
Towards a More Flexible IoT SAFE Implementation
authors

mail addresses
organization A
organization B

Abstract—The Internet of Things (IoT) is disseminating in ev-
eryone’s daily life and gets ubiquitous not only in industry. With
this growth, device and communications security is increasingly
important. Hardware Security Modules (HSMs) are integrated
into IoT devices to provide a ”Root of Trust”, and protect
confidential key material used for device authentication. Due to
lack of standardized interfaces, HSM manufacturers implement
their own proprietary interfaces. To ease integration of hardware
security, and enable vendor interoperability, the GSMA proposes
IoT SAFE, a standardized interface.

In this work, IoT SAFE is evaluated and compared against
the interfaces of proprietary HSMs. Improvements are proposed
in order to reduce complexity, increase flexibility, and ease the
integration into Transport Layer Security (TLS) libraries. The
evaluation shows that the TLS handshake performance can be
improved significantly for ECC and RSA certificate-based client
authentication. The message count between HSM and hosting
device is reduced by approximately 40% and 25%, respectively.

Index Terms—IoT, TLS, DTLS, Protected Communication,
eSIM, eUICC, Java Card, Applet, Interface Design, Services

I. INTRODUCTION

The number of connected IoT devices is continuously
growing since many years, and in future even stronger growth
is predicted. As analyzed in [1], the number of connected
IoT devices is surpassing the number of connected non-IoT
devices. In 2025, this number is going to exceed 30 billion
devices [1]. The more devices are interconnected, the more
important it is to protect the communication links. State-of-
the-art security protocols are TLS and Datagram Transport
Layer Security (DTLS). Their goal to provide confidentiality,
authenticity, and integrity is identical, but they rely on different
transport protocols, Transport Control Protocol (TCP) and
User Datagram Protocol (UDP) respectively. In order to pro-
tect important key material required during certain steps of the
security protocols, the security layer shall be supported with an
HSM (interchangeably used: Secure Element (SE)), providing
a ’Root of Trust’. Cryptographic functions are delegated to the
HSM, resulting in a partitioning of TLS functionality between
hosting device and HSM. A typical TLS system partitioning is
described in [2]. With this measure, the attack vectors against
the communication link as well as side channel attacks are
minimized [3].

Besides proprietary HSMs, the GSM Association (GSMA)
defines a standardized interface, called IoT SIM Applet For
Secure End-to-End Communication (SAFE), to be imple-
mented as a Java Card applet. Fig. 1 depicts the essential
architecture with the component’s logical connections (dashed
lines). During the (D)TLS handshake, protected key material is

utilized, which must be deployed beforehand. This process is
executed in advance or remotely Over-the-Air (OTA). Classical
HSMs need to be provisioned during manufacturing, resulting
in lack of flexibility. Embedded Universal Integrated Circuit
Cards (eUICCs) are capable of being provisioned with cre-
dentials over the air, as depicted in Fig. 1. This allows ”late
binding” of devices, a mechanism described in [4]. It enables
vendors to manufacture devices in high volume and target a
customer platform at the time of installation, instead of time
of manufacturing.

The initial purpose of eUICCs was to authenticate a device
against a Mobile Network Operator (MNO) in order to get
access to the cellular network, commonly known as Subscriber
Identity Module (SIM). Due to the modular approach of
utilizing applets for various services, an eUICC achieves high
flexibility. Therefore, the eUICC is a multi-purpose computing
platform, mostly based on Java Card.

Host Controller

IoT Client Application

IoT Device Middleware

eUICC

eUICC OS

Issuer Security Domain

MNO Security
Domain

IoT SAFE
Security Domain

IoT SAFE Applet
Network

Access
Applet

File
System

Cloud Server

IoT Server Application

IoT Server Middleware
(D)TLS

Connection

Provisioning Server

IoT Security Service („Root CA“)

Storage

Crypto-Toolbox

SIM OTA

Fig. 1. IoT SAFE Concept and eUICC Architecture including Interaction
with Host Controller and respective Servers (modified from [5])

Besides remote provisioning, cryptographic features, and a
protected storage, the eUICC is standardized by the GSMA in
[6] and inter-operable across different vendors [5]. This makes
eUICCs highly qualified for being used in the IoT domain,
where the market is scattered among countless manufacturers.

