
HAL Id: hal-04073071
https://hal.science/hal-04073071

Submitted on 18 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Polling Task: Design and Analysis
Benoit Varillon, David Doose

To cite this version:
Benoit Varillon, David Doose. Real-Time Polling Task: Design and Analysis. 2022 25th Eu-
romicro Conference on Digital System Design (DSD), Aug 2022, Maspalomas, Spain. pp.624-631,
�10.1109/DSD57027.2022.00089�. �hal-04073071�

https://hal.science/hal-04073071
https://hal.archives-ouvertes.fr


Real-Time Polling Task: Design and Analysis

Benoit Varillon
Jean-Baptiste Chaudron

ISAE-SUPAERO
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Abstract—Usually, robotic systems must be designed as reactive
systems because they must be able to react and adapt to their
environment and also communicate with some other systems.
However, the reactive behavior, because of its non-deterministic
nature, is difficult to analyze and prevents designers to perform
a proper real-time analysis which is usually needed for critical
robotic systems. In this paper, we propose a deterministic task
model to handle the reactive behavior as well as the necessary
tools to analyze it and verify the respect of real-time constraints.
An implementation of this model, which is used in a ROS2 patch,
is also presented.

Index Terms—Timing predictability, Formal methods, Model-
ing, Real-time Analysis, Validation

I. INTRODUCTION

The aim of autonomous systems is to evolve in an uncon-

trolled environment. To achieve this goal, the system needs

to be able to interact with its environment, because it is

continuously evolving and can’t be controlled, it is important

that actions are still relevant when they are executed and not

due to out-of-date information. Not respecting this constraint

can lead to unwanted situations with damage to the system or

even to people if the system evolves alongside human. Such

systems that can cause hazardous situations if they behave

poorly are called critical systems.

When designing such system, it is important to be able to

model it using known abstractions in order to validate safety

properties. For real-time systems the model needs to have a

deterministic behavior, without determinism prediction of the

potential executions will not be possible and real-time analysis

will be difficult with classical methods. In robotic applications,

the system is often subject to external requests that are not

predictable, thus there is a need for a model that can represent

this type of interaction where the system needs to react to

unsteady arrival of messages. The best model, in terms of

latency, is a reactive model where the task is activated as soon

as the requests arrive. However, a fully reactive model is not

deterministic.

Scheduling theory proposes multiple models and methods to

analyze the timing behavior of real-time systems: a periodic

model (and a simple way to analyze it) is proposed in [1],

an improvement with a strictly better utilization bound is

given by [2]. The multiframe model [3] allows more precise

analysis that suites well for video encoding tasks, and has been

generalized to take deadlines into account by [4]. The recurring

real-time task [5] and the digraph [6] models are more complex

and can generalize the multiframe model, but at the cost of a

higher complexity of the analysis. The method proposed in [7]

allows determining if a system, composed of different types of

tasks, is schedulable or not, only knowing the demand-bound

function for each task. Another method proposed in [8], known

as Response Time Analysis (RTA), provides a way to compute

the exact worst-case response time for every task of a system.

ROS is one of the most used middleware in robotics and

was already studied by [9] who shows the advantages of using

ROS2 on industrial systems and [10] who looks at its real-time

capabilities. Investigation on the influence of hardware and

OS on ROS2’s real-time performances was done in [11]. One

remaining problem with using ROS for real-time systems is its

communication model based on publish/subscribe mechanism

that uses reactive execution model. The method proposed

in [12] is very effective for analyzing chains of reactive tasks

but assumes a provided event arrival curve, which is a big

limitation. The method presented in [13] represents the system

as a periodic pipeline of tasks; this approach works well when

the event source that initiates the pipeline is periodic, which is

an assumption we want to remove to be able to work with an

unknown event source. The problem of event synchronization

was addressed by [14], but for very complex systems and so

the analysis is also complex and not very efficent on simple

systems. The communication between tasks was handled by

[15], but the focus was on multi-core architectures rather

than on distributed architectures where network interferences

have to be taken into account. A common way to make a

reactive system analyzable is to use active polling, this way

the activation of tasks is limited to known instants and the

system is so deterministic. The method of [16] which proposes

to model tasks using state machines can be used to study such

tasks, but this would yield a model too complex to be verified.

