE STATE MACHINE)

-

Controls DRAM
From/To
| Mem

Fig. 2: The EMS module architecture

When the system powers up, the processor starts
requesting data from the external memory. In some
cases, the first execution code comes from an internal
memory, known as the boot memory, that is responsible
for providing initialization instructions. When this fin-
ishes, the processor is ready to load the operating system
from the non-volatile memory (e.g., flash) and store
it into the main memory (e.g.,, DRAM). Any memory
request from the processor first goes through the cache
hierarchy. After the power-up, this hierarchy is empty,
and therefore, any data requests result in a cache miss,
and an access to the external memory. In a system with
our EMS module, the requests from the last level cache
(LLC) go first through the EMS, which then translates
these requests to the respective memory controller (e.g,
flash or DRAM). When the data from the memory ar-
rives, it is first processed by the EMS module, where



the message authentication code (MAC) of this data is
calculated. In parallel, EMS requests the MAC value
of the data from the memory; the tags are stored on
a specific location. When the calculated and received
MACs become available, the integrity and authenticity
of the data is validated and the data can proceed to the
caches/processor.

EMS also provides the option to encrypt and decrypt
data. This option should be enabled if the data on the
external memories have to be encrypted to provide con-
fidentiality. When enabled, EMS decrypts the incoming
data from memory after MAC verification. Likewise,
EMS encrypts the data that comes from the proces-
sor/LLC, calculates its MAC, and sends these to the
external memories. Note that these cryptographic opera-
tions (i.e., MAC calculation and encryption/decryption)
use a unique key. This key can be created in a number
of ways, such as through e-fuses (i.e., the owner burns
a unique identification during manufacturing process)
or by using the physically unclonable function (PUF)
technology [31].

It is important to mention that adding these function-
alities (i.e., MAC calculation and encryption/decryption)
introduces an impact on the device performance. EMS
aims to minimize this impact by considering lightweight
approaches. To be precise, it takes only one cycle to
encrypt or decrypt 128 bits of data, while it takes about
12 cycles to generate a 64-bit MAC from the same 128-
bit data. We also consider that different devices have
different security requirements, and hence, we present
EMS variants with different features in the following
subsection.

C. EMS Variants

We construct six variants of EMS. Each is described
next.

o Unprotected: This variant is the EMS module with-
out the MAC or encryption/decryption capabilities.
Effectively, this variant does not provide data confi-
dentiality and integrity, as the module is effectively
reduced to a by-pass module. We use this variant
to create a baseline for security and performance
comparisons.

« Cipher: This variant only ensures the data confiden-
tiality by just including the encryption/decryption
operations, although it also offers some integrity
protection. As there is no MAC calculation, there
are no explicit integrity checks of the data residing
on the external memories.

e MAC-I: Similarly, this variant ensures data integrity
and authenticity by just including MAC verification.
As there is no encryption or decryption, the data in
the memory can be observed by an unauthorized
third party.

Furthermore, this is a naive implementation. For
each word (memory width) stored in the memory,
a MAC is generated and stored in the memory as
well at a different location. We assume that the

external memory consists of 128 bits per word. As
our module (SipHash) generates a 64-bit MAC, it
must attach a dummy 64-bit value to it when storing
in the memory. As a result, this process requires to
double the memory capacity to store the MACs.

o MACH-II: This is a memory optimized version of the
MAC-I variant; it reduces the memory overhead by
33.3%. Rather than storing one MAC (with padding)
per memory location, this variant stores two MACs
in the same memory line. Instead of the dummy
padding, it places another MAC. Therefore, when
it wants to save a MAC calculation, it requires first
to read the MAC value of the other word in order
to not lose information. As a result, this causes a
penalty of an extra read operation when performing
a writing operation.

o Cipher&MAC-I: This variant ensures data integrity
and confidentiality, by including both encryp-
tion/decryption and MAC calculations. The MAC
operation is done as in MAC-L

o Cipher&MAC-II: This variant uses the memory op-
timized MAC operation of MAC-IIL. This is the only
difference with Cipher&MAC-L

IV. EXPERIMENTAL RESULTS

This section describes the experiments we conducted
to evaluate the proposed EMS. First, Subsection IV-A
describes the experimental setup. Next, Subsection IV-B
assesses the security performance of the module. There-
after, Subsection IV-C evaluates the performance over-
head. Finally, Subsection IV-D discusses the hardware
overhead that the module creates.