Not only the eUICC and the related interface is standard-
ized, but also the applet responsible for protecting the key
material and performing security critical operations during the
(D)TLS handshake [7]. This applet communicates with the
IoT security service to OTA provision the applet store content
with key material, as depicted in Fig. 1. The IoT middleware
running on the host controller, is establishing the (D)TLS

connection, supported by a cryptographic library within the
IoT SAFE applet. On top of the middleware, the TLS library
and the application logic is executed on the host controller.

This work focuses on the interface between applet and host
controller, including the respective software components. The
main contributions are:

• Structured analysis of the current version of the IoT
SAFE applet

• Implementation and specification enhancement regarding
complexity, simplicity, and endurance

• Evaluation of current state, improvements, and limitations

II. STATE-OF-THE-ART

For supporting various IoT applications with regard to
security, many different devices are available on the market.
In this work, several proprietary HSMs and the applet-based
solution are evaluated and compared.

A. Proprietary HSMs for Supporting the Security Layer

In this chapter the following comparable devices and their
host interface are analyzed.

• Microchip ATECC608B [8]
• NXP EdgeLockTM SE050 [9]
• Infineon OPTIGATM Trust X [10]
Comparing these HSMs, they all have specific design char-

acteristics. Microchip’s ATECC608B is designed for simplicity
and ease of integration, by offering a minimum command
set required to secure typical IoT applications. In contrast,
NXP’s EdgeLockTM SE050, offers a complex command set,
including several variations for hashing and key derivation.
Further, it supports numerous signature algorithms and Elliptic
Curve Cryptography (ECC) curves. The command set provided
by Infineon’s OPTIGATM Trust X is more complex than Mi-
crochip’s ATECC608B, but simpler than NXP’s EdgeLockTM

SE050.

B. IoT SAFE Applet

An eUICC offers two different connectivity options to the
host controller: indirect connection via a modem, based on
the ISO7816 T=0 protocol; direct connection such as I2C
or SPI. Typically, eUICCs are connected indirectly via the
modem with corresponding AT and SIM commands. The T=0
protocol does not support chaining, therefore chaining must be
implemented on Application Protocol Data Unit (APDU) level
if required. The chosen accessibility option does not influence
the implementation of the IoT SAFE applet.

In [11], a typical IoT device system architecture, and a
structured evaluation of various I2C communication protocol
stacks, are described. The evaluated Global Platform APDU
transfer over I2C is a derivative of the ISO7816 T=1 protocol
and is called T=1’ [11]. The tremendous difference of various
protocol stack implementations regarding code size, which is
an important factor due to resource-constrained devices, is
evaluated in [11].

The main purpose of the IoT SAFE applet is supporting the
host controller during the (D)TLS connection establishment to

the server, and providing a protected applet specific storage for
important key material, as depicted in Fig. 1. The handshake
sequence with dissected critical steps is presented in Fig. 2. In
this work we focus on TLS, but the DTLS handshake engine
is equivalent regarding the utilized cryptographic operations.
The interfaces to access the functionality of an HSM need to
be designed in a way to ensure simple integration into various
TLS libraries, such as OpenSSL or mbedTLS, in order to be
adaptable and reduce errors during integration.

IoT SAFE Client Server

ClientHello

Handshake Protocol

Change Cipher Spec Protocol

Application Protocol

ServerHello

Parse ClientHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Parse Server
Messages

Certificate

ClientKeyExchange

CertificateVerify

Finished

Parse ClientKeyEx.

ChangeCipherSpec

Finished

Application Data Application Data

ChangeCipherSpec

Get Random

Verify Signature
Read File (Root CA Cert)

Generate Key Pair
Compute DH
Compute PRF

Compute Signature

Read File (Client Cert)

Compute PRF
Parse Server

Messages

Plain Communication

Encrypted Communication

Encryption State:

Parse Certificate

Parse CertificateV.