In this paper, we present a method to represent reactive

tasks with a deterministic execution model and provide solu-

tions to analyze it. Section II introduces and formalizes our

model for reactive tasks. Then, in section III, this model is

analyzed, formulas are given for specific configurations and an

algorithmic solution is presented for the general case. Section

IV compares our algorithm with the resolution using an SMT

solver. Finally, section V presents an implementation of our

model in a real-time patch for ROS2.



II. TASK AND SYSTEM MODELS

The objective is to analyze systems composed of periodic

and reactive tasks, so a model compliant with the periodic

model is needed for reactive tasks. As these hypotheses

are valid in most of the recent systems, a first assumption

considers a preemptive scheduler with fixed priority. Another

assumption is that the tasks under analysis are statically

allocated among CPUs with no migration at run-time and are

independent, so a CPU per CPU analysis is sufficient and can

be done on many-core architectures.

A. System

In the scheduling analysis context, a system S can be

considered as a set of tasks, which will each generate an

ordered sequence of jobs that will be executed. A task is

characterized by its priority which defines the order in which

tasks will be executed, and its execution parameters, which

depend on the type of task and define the possible sequences

of jobs. A periodic task τk 〈Ck, Tk〉 is described by its period

Tk and its worst-case execution time Ck and will generate

every Tk unit of time a job that requires at most Ck unit of

CPU time, a polling task ρk
〈
CP

k , TP
k , CR

k , TR
k

〉
will generate

a sequence of jobs as described in II-B.

B. Polling Task

In this paragraph, the aims is to find a new model for

reactive tasks that has similar characteristics in terms of

reactivity, but which is deterministic and easily analyzable.

The polling task model relies on active polling to ensure

deterministic behavior. The state diagram of the polling model

is presented in Fig. 1. At each iteration the polling state, in

charge of verifying if a message has arrived, is executed for

CP units of time, then if there is no message the task goes to a

waiting state for the polling period TP . If there is a message,

the task goes in the running state and process the callback

for CC units of time and then goes in a waiting state for

the execution period TR units of time. These characteristics

are static. This model with two periods allows controlling

individually the latency, i.e. the time between the reception of

a message and its processing, and the CPU load. The polling

period TP fixes the time between two polling phases and so

the latency, the execution period TR limits the frequency of

execution of the callback and so the CPU load generated by

the task. By writing P the execution of the polling loop and

R the execution of the running loop, traces of execution can

be written in the form [P,R]∗. Figure 2 shows the trace of an

execution that could be written P 3RP 2RP . To make easier

the writing of equations in the rest of this paper, we will write:

CR = CP + CC (1)

This allows to see the task as two independent loops. A polling

task is defined by giving the characteristics of the two loops:

ρk
〈
CP

k , TP
k , CR

k , TR
k

〉
(2)

with CR > CP .

The utilization factor of each loop and the global utilization

factor are written:

UP
k =

CP
k

TP
k

; UR
k =

CR
k

TR
k

; Uk = max(UR
k , UP

k ) (3)

This model is a generalization of the classic periodic model,

with a polling state that only returns true the execution loop

executed at each iteration and the task is so periodic. An

example of polling task is the handling of communication

with a GNSS, if the GNSS sends messages every 50ms with

a precision on the frequency of 50μs, assuming the time for

computation of the message is 1ms and the time for executing

the polling state is 5μs, the polling tasks that implement this

could have the following characteristics 〈5, 25, 1000, 50000〉.

CP

TP

CC

TR

Fig. 1. Polling task state diagram. Round states are execution that lasts the
held value, diamond states wait to the beginning date of the curent execution
plus the held value.