A. Setup

We implemented all variants of EMS in hardware
using Verilog hardware description language and in-
tegrated them in our system-on-chip (SoC) using the
CV32E40P core (formerly RI5SCY) [32] as main processor.
Our SoC contains UART serial interface, timers and a
parametrizable set-associative cache (L1), all intercon-
nected through an AMBA AHB bus. For the experi-
ments, we considered different cache sizes: 4-way set-
associative of 2, 4, 8, and 16kB. Additionally, we imple-
mented a main memory using BRAMs with a latency
of 100 clock cycles to imitate typical external DRAM
behavior [33]. A single address in the main memory
stores 128 bits of data, which also corresponds to a single
cache line in our platform.

For implementation and simulations, we used Xilinx
Vivado 2019.2. We synthesized the designs and emulated
them on the PYNQ-Z1 board [34] (Figure 3). Simulations
were performed to evaluate the security using three
attack cases: i) fault/code/data injection, ii) rogue mem-
ory, and iii) replay attack. The emulations were used to
measure the performance by running the SoC with our
EMS module on the FPGA, while measuring execution
times with an internal timer. In these measurements, we
used different applications from a public repository of



Fig. 3: PYNQ-Z1 Board

RISC-V benchmarks [35]. They are listed and described
below.

e Median applies a one dimensional median filter
over a 400 element input array. Then it compares
the result with another input array for validation. If
they do not match, an error is signaled.

e Multiply performs an element-wise multiplication
between two arrays with a size of 100 elements.
Each multiplication is implemented with a shift-
and-add algorithm. Like Median, it compares the
result with a provided input result array and returns
an error if the arrays do not match.

o Qsort implements the quicksort algorithm [36] on
a 2048 element input array where the sorting is
performed in ascending order. Finally, it compares
the result with a validation array, and returns the
result thereof. This benchmark features the most
computationally intensive operation over the ones
that we consider.

o Towers is a computationally intensive algorithm
without inputs. It calculates the moves required to
solve the Towers of Hanoi puzzle [37] with 10 rings.

« Vvadd is similar to Multiply, except it accomplishes
element-wise addition over a 300-element input ar-
ray. As such, it is not a computationally intensive
benchmark.

B. Security Evaluation

The security evaluation tests the effectiveness of the
EMS module against attacks. For this, we tested our
module under three different attack scenarios that we
discussed in Section I. In all scenarios, we assume an
attacker targeting the external memory in order to tam-
per the running software. We do not cover any attacks
against the processor or its caches, so we consider the
processor as trusted. We assume that our target loT
environment implements all known security measures
to prevent network-based attacks.

1) Fault/Code/Data injection: The main concern
for the situation considered in this work is an
attacker that is able to run malicious code in an
IoT device. The attacker can achieve this with
either fault, code, or data injection. All these can be
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Fig. 4: Evaluation results of fault/code/data injection
attacks on EMS variants: (a) unprotected, (b) cipher, and
(c) MAC-L

simulated by injecting faults or data in the memory,
especially by targeting the parts used for storing
instructions. Therefore, we flipped random bits in
10 instruction memory locations, during a run of
the Median benchmark [35] (see Subsection IV-C).
Figure 4 shows the results of this attack on three
EMS module variants: unprotected, cipher, and
MAC-I (see Subsection III-C). We only include
these three as MAC-II and cipher&MAC-II are area
optimizations without any effect on security (this
is also the case for the other attack scenarios). We
do not include cipheré&hash-I either, as the security
results for that variant can be derived from cipher-I
and hash-I.

Figure 4 shows the results of the fault injection cam-
paign for the different designs. In (a) - unprotected,
the time frame surrounded by a box with number
1 indicates where a glitch took place. The processor
deviates from intended behavior some cycles later,
as shown by the signals in the box with number 2.
In this time window, the processor seemingly reads
and writes random data, and does not perform the
correct behavior. In (b) - cipher, after the alteration of
the memory line during the time window denoted
by box 1, the decryption of the following encrypted
instruction from the instruction memory leads to an
illegal instruction. This results later in a crash, and
consequently any further operations are halted (as
observed in the time frame surrounded by box 3).
In (c) - hash-I, which includes hash-based memory
integrity check, the glitched memory (in time frame
1) is immediately detected during time frame 2 and
the processor stops executing this application in
a controlled manner. The glitch is detected as the
calculated and read (from memory) MAC values do



2)

3)

not match.

Rogue memory: A rogue memory attack refers to
changing contents of a memory, or even swapping
the memory chip with another one. This can result
in the execution of malicious applications in an
unprotected system. We discuss this attack with a
sample application.

This attack against the unprotected variant is trivial
and works every time. For this case, the proces-
sor executed the tampered program without any
crashes or halts. For the cipher case, this attack is
not possible as the attacker do not possess the en-
cryption/decryption key of the EMS module. Thus,
the result is the same as the fault attack case, where
the processor encounters invalid instructions due to
an incorrect decryption (see Figure 4 (b)). Lastly, this
attack also does not work for the MAC-I case, as
the attacker does not possess the MAC key. Hence,
operations loaded from the rogue memory will not
be validated by the hash block. Consequently, the
results for this case is identical to the fault attack
case (see Figure 4 (c)).