Parse Client
Messages

Parse ServerHelloD.

Parse CertificateR.

Legend:

Fig. 2. TLS 1.2 Handshake with IoT SAFE (modified from [12])

The GSMA defines two different IoT SAFE applets due
to resource constraints of specific IoT devices, but this work
focuses on IoT Security Applet Type 1, since the functionality
of IoT Security Applet Type 2 is a subset. An overview of the
applets functionality is depicted in [5].

The applet as well as the applet store content are provisioned
OTA, by a provisioning server, which requires the key material
to authenticate against the respective security domain of the
eUICC, as depicted in Fig. 1. An applet can be installed in two
possible places, either within an MNO profile, or in a separate
security domain. The advantage of a dedicated security domain
for the IoT SAFE applet (highlighted in Fig. 1), is the inde-
pendence of MNO profiles and provider changes. As depicted
in Fig. 1, the provisioning server provides an IoT security
service, which acts as a root Certificate Authority (CA).

III. IMPROVEMENT PROPOSALS FOR IOT SAFE

In this section we propose improvements to the design of
IoT SAFE. These include changes to the provided services,
and interface optimizations that lead to simpler applet imple-
mentations and better integration with the host software stack.

A. Cohesion of Hash and Signature Functionality

The single-responsibility principle [13] states that every
class or service should have a single responsibility. The

design of IoT SAFE combines the functionality of hash-
ing and signing into a composite service, which breaks the
single-responsibility principle. The Compute Signature

and Verify Signature commands offer a mode of
operation (full-text processing) including hashing.

Further, merging the hash functionality into this mode,
violates the principle of statelessness [14]. This principle
advances the scalability by avoiding retention of session
information. In order to allow hashing messages exceeding
the interface’s supported frame size, input chaining is required.
Input and output chaining is used to convey long command
and response data fields respectively [15].

1) Requirements from TLS: A TLS handshake engine re-
quires hashing and signing functionality, however not in the
combination provided by IoT SAFE. For the CertificateVerify
message, signing the hash digest over all handshake messages
sent and received until this point in time, is required. The pad
-and-sign processing mode of IoT SAFE is sufficient
for this use case. Theoretically, delegating the hashing to the
applet is possible, but might not be done for the following
three reasons.

First, hashing in the applet provides no additional security
gain. Further, delegating this functionality leads to the neces-
sity to transfer all received handshake messages to the applet.
This results in a degraded performance, because hashing on
the host controller is typically faster than transferring the mes-
sages. Utilizing a (D)TLS cipher suite with PSK authentication
is a notable exception, since in this case the handshake is
considerably shorter.

Second, during the CertificateVerify message generation, a
signature over the hashed handshake messages is required.
Therefore, the hash context needs to be cloned and finalized
beforehand, as depicted in Fig. 3. Cloning the hash context is
required, since subsequent handshake messages must be added
to the same hash context in order to calculate the verify data
in the Finish messages. Overall, cloning the hash context for
the handshake message digest is required twice during the
TLS 1.2 handshake, highlighted in Fig. 3. The Compute
Signature command interface does not allow cloning a
corresponding hash context. This implies that the full-text
processing mode cannot be used in this context of TLS.
Third, not all TLS libraries support the delegation of

hashing. For instance OpenSSL allows the implementation of
custom engines, which can be used to delegate ECC and
RSA signatures to the applet. However, neither OpenSSL
nor mbedTLS offer mechanisms to support the delegation of
hashing.

2) Provide Separate Command for Hashing: Providing a
dedicated command for hashing within the applet, results in
the following benefits.