TP TP TP TR TP TP TR TP

t

Fig. 2. Example of a polling task execution. Colors correspond to Fig. 1

III. POLLING TASK ANALYSIS

Systems are composed of different types of tasks and even

if it is possible to use the same model for every task, this will

come at the cost of performance of the analysis or over-sizing

the hardware part of the system. It is therefore interesting to

be able to analyze them using a generic method that can be

used among different types of tasks, in particular with periodic

tasks which are the most often used.

A. Analysis principle

Two interesting ways of analyzing systems of tasks are

the use of an utilization bound and the computation of the

exact response time of each task. Utilization bounds, as

introduced by Liu and Layland [1], are useful because they

allow determining if a system is schedulable with a linear time

but are not very precise and lead to reject systems that are

schedulable. The response time analysis, although it is more

complex, allows computing the exact worst-case response time



of all tasks of the systems and thus determining precisely if

they all meet their deadline and so if the system is schedulable

or not. It is, therefore, useful to be able to analyze a polling

task with utilization bounds, but also with the response time

analysis. The response time analysis, presented by [8], consists

for periodic tasks in finding the fixed point of the sequence

given by Eq. (4). The only prerequisite concerns the global

utilization factor of the system
∑

U that must be lower than

one.

R0 = Ci

Rn+1 =
⌈
Rn

Ti

⌉
· Ci +

∑
j∈hp(i)

⌈
Rn
Tj

⌉
· Cj

(4)

This method can be generalized for other types of tasks with

Eq. (5), requiring only the knowledge of the release-bound

function, defined as the maximum workload that a task can

generate on the interval [0, t[, for each task of the system.

R0 =

⎧⎨
⎩ Ci for periodic tasks

max
(
CP

i , CR
i

)
for polling tasks

Rn+1 = rbf i(Rn) +
∑

j∈hp(i) rbf j(Rn)

(5)

With rbf k the release-bound function of task τk and hp(k) the

set of tasks of equal or higher priority than τk. Thus, to analyze

systems containing polling tasks with RTA it is necessary and

sufficient to provide a way of computing the release-bound

function of those tasks.

The rest of this section present a way to compute a linear

upper bound of the rbf to allow an easy way of analyzing

a system. Then, a more precise analysis of the polling task

model is done. This analysis brings out a specific case and

the corresponding analytical formulas to compute rbf . Next, a

Sat Modulo Theory (SMT) formalization of the polling model

allows handling the calculation of the rbf for the general case.

Finally, a more efficient algorithm is presented.

B. Polling task request bound function

The release bound function of a polling task is a staircase

function with different types of steps. The building of the curve

uses two sizes of steps, one for the polling loop, and the other

for the running loop. At the end of a step, i.e. the end of an

iteration, the task is in its initial state and booth loops can

be executed, this will generate two new possible steps that

will each generate two other steps. Then the rbf is given by

keeping for each t the higher step. This process of construction

is shown in Fig. 3.

C. Request bound function upper bound

Because the rbf is complex to manage, it is useful to have

an approximation that is easier to use during design phases

when it is needed to have a quick way to find out temporal area

in which the rbf will be. The loop with the higher utilization

factor will drive the general shape of the rbf , the other loop

will only generate interference. As shown on Fig. 3 the rbf
will so follow a linear growth given by the global utilization

t

rbf(t)

rbfk(t)

CR

Fig. 3. Polling task request bound function with polling steps in green,
running steps in blue and linear upper bound in red.

factor of the task, Uk, and the maximal interference is the

given by the higher step, CR. The upper bound is so given by

Eq. (6).

rbfk(t) = Uk · t+ CR
k (6)

This linear bound allows computing the rbf with an O(1)
complexity. It is a pessimistic approximation, so systems found

schedulable with the bound will always be schedulable, a less

pessimistic bound is given by the staircase function of Eq. (7),

this bound is not linear but still can be computed in O(1).