Replay attacks: In this attack, the attacker manipu-
lates the same memory by reverting it to an earlier
state. Thus, the attacker has access to a collection
of valid MACs, which makes the detection harder.
However, this attack is also more complicated and
limits the attacker in executing custom instructions.
Figure 5 shows the evaluation results of four vari-
ants under a replay attack. Here, we also included
the MAC-II variant, as different memory usage cre-
ates a difference in security with MAC-L

In Figure 5, the attack always occurs at the time
frame denoted by box 1. The attack modifies the
contents of one particular memory address. The un-
protected variant continues the execution as usual,
as indicated by the box in time window 2. In the
cipher case (b), the swapped memory content still
leads to a valid instruction. Hence, the signals dur-
ing the window surrounded by box 2 show identical
behavior like the unprotected variant. The only dif-
ference from the unprotected case is that address
and data signals from the memory are different.
This slight difference is caused by the influence
of EMS. In the MAC-I case (c) however, the hash
block recognizes the mismatch between the MAC
values, and halts the operation. Here, a special case
occurs for MAC-II case (d). If the attacker is able to
replace both the data and the corresponding hash in
the memory, the attack succeeds and the processor
continues the execution as normal. This last case can
only be avoided if EMS also adds timestamps to
the MAC values. We leave this feature for future
work. Note that it is not very practical to perform
replay attacks on encrypted content, as the attacker
should know what the encrypted content represents
in order to effectively reuse it.
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Fig. 5: Evaluation results of replay attacks on EMS
variants: (a) unprotected, (b) cipher, (c) MAC-I, (d) MAC-
I

C. Performance Penalty

We evaluate the performance penalty of our EMS
module based on the execution time metric. This is the
total elapsed time of a benchmark application, from start
to finish. As the elapsed time value for a benchmark
is data dependent, we provided the same inputs to all
variants and took the average of 10 runs. We provide
the results for different cache sizes. Table III shows these
results for the different EMS variants.

As observable from the table, the full protection
schemes (Cipher&MAC-I and II) introduce a delay in
the execution time; especially for Median, Qsort, and
Vvadd. However, this delay reduces when the cache size
increases. Furthermore, variants of Cipher, MAC-I and II
introduce considerably less delay. The amount of cache
that is needed for a program to reduce the miss rate and
hence the execution time depends on the amount of data
that needs to be processed, and in which order data is
accessed. Based on the execution time of the unprotected
case, it is reasonable to assume that a system running
these applications would come with an 8kB cache as
the execution times do not improve much for higher
cache sizes. For this particular cache size configuration,
the overhead introduced by the full functionality EMS
(Cipher&MAC-I) is between 0.3 and 35%.

D. Hardware Overhead

In order to determine the hardware area and timing
requirements, We synthesized all EMS variants, along



Unprotected Cipher

2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB
Median | 678 401 277 277 709 (4.6%) 412 (2.7%) 279 (0.7%) 279 (0.7%)
Multiply | 751 751 751 751 752 (0.1%) 752 (0.1%) 752 (0.1%) 752 (0.1%)
Qsort 10965 9606 7588 6625 11345 (3.5%) | 9891 (2.9%) 7731 (1.9%) 6701 (1.1%)
Towers | 2811 2811 2811 2811 2812 (0.1%) | 2812 (0.1%) | 2812 (0.1%) | 2812 (0.1%)
Vvadd 564 308 172 172 593 (5.1%) 320 (3.9%) 174 (1.2%) 174 (1.2%)

MAC-I MAC-II

2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB
Median | 1250 (84.3%) | 606 (51.1%) 319 (15.2%) 319 (15.2%) | 1355 (99.8%) | 638 (59.1%) 319 (15.6%) 319 (15.6%)
Multiply | 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%) 767 (2.1%)
Qsort 17998 (64.1%) | 14874 (54.8%) | 10229 (34.8%) | 8028 (21.2%) | 20000 (82.4%) | 16265 (69.3%) | 10786 (42.1%) | 8038 (21.3%)
Towers | 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) | 2820 (0.3%) 2820 (0.3%) 2820 (0.3%) 2820 (0.3%)
Vvadd 1112 (97.1%) | 527 (71.1%) 214 (24.4%) 214 (24.4%) | 1189 (110.8%) | 554 (79.9%) 214 (24.4%) 214 (24.4%)