First, the commands to compute and verify signatures
require only the pad-and-sign mode. Thus a single com-
mand is sufficient for signing and verifying pre-computed
hashes. This implies that no input chaining is required for
the Compute Signature command. Additionally, avoid-
ing sessions allows merging the Compute Signature -

Hashing Client Server

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone
Certificate

ClientKeyExchange

+

Init Hash Context

+

+

+

Clone
Finalize

 Sign +

Finalize

 PRF

Check Equality

Clone
Finalize

 PRF +

Finished

Finished

CertificateVerify

Fig. 3. Client-side Hashing Procedure during TLS 1.2 Handshake

TABLE I
APDU DATA FOR HASH COMMAND

APDU Field Data type Description
CLA Byte To be defined
INS Byte To be defined
P1 Byte Session number
P2 Fragment flags 80h First

40h Last
Finalize flag 20h Finalize and return digest

Payload
for first
APDU

Optional TLV Initial hash digest Value
Number of bytes already hashed

Mandatory TLV Hash algorithm
Plain data Data to hash (can be empty)

Payload
for following

APDUs
Plain data Data to hash (can be empty)

Init and Compute Signature - Update commands,
resulting in a simpler interface and less APDU transactions.

Second, support to clone a hash context is useful for
resource-constrained TLS implementations without hashing
capabilities. The session concept could be used to manage
multiple hash contexts.

A hash command could be designed as shown in Table I.
P1 of the APDU specifies the session number, and P2 is
used to distinguish first, intermediate, and last APDUs in
the session. For the first fragment, the payload consists of
two optional Type-Length-Value (TLV) fields with the initial
hash digest value and the number of bytes already hashed, to
optionally support continuing a hashing operation. Afterwards,
a mandatory TLV field, containing the hash algorithm to
be used, and the first block of the data to hash follow.
Intermediate and last fragment contain further message blocks
to be hashed. With each APDU an intermediate hash can be
exported, by setting the Finalize and return digest
flag. Computing the intermediate hash does not discard the

internal state of the hash session and further data might be
added. The session is implicitly reset when an APDU is sent
with P2 indicating the first fragment.

B. Applet Store Improvements

The IoT SAFE applet store contains private keys, public
keys, files, and secret keys. We propose having key pairs,
consisting of a private and a public key, instead of storing them
separately. This way, it is ensured that the metadata for both
elements is identical. The Object Access Conditions
would apply to the public key. Reading private keys should
never be possible, and the Cryptographic Functions
flag Signature (generation or verification)

has to be split into two separate flags for generation and ver-
ification of signatures. Private keys should only be generated
inside the applet, and never be imported via the management
interface for security reasons. The generation of a private key
without a public key is not possible in Java Card, only key
pairs can be generated. That eliminates the need for having
single private keys in the applet store.

Together with the introduction of key pairs, we propose
changes to the interfaces of Compute DH and Verify
Signature. For these operations, the public key data should
be passed as payload instead of a reference to a public key
object in the applet store. This eliminates the need for stan-
dalone public keys in the applet store and causes a reduction
of required interface commands. Currently, a Put Public
Key command precedes each Compute DH and Verify
Signature command. The proposed change eliminates the
need for two consecutive commands. We recognize the fact
that public key data must still be stored in a Java Card Public
Key object to be used for verify operations. However, it is

possible to create public key objects that store data in transient
memory. In addition, only one object for each supported public
key type (e.g. RSA, ECC) is required to temporarily store
public key data for verify operations.

The object metadata of keys contains a Key Specific
Usage field. This field has currently no purpose in the applet,
and could be removed. Information currently encoded in this
field, which is used by the hosting device, could also be
encoded as part of the Identifier or Label.

C. Command Simplification and Improvement

Several commands in IoT SAFE provide functionality to
retrieve data or metadata from the applet. The related inter-
faces are not following the principles of single-responsibility
and statelessness. We propose different interfaces that solve
those problems, as well as defining more efficient encodings
for data and metadata.

1) Merge Read File and Read Public Key Com-
mands: From host controller perspective, public keys in IoT
SAFE and files are equivalently. Both can only be read and can
be larger than the maximum payload of a single APDU. There-
fore, the separate Read Public Key command should be
eliminated and the definition of the Read File command
extended to allow reading public keys too.