rbf k(t) = �Uk · t�+ CR
k (7)

D. Specific cases

When analyzing the curve, three phases are visible. The

first lasts TR and has an analytic formula, the third is periodic

and so easy to analyze. In some conditions, there is a more

complex phase between the two previous, it comes from the

interweaving of different curves and lasts a duration that is

bound but not fixed. Figure 4 gives an example of the rbf of

a polling task.

t

rbf(t)

phase 1 phase 2 phase 3

Fig. 4. Curve structure. Only steps that contribute to the rbf are shown.

a) Phase 1: The first phase lasts from t = 0 to t = TR

the end of the running period, during this time the running

loop can run only once. So the maximum CPU utilization is

obtained when the polling loop runs a maximum times in [0, t[,
and then the last iteration of the task is the running loop.

b) Phase 2: This phase is the most complex. The curve

is the continuation of phase 1 curve inter-weaved with other

curves from executions that were dominated in phase 1 but, in



phase 2, overtake locally the phase 1 curve. This makes this

part chaotic and prevents finding an analytic formula. In some

conditions, this phase does not exist (see III-D3).
c) Phase 3: In this last phase, a pattern is repeated

periodically, this pattern depends on the end of phase 2 and

so no generic formula can be found. When there is no phase
2 it is phase 1 which is repeated and so a formula can be found.

The analysis of the three phases allows us to point out some

particular cases for which the rbf can be described using an

analytical formula and so can be computed in O(1) complexity.
1) Running loop domination: When the polling period is

greater than the running period, because CR > CP the

running loop dominates the polling loop, and, as it is shown

in Fig. 5, any execution that contains one polling loop will

have a release function lower than the release function of the

’only execution loop’ execution, so the rbf is given by:

t

rbf(t)

TP TP

CP
CR

TR

Fig. 5. Domination of the running loop

rbf(t) =

⌈
t

TR

⌉
· CR iff TP ≥ TR (8)

2) Phase 1: This phase can always be described with an

analytical formula. The running loop can run only once, so

every execution has the form PnR, and the execution with

maximum released CPU time is the one with the most polling

loops and then one running loop, rbf is given by 9.

rbf(t) =

⎧⎨
⎩ 0 if t = 0(⌈

t
TP

⌉− 1
) · CP + CR iff t ∈]0, TR]

(9)

3) Simple harmonic case: When the running period is a

multiple of the polling period every execution that did not take

part in maximizing the rbf in phase 1 will overlap a curve

that leaded to maximizing the rbf in phase 1, so no new

interference is generated after TR and phase 2 does not exist.

When the utilization factor of the polling loop is greater than

the one of the running loop, the polling loop will dominate the

execution, and every execution that uses the running loop will

not leads to maximizing the rbf anymore. The execution that

maximizes the released CPU time is the one using the most

polling loops and then uses one running loop. The following

formulas represent this ”simple harmonic case”:

TR = k · TP with k ∈ N
+ and UP ≥ UR (10)

rbf(t) =

⎧⎨
⎩ 0 iff t = 0(⌈

t
TP

⌉− 1
) · CP + CR iff t > 0

(11)

4) Complex harmonic case: If the utilization factor of the

running loop is greater than the one of the polling loop, the

formula is more complex. In that case, the global shape of the

rbf is given by the running loop and the pattern of phase 1
is repeated on every step of the running loop. The formula is

built by shifting right the equation of phase 1 by the number

of running periods in [0, t[ and adding the same number of

CR :

TR = k · TP with k ∈ N
+ and UR ≥ UP (12)

rbf(t) =

⎧⎨
⎩ 0 iff t = 0(⌈

m
TP

⌉− 1
) · CP +

(⌊
t

TR

⌋
+ 1

) · CR iff t > 0
(13)

with m = t−
⌊

t

TR

⌋
· TR (14)