Cipher&MAC-I Cipher&MAC-II

2kB 4kB 8kB 16kB 2kB 4kB 8kB 16kB
Median | 1268 (87.0%) | 612 (52.6%) 320 (15.0%) 320 (15.0%) | 1372 (102.3%) | 644 (60.6%) 320 (15.5%) 320 (15.5%)
Multiply | 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.3%) 768 (2.2%) 768 (2.2%) 768 (2.2%) 768 (2.2%)
Qsort 18215 (66.1%) | 15036 (56.3%) | 10310 (35.9%) | 8071 (21.8%) | 20217 (84.3%) | 16428 (71.0%) | 10867 (43.2%) | 8081 (21.9%)
Towers | 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) | 2821 (0.3%) 2821 (0.3%) 2821 (0.3%) 2821 (0.3%)
Vvadd 1129 (100.1%) | 533 (73.1%) 215 (25.0%) 215 (25.0%) | 1206 (113.8%) | 560 (81.8%) 215 (25.0%) 215 (25.0%)

TABLE III: Benchmark execution times (in ps) for the EMS variants, where the additional time percentage is included

for variations other than the unprotected. In the table, kB represents the cache size and NA unavailable data.

with the processor (CV32E40P core [32]) in a PYNQ-
Z1 FPGA [34] (see Subsection IV-A). Table IV shows the
results for all EMS variants except for the unprotected
case, as well as a cost breakdown.

Slice LUTs WNS @ 25MHz | RAM
capacity

lost to MAC

Slice Regs.

Cipher

Full platform
EMS module (x2)
Prince core
MAC-I

Full platform
EMS module (x2)
SipHash core
MAC-II

Full platform
EMS module (x2)
SipHash core
Cipher&MAC-I
Full platform
EMS module (x2)
Prince core
SipHash core
Cipher&MAC-II
Full platform
EMS module (x2)
Prince core
SipHash core

TABLE IV: Hardware area usage of EMS variations
and the platform with 2kB, 16-way caches, where the
additional overhead is included as a percentage

35176, +9.7% 4.30ns 0.0%
2090

1905

45025, +2.6%
560
130

34003, +6.1%
1505
863

46056, +4.9%
1084
467

3.88ns 50.0%

34197, +6.7%
1596
851

46461, +5.9%
1277
467

4.38ns 33.3%

36126, +12.6%
2563

1526

762

46589, +6.2%
1346

130

467

4.21ns 50.0%

36427, +13.6%
2713

1590

847

46983, +7.1%
1539

130

467

1.75ns 33.3%

As expected, the full protection variant creates the
most overhead. However, it is limited, as none of our
EMS variations have an area overhead of more than 14%.

To further verify that our solution is lightweight,
we compared the overhead of the full protection ci-
pher&MAC-II with state-of-the-art solutions. Table V
shows the results.

The results indicate that while EMS uses slightly more
LUTs, it requires fewer registers. Our module also does
not require any block RAM usage. Overall, the usage is

Slice LUTs | Slice Regs. | BRAM

Encrypt+MAC (D) | 2713 (100%) | 1539 (100%) | 0

Prince core 1590 130 0

SipHash core 847 467 0

GCM-AES [38] 2670 (98%) | 1568 (102%) | 5

SHA-256 [39] 2027 (75%) | 1830 (119%) | 0
TABLE V: Hardware requirements comparison to state
of the art

very similar to state-of-the-art solutions, if not less. This
is because in the table, we only show the synthesis re-
sults of the core elements of the state-of-the-art solutions.
These do not include control and internal buffers.

V. DISCUSSION AND CONCLUSION

In this work, we presented the embedded memory se-
curity module that provides data confidentiality, authen-
ticity and integrity in IoT node devices. We accomplished
this by introducing data encryption/decryption and
MAC calculation blocks between the processor/cache
and external memory. Furthermore, we conducted ex-
perimentation to show that it is indeed effective against
well-known attacks, while being lightweight. To con-
clude this paper, we highlight the advantages and limi-
tations of EMS:

Customization: A strong point of our detector is its
customization ability. A specific variant of our EMS
module can be selected based on various factors; such
as security/privacy requirements, available processing
power, used cache sizes, etc.

Additional hardware security: An interesting side effect
of storing data encrypted in the external memory is
that it prevents observability from outside. This makes
conducting side-channel attacks considerably harder if
not impossible, as well as some kinds of fault injection
attacks.



Boot memory optimization: As our module provides
security to the external memory, the boot software can
also be placed there and the size of the boot loader can
be significantly reduced if not completely removed. This
simplifies the internal SoC structure and reduces area.

Applicability: Our module relies on a secure network
implementation and that updates do not contain mali-
cious code. This is feasible in IoT, where secure network
and cloud communication can be expected. However,
in other digital device networks, additional protections
other than EMS are required to ensure software integrity.
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