Further, the structure definitions of public keys should be
simplified such that there is only one layer of TLV, instead
of currently up to three. This reduces the amount of code

TABLE II
APDU FOR GET OBJECT LIST COMMAND

APDU Field Data type Description
CLA Byte To be defined
INS Byte CBh
P1 Byte 01h
P2 Byte Group index

Response
Data

Optional TLV
(in this order)

Private key identifiers
Public key identifiers
Secret key identifiers
File identifiers

Status
Word Short 6300h End of list not reached

9000h End of list reached

required for encoding and decoding the keys on the host, and
subsequently the overall complexity.

2) Reduce Scope of Get Object List Command: The
Get Object List command provides a functionality to
get the complete metadata from the applet, which is redundant
to the other Get Data commands, and additionally it carries
an internal state.

To remove these drawbacks, the command should return
the Identifier of each object in a TLV structure. The
metadata for this object is then retrieved via the respective
Get Data command. Additionally, we propose to define a
fixed ordering of these structures, and supply an index in
P2 as shown in Table II. To use the available space in an
APDU as efficiently as possible, 11 (maximum size that fits
in worst case) Identifier structures are grouped into one
APDU. These groups are assigned with a group index, which
is constant until the next update of the applet store.

To read the full object list, the host will query the applet
by increasing the group index until it receives the 9000h
status code. By using a fixed group size of 11, the applet

can efficiently compute the current position in the object list
without the need to keep any state.

3) Parser Complexity Reduction: Results of commands to
the IoT SAFE applet must be interpreted by the host controller.
IoT SAFE uses TLV encoded data throughout this interface.
In structures, such as the Private key information
structure, some fields are conditionally present. This

increases the complexity to parse these structures, because
the conditions must be evaluated to verify the correctness
of the received data structures. Additionally, in programming
languages such as C, TLV encoded structures will be parsed
to a matching struct type, which must contain all possible
fields. To minimize the complexity of the parser on the host
controller and the applet, we suggest to avoid conditional
fields. They can either be encoded with a zero value for flags
or in case of the Label field, with zero length.

The second problem increasing parser complexity, are in-
consistencies in the definition of the command APDUs which
use chaining. For the commands Read Public Key and
Get Object List the bits controlling chaining are defined
in P2, whereas for all other commands these bits are in P1.
This definition necessitates two code paths for encoding and
decoding APDUs instead of one generic solution. We propose

to define the chaining bits to always be in P2, which fixes this
issue without any drawbacks.

4) Consistency and Versatility: To make the specification
easier to understand and implement, the set of possible status
words should be minimized. As an example, the 6A82h
(File not found) status word is only used for the Read
File command, while all other commands return 6985h
(Conditions of use not satisfied) for objects that are not found.
We propose to consistently use 6A82h (File not found) in case
an object was not found in the applet store when referenced
by its Identifier or Label.

During analysis of the specification, we discovered that it
does not mention nor cover the case where the transport does
not support the maximum APDU payload size for command
and response. To resolve this, either the specification should be
changed to support a flexible chaining protocol for all APDUs,
or mandate that the transport must support the maximum
payload size.

D. Supported Cryptographic Algorithms

The use cases for IoT SAFE are geared towards (D)TLS,
but not all core algorithms to complete a (D)TLS handshake
without a cryptography library on the host controller are
defined. Therefore we propose the following adaptions to IoT
SAFE.

1) HKDF Key Derivation for TLS 1.3: The specification
defines the Compute HKDF command which implements the
extraction step of the HMAC-based Key Derivation Function
(HKDF) algorithm. This is not sufficient to perform a full
TLS 1.3 key derivation without a cryptography library on the
host, which means that the HKDF algorithm including a full
Hash-based Message Authentication Code (HMAC) and hash
algorithm implementation must be present on both, the host
controller and the applet. We propose to extend the IoT SAFE
specification with an interface for the HKDF-Expand step,
which allows to remove the duplicated parts from the host
controller.

2) PRF Key Derivation for TLS 1.2: An optional feature
of the applet is the PRF SHA-256 key derivation for TLS
1.2. The Compute PRF command supports three modes of
operation. In the PSK-Plain and PSK-ECDHE mode, a pre-
master secret must be calculated before the Pseudo Random
Function (PRF) calculation. For this calculation, the key data
of the selected Secret Key object, which is stored in the
applet store, must be available. Secret Key objects are
typically implemented based on Java Card HMACKey objects
that store the key material in protected memory. Extracting it
into a less secured buffer for the pre-master secret calculation
results in a security risk.