E. Optimization problem
For the general case, phase 2 exists and there is no analytical

formula. However, the calculation of the rbf can be written

as an optimization problem that consists, for every t, of

finding the number of iterations of each loop that maximize

the released CPU time. An execution is made of a series of

loops, each one could be the running or the polling loop. The

amount of released CPU time on an interval is the sum of the

execution time of each loop that occurred during this interval,

every executions path with the same number of each loop will

request the same amount of CPU time regardless of the order

of the loops. By writing r(t) the amount of request CPU time

on [0, t[, i the number of execution loops and j the number

of polling loops in [0, t[ we have:

r = i · CR + j · CP (15)

To find the release bound function, we need to maximize

r(t). For t which are a linear combination of the periods, it

means to find (i, j) that respects (16) and maximizes (15).

t = i · TR + j · TP (16)

For values that are not a linear combination of the periods,

we have to transform (16) into (17) but this condition does

not take into account the last loop, which has not finished

its execution yet. This loop could be either the polling or

the execution loop but to maximize r(t) we should use the

maximum released time which is CR, so (15) becomes (18):{
x < t

x = i · TR + j · TP
(17)

r = i · CR + j · CP + CR (18)

Figure 6 shows a description of this optimization problem

using SMT-lib21 [17]. This language was chosen because it

1http://smtlib.cs.uiowa.edu/



is both sufficiently expressive and easily readable for humans.

To resolve this problem, the Z32 [18] solver which is known

for its efficiency was used. It is important to notice that other

solvers or modelization languages could be used.

This SMT model was used to prove the earlier formulas, by

writing a SMT modelization of the formulas3, like in Fig. 7

for the bound, it is possible to ask the solver to find a counter

example with (assert (> r b)), if the result is unsat
then there is no counter example and the formulas is proven.

The formulas of phase 1 and the bound (Eqs. (6, 9)) was

proved with any other condition, the formulas of the running

domination and the harmonic cases (Eqs. (6, 8, 11, 13)) were

proved for bounded intervals.

;---------- inputs ----------
(define-const Tp Int 11)
(define-const Cp Int 1)
(define-const Tr Int 17)
(define-const Cc Int 2)
(define-const t Int 100)
;------------------------------
(define-const Cr Int (+ Cp Cc))
(declare-const i Int)
(declare-const j Int)
(define-const x Int (+ (* i Tp) (* j Tr)))
(define-const r Int (+ (* i Cp) (* j Cr) Cr))
;-----
(assert (< x t))
(assert (< 0 i))
(assert (< 0 j))
(assert (< 0 r))
;---------- optimize ----------
(maximize r)
(check-sat); returns sat; rbf(100) = 19
(get-value (r)) ; 19
(get-value (i)) ; 1
(get-value (j)) ; 5
(get-value (x)) ; 96

Fig. 6. SMT modelization and rbf computation for a polling task

(declare-const n Int)
(assert (= t (* n Tp)))
(define-const b Int (+ (* n Cp) Cr))
(assert (>= (* Cp Tr) (* Cr Tp)))

Fig. 7. SMT modelization of the bound formula

F. Algorithmic solution

The SMT modeling of the problem introduced in the

previous section finds an exact solution to the request-bound

function of the polling tasks. However, this solution suffers

from an efficiency problem. Indeed, its computation time is

not negligible, and this problem increases with t. Moreover,

this calculation is performed many times during the complete

analysis of the system.

In this section, we present an algorithmic solution to the

problem of computing the request-bound function of a polling

task. This solution is more efficient than the previous one

because it takes into account the structure of the rbf described

2https://github.com/Z3Prover/z3
3https://gitlab.com/corail1/smt proof

in III-B. Indeed, the latter has a form of ”lasso path”: it

starts with a sequence composed of phase 1 then phase 2;
then a loop formed by phase 3. The algorithm we propose

calculates an efficient representation of this ”lasso path”.

Once this computation is done, the cost of computing a

query for a given t becomes negligible, which makes the

method very efficient for the complete analysis of the system.