E. Default Applet Store Structure for TLS

In order to integrate the IoT SAFE functionality into a
TLS library on the hosting device, the library needs to know
how to select the appropriate objects in the applet store. Each
object in the applet store has an Identifier and a Label
used to select the object. For a typical TLS cipher suite such

as TLS_ECDHE_ECDSA_AES_128_GCM_SHA256, the fol-
lowing objects are required in the applet:

• Key pair for client authentication
• Volatile key pair for key agreement
• Set of root certificates with at least one item
The listed objects are utilized during the handshake se-

quence as depicted in 2. The public key of the client authenti-
cation key pair is only required to be embedded in a Certificate
Signing Request and in the client certificate, which is stored
in a File object within the applet store. The private key is
required during every TLS handshake to create the signature
during the CertificateVerify message.

The volatile key pair for key agreement is required with
the corresponding Cryptographic Functions flag. The
Generate Key Pair function is used to generate a new
key pair at every handshake. The public key is placed in the
ClientKeyExchange message. The private key is used for the
Compute DH function, together with the server’s ephemeral
public key from the ServerKeyExchange message to compute
the pre-master secret.

With the current API without the proposed improvements
of Verify Signature and Compute DH, temporary,
volatile public key objects are required to store the public keys
that are part of the server’s certificate chain, and the server’s
public key for key agreement.

Finally, a set of root certificates, with at least one item, must
be available in the applet store, to verify the last item in the
server’s certificate chain. These root certificates are stored in
File objects.

We propose to define a default configuration of the applet
store for that use case. The configuration should include object
Identifier, Label, and other relevant metadata. This
allows TLS implementations to rely on that configuration,
which implies that an IoT SAFE integration into a TLS library
can be reused by many applications.

IV. EVALUATION

The evaluation is done regarding the following aspects:
state-less and self-contained commands; scalability; interface
efficiency; and missing features for TLS 1.3.

A. Comparison of Transmitted Number of APDUs

To evaluate whether the proposed improvements reduce the
number of APDUs sent in a typical TLS handshake, we count
the number of APDUs needed. We compare the current version
of IoT SAFE to a version implementing the improvements
from Sections III-A and III-C, depicted in Table III.

The selected TLS 1.3 cipher suite for this compar-
ison is named TLS_AES_128_GCM_SHA256 with El-
liptic Curve Digital Signature Algorithm (ECDSA) and
Rivest-Shamir-Adleman (RSA) certificates. It is equiva-
lent to TLS_ECDHE_ECDSA_AES_128_GCM_SHA256 and
TLS_ECDHE_RSA_AES_128_GCM_SHA256 in TLS 1.2.
To minimize the number of variables the following assump-
tions were taken: hashing of messages is done on the host con-
troller, an ECDSA certificate fits into two APDUs (512 bytes)

TABLE III
IOT SAFE APDU COUNT FOR TLS 1.2 HANDSHAKE MESSAGES

TLS Message IoT SAFE ECC RSA
Command Old New Old New

ClientHello Get Random 1 1 1 1
(Server) Certificate Read File 2 2 4 4

Put Public Key 2 0 3 0
Verify Signature 2 1 3 4

ServerKeyExchange Put Public Key 2 0 3 0
Verify Signature 2 1 3 4

(Client) Certificate Read File 2 2 4 4
ClientKeyExchange Generate Key Pair 1 1 1 1

Put Public Key 2 0 3 0
Compute DH 1 1 1 1
Compute PRF 1 1 1 1

CertificateVerify Compute Signature 2 1 3 2
(Client) Finished Compute PRF 1 1 1 1
(Server) Finished Compute PRF 1 1 1 1

Total APDU count 22 13 31 24

and an RSA certificate fits into four APDUs (1024 bytes),
the public key of the root CA is not cached in a key slot.
Caching the public key of the root CA would remove two
(ECC) or three (RSA) APDUs from the total amount, but with
the drawback of more complicated provisioning and updating.