We will show this efficiency in the next section. Figure 8

represents the lasso structure, which is composed of a set

of nodes N = {n0, .., nN} and edges E = {e1, .., eN+1}.
The first part of nodes represents the sequence noted S, and

the second part is the loop noted L. Each node represents a

part of the query function. A node contains a set of segments

(n1 = {(x1, y1), . . . (xn, yn)}). Each segment represents either

the execution of the polling loop or the execution of a running

loop. Each edge is a shift on the axes of the request bound

function (e1 = (dx1, dy1)). This shift is a centering of the next

node on the next point of interest. The notion of centering will

be detailed later.

n0 n1 n2 n3 n4

S L

e1 e2 e3 e4

e5

Fig. 8. Lasso representation

1) Computation principle: The first node contains the first

execution of the polling loop and the first execution of the

running loop (n0 = {(x0, y0), (x1, y1)}).
The principle is as follows: we build the lasso structure

step by step, following the rbf by moving from one point

of interest to another. The next point of interest is the next

(minimum t axis) end of the segments. At each iteration,

all the new possible executions (polling and running) are

added and filtered if necessary. When a new node is added

we check if the same node has already been computed; in

this case, the loop is detected and the lasso computation is

complete, otherwise, the computation goes on. Algorithm 1

describes the computation of the lasso path. The centering

function (Algorithm 2) computes the new edge while taking

into account the new point of interest.
Segment drop: It is important to notice that it is not useful

to add all the segments. Indeed, some segments are useless

for the computation of the request bound function because

it exists other segments that dominate the new one. Figure 9

highlight two cases in which the segment (xj , yj) is dominated

by (xi, yi). Because the rbf is built recursively by adding

the same two new segments to every point of interest, the

curve originated from a point P1 is the same as the curve

originated from another point P2 shifted by
−−−→
P2P1, so if a

segment ends later and lower than another segment the worst

curve originated from the first will never overtake the one from

the second.
Adding a new segment (node.add) can also lead to the

dropping of dominated segments already in the current node.



Algorithm 1 Lasso computation algorithm

1 function COMPUTE LASSO

2 edges := ∅
3 nodes := ∅
4 node := [(TP , CP ), (TR, CR)]
5 nodes.push(node)
6 loop
7 prev := nodes.last()
8 edge, node := prev.center()
9 edges.push(edge)

10 node.add((TP , CP ))
11 node.add((TP , CP ))
12 id = same id(nodes, node)
13 if id then
14 sequence.nodes := nodes[1..id]
15 sequence.edges := edges[1..id]
16 cycle.nodes := nodes[id..len(nodes)]
17 cycle.edges := edges[id..len(nodes)]
18 return (sequence, cyle)
19 else
20 nodes.push(node)

Algorithm 2 Centering algorithm (used in Alg. 1)

1 function NODE::CENTER

2 first := self.first()
3 edge := (first.x, first.y)
4 new node := ∅
5 for seg in self do
6 new node.add((seg.x− edge.x, seg.y − edge.y))

7 return (edge, new node)

Table I details all the dropping conditions. It is also important

to notice that thanks to the dominated segments dropping, the

next point of interest (next center) is unique.

TABLE I
SEGMENT DROP CONDITIONS

xi < xj xi = xj xi > xj

yi < yj drop (x,yi) drop (xi, yi)

yi = yj drop (xj , yj) drop one drop (xi, yi)

yi > yj drop (xj , yj) drop (xj , yj )

Computation example: Figure 10 highlights the first

steps of the lasso structure computation in a simple example.

Fig. 10a represent the initial node n0 = {(x0, y0), (x1, y1)}
with x0 = TP , y0 = CP , x1 = TR, and y1 = CR. Then

in this example, the next point of interest is the end of the

polling loop (x0, y0). Fig. 10b show the new node centered

with according to the first edge e1 = (x0, y0) in which the

first segment is consumed by the centering function and the

second is translated (x′1 = x1−x0, y
′
1 = y1−y0). The second

node is computed (Fig. 10c) and then the third one (Fig. 10d).
2) Request bound function from Lasso: Once the lasso

structure is computed, the calculation is straightforward. Let’s

notice X(i) (resp. Y (i)) the sum of the dx (resp. dy) of the

edges to reach node ni:

X(i) =
∑
j∈1..i

dxj (19)

This notation will be used with S (resp. L) to represent the

sum of the dx of edges between nodes of the sequence (resp.

txi

y

xj txi

yi

xj

yj

Fig. 9. Segment domination. Dashed segments represent the next step if the
corresponding segment is kept

tx0 x1

y0

y1
next center

(a) Initial node (n0)

tx′1

y′1

(b) Initial node centered

tx′1

y′1

x2

y2

x3

y3

(c) Second node (n1)

tx”
1

y”1
x′3

y′3

x4

y4

x5

y5

(d) Third node (n2)

Fig. 10. Lasso computation example. Blue and green segments are the two
new segments added at the current step, black segments are remaining from
previous step.

loop). Let’s I(t) be the node index of the node useful to

compute rbf(t):

I(t) = {maxi∈0..N i | X(i) < t} (20)

The request bound function has two different formulas: one

if no loop is needed to reach t, and another one if some loops

are needed.

No loop: No loop is needed if the last node ”is after” t:

t < X(N) + dxN+1 (21)

In this case, we just have to find the maximum y coordinate

of the segments, before t, of the useful node:

rbf(t) = Y (I(t)) +
{
max(x,y)∈ni

y | X(I(t)) + x < t
}
(22)

With loop: With loops the principle is to represent t =

X(S) + k · X(L) + t′ with k =
⌊
t−X(S)
X(L)

⌋
and t′ = t − k ·

X(L)−X(S). Then the release function is defined as follows:

rbf(t) = Y (S) + k · Y (L) + Y (L(t′)) (23)

G. Analysis conclusions

Different ways of computing the rbf have been presented to

suit the different situations. When a conservative approxima-

tion is sufficient a linear bound is given by Eq. (6). When an

exact value of the rbf is wanted, if the situation corresponds to

one of the cases in Tab. II the corresponding analytical formula

can be used. In the general case the most efficient method is

to use the lasso algorithm presented in section III-F.



TABLE II
SUMMARY OF THE SPECIFIC CASES

TR ≤ TP Eq. (8)

∀t ≤ TR Eq. (9)

TR = k · TP
UR ≤ UP Eq. (11)

UP ≤ UR Eq. (13)

IV. ALGORITHMS COMPARISON

Different methods to compute the release bound function for

polling tasks are presented in this paper. This section presents

the results of a benchmark that compares these methods in

terms of performance. The aim of these algorithms is to be

used in a more global algorithm, like the RTA, to compute

the worst-case response time of a polling task in a complete

system. In this context, the algorithm will be instantiated with

a task, then the rbf will be computed for multiple values of t.
In order to compare the performance of algorithms, we need

to emulate these real conditions, so the benchmark will consist

in creating a set of tasks, then for each algorithm, we measure

for each task the time for instantiating the algorithm and

compute the value of the rbf(t) for different t. To mimic real

systems, tasks were generated using random values for their

parameters, worst-case execution times (wcet) are generated

using a uniform distribution on [0, 1000] and the periods with

a uniform distribution on [wcet, 100000].

Results

Tab. III shows the time for analyzing a system in function

of the number of access to the rbf value for systems of

different sizes. This is visible that the lasso algorithm is more

efficient than solving the optimization problem with Z3. The

experiments done shows that the lasso algorithm is more than

105 faster than the SMT solver. This can be explain by the

way this two methods work. The optimization problem call the

maximize function of the SMT solver every time a value of

the rbf is needed, this results in solving multiple optimization

problem which are each complex to solve. On the other hand

the lasso algorithm compute the lasso of Fig. 8 once, then

accessing a value can be done by simply reading the lasso in

a constant time.