The comparison shows that our improvements are able to
significantly reduce the number of APDUs sent for the case
where ECC certificates are used. For the case with RSA
certificates it is also reduced, but not as significantly, because
the larger public keys and signatures for RSA require more
data to be transferred.

B. Use Case Analysis of PSK Mode

The PSK-Plain and PSK-ECDHE modes are intended
for TLS 1.2 with a PSK-based cipher suite. This scenario
is unlikely for resourceful IoT devices with a 4G modem,
and software stacks to control that modem. Even if a PSK-
based cipher suite is utilized, an implementation of the TLS
handshake engine and record layer is still required on the
hosting device. These modes would be useful for resource-
constrained systems, if the applet provides an implementation
of the TLS handshake engine, as certain proprietary HSMs,
such as the Infineon OPTIGATM Trust X, do.

C. Feasibility Analysis of Hash Context Cloning

Implementing the cloning of a hash context is currently not
possible with the Java Card MessageDigest API, which
means a Java Card Application Programming Interface (API)
extensions is required, or hashing must be implemented within
the applet. The proprietary HSMs Infineon OPTIGATM Trust
X and Microchip ATECC608B provide this hash context
cloning functionality.

V. CONCLUSION AND FUTURE WORK

In this work, we evaluated the IoT SAFE applet and sug-
gested improvement proposals in order to reduce complexity,
increase flexibility, and ease the integration into TLS libraries.
The evaluation shows, that certain proprietary HSM imple-
mentations have advantageous design aspects compared to the

IoT SAFE specification. Further, the performance regarding
required APDU count during the TLS handshake, can be
increased tremendously.

Future work aims to influence future specification and
designs decision for standardized interfaces in order to support
easier and more efficient integration of hardware security.
In the course of the funded project ADACORSA, we will
implement the applet including improvements into a drone
platform for demonstration purposes.

VI. ACKNOWLEDGMENT

This project has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 876019. The JU
receives support from the European Unions Horizon 2020 re-
search and innovation programme and Germany, Netherlands,
Austria, Romania, France, Sweden, Cyprus, Greece, Lithuania,
Portugal, Italy, Finland, Turkey.

REFERENCES

[1] I. Analytics, “Cellular IoT and LPWA Tracker
(Q4 2020),” Tech. Rep., 2020, [Online; ac-
cessed 2021-03-22]. Available: https://iot-analytics.com/product/
cellular-iot-lpwa-connectivity-market-tracker-2020-25-update-q4-20/

[2] Q. Liao, T. Fischer, J. Gao, F. Hafeez, C. Oechsner, and J. Knode, “A
Secure End-to-End Cloud Computing Solution for Emergency Manage-
ment with UAVs,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–7.

[3] Marcus Janke, Dr. Peter Laakmann, in Attacks on Embedded Devices.
Embedded World Conference Nurenberg, 2016.

[4] I. Corporation, “Intel Secure Device Onboard,” Tech. Rep., 2017, [On-
line; accessed 2021-04-12]. Available: https://www.intel.com/content/
dam/www/public/us/en/documents/idz/iot/briefs/sdo-product-brief.pdf

[5] GSMA, “IoT SAFE Executive Summary,” Tech. Rep., 2020, [Online;
accessed 2021-02-16]. Available: https://www.gsma.com/iot/wp-content/
uploads/2020/05/IoT-SAFE-Executive-Summary.pdf

[6] ——, “SGP.22 RSP Technical Specification,” Tech. Rep., 2020,
[Online; accessed 2021-03-22]. Available: https://www.gsma.com/esim/
wp-content/uploads/2020/06/SGP.22-v2.2.2.pdf

[7] ——, “IoT Security Applet Interface Description,”
Tech. Rep., 2019, [Online; accessed 2021-04-09].
Available: https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.
05-v1-IoT-Security-Applet-Interface-Description.pdf

[8] Microchip, “CryptoAuthLib - Microchip CryptoAuthentication Library,”
Tech. Rep., 2021, [Online; accessed 2021-03-31]. Available: https:
//github.com/MicrochipTech/cryptoauthlib

[9] NXP, “SE050 APDU Specification,” Tech. Rep., 2021, [Online; accessed
2021-04-12]. Available: https://www.nxp.com/docs/en/application-note/
AN12413.pdf

[10] I. T. AG, “OPTIGA Trust X Software Framework,” Tech. Rep., 2020,
[Online; accessed 2021-03-31]. Available: https://github.com/Infineon/
optiga-trust-x

[11] T. Fischer, D. Pirker, C. Lesjak, and C. Steger, “TinyI2C - A Protocol
Stack for connecting Hardware Security Modules to IoT Devices,” in
2020 International Conference on Broadband Communications for Next
Generation Networks and Multimedia Applications (CoBCom), 2020,
pp. 1–7.

[12] D. Pirker, T. Fischer, C. Lesjak, and C. Steger, “Global and Secured
UAV Authentication System based on Hardware-Security,” in 2020 8th
IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), 2020, pp. 84–89.

[13] E. Chebanyuk and K. Markov, “An approach to class diagrams verifica-
tion according to SOLID design principles,” in 2016 4th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2016, pp. 435–441.

[14] R. T. Fielding and R. N. Taylor, “Architectural Styles and the Design
of Network-Based Software Architectures,” Tech. Rep., 2000.

[15] I. GlobalPlatform, “Card Specification ISO Framework,” Tech. Rep.,
2014, [Online; accessed 2021-04-12]. Available: https://globalplatform.
org/wp-content/uploads/2014/03/GPC ISO Framework v1.0.pdf

https://iot-analytics.com/product/cellular-iot-lpwa-connectivity-market-tracker-2020-25-update-q4-20/
https://iot-analytics.com/product/cellular-iot-lpwa-connectivity-market-tracker-2020-25-update-q4-20/
https://www.intel.com/content/dam/www/public/us/en/documents/idz/iot/briefs/sdo-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/idz/iot/briefs/sdo-product-brief.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/IoT-SAFE-Executive-Summary.pdf
https://www.gsma.com/iot/wp-content/uploads/2020/05/IoT-SAFE-Executive-Summary.pdf
https://www.gsma.com/esim/wp-content/uploads/2020/06/SGP.22-v2.2.2.pdf
https://www.gsma.com/esim/wp-content/uploads/2020/06/SGP.22-v2.2.2.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.05-v1-IoT-Security-Applet-Interface-Description.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/12/IoT.05-v1-IoT-Security-Applet-Interface-Description.pdf
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/MicrochipTech/cryptoauthlib
https://www.nxp.com/docs/en/application-note/AN12413.pdf
https://www.nxp.com/docs/en/application-note/AN12413.pdf
https://github.com/Infineon/optiga-trust-x
https://github.com/Infineon/optiga-trust-x
https://globalplatform.org/wp-content/uploads/2014/03/GPC_ISO_Framework_v1.0.pdf
https://globalplatform.org/wp-content/uploads/2014/03/GPC_ISO_Framework_v1.0.pdf

	Introduction
	State-of-the-Art
	Proprietary HSMs for Supporting the Security Layer
	IoT SAFE Applet

	Improvement Proposals for IoT SAFE
	Cohesion of Hash and Signature Functionality
	Requirements from TLS
	Provide Separate Command for Hashing

	Applet Store Improvements
	Command Simplification and Improvement
	Merge |Read File| and |Read Public Key| Commands
	Reduce Scope of |Get Object List| Command
	Parser Complexity Reduction
	Consistency and Versatility

	Supported Cryptographic Algorithms
	HKDF Key Derivation for TLS 1.3
	PRF Key Derivation for TLS 1.2

	Default Applet Store Structure for TLS

	Evaluation
	Comparison of Transmitted Number of APDU!s
	Use Case Analysis of PSK Mode
	Feasibility Analysis of Hash Context Cloning

	Conclusion and Future Work
	Acknowledgment
	References