TABLE III
COMPARISON OF ALGORITHMS

nb reading 5 10 15 30

Lasso (50 tasks) 10 ms 11 ms 12 ms 23 ms

SMT (50 tasks) 1.7e6 ms 2.8e6 ms 3.8e6 ms 8.6e6 ms

V. POLLING TASKS IMPLEMENTATION IN ROS2

Because ROS2 suffers from the impossibility to be analyzed

since it widely uses reactive tasks, we develop an extension,

Corail 4, which aims to solve this problem by providing an

implementation using polling tasks.

4https://corail1.gitlab.io

A. ROS2

ROS is an open-source middleware dedicated to robotic

applications and distributed systems which is based on the

publish/subscribe paradigm. Elements of the system are called

nodes and have to register to topics as a publisher or subscriber

to be able to communicate. The version 2 was designed to be

more real-time than the version 1. The use of DDS greatly

improved the real-time capacity of the communication but

the execution part still lack of real-time capabilities. The

execution in ROS2 is handled by executors; the two default

executors provided allow neither the preemption of tasks nor

to order them by priority. Furthermore reactive model is used

for subscription which prevent real-time analysis.

B. Corail

Corail is a ROS2 package that aims to make ROS2 more

suitable for real-time systems. Corail relies on the concept of

executors of ROS2 and provides a new real-time executor that

ensures the respect of the assumptions needed for real-time

analysis. This executor allocates a POSIX thread for each task

of the system, which makes the task preemptive and allows

using the POSIX scheduler to handle priority between tasks.

Moreover, the Corail executor uses the polling task model to

implement subscriptions and services. The use of POSIX and

the polling task model enable Corail to ensure the respect of

the constraints needed for real-time analysis.

C. Comparison

To compare ROS2 and Corail, two systems were imple-

mented using both plain rclcpp and Corail. The first presented

in Tab. Va is made of two periodic tasks, the second, presented

in Tab. Vb is made of one periodic task and one subscription.

Trace of the executions were made using LTTng5, Figs. 11

and 12 show the traces of the implementation using only

ROS 2. We can observe that there is no synchronization at

the beginning of the run-time and executions of τ1 when τ2
is running are missed and that there is no preemption. This

leads to systems that do not respect their deadlines while

the two systems are found schedulable using the scheduling

theory. The traces from the Corail implementations, detailed in

Figs. 13 and 14, show executions that follow the hypotheses

(preemption, synchronization, priority) and so the prevision

of the scheduling theory. This is due to the fact that the

execution follow the hypothesis needed for the scheduling

theory. Moreover the use of the polling task model allows

to compute the exact worst case response time of the reactive

task without any knowledge of the event source.

τ2:

40 900.0 10 20 30 50 60 70 80 100 110 120

τ1:

t(ms)

Fig. 11. Execution trace of system 1 with ROS 2

5https://lttng.org/



TABLE IV

T C r P

τ1 10 5 0 1

τ2 50 15 0 2

(a) System 1, two periodic
tasks

T C r P

τ1(periodic) 15 10 0 1

τ2(subscription) ∅ 10 0 2

(b) System 2, one periodic task and one
subscription

τ2:

τ1:
t

0 10 20 30 40 50 60

Fig. 12. Execution trace of system 2 with ROS 2

VI. CONCLUSION

In this paper, we address a problem that is regularly faced

in our robotic experiments. Indeed, the embedded systems that

we implement are reactive critical real-time systems. In this

sense, they must be able to react to their environment but also

communicate with each other while being analyzable from

a real-time point of view. That is to say, it is essential to be

able to show the respect of the deadlines of the different tasks.

The difficulty lies in the fact that we have no guarantee either

of communication times or of the dates of incoming events.

To address this issue, we have proposed a method based on

three pillars: a new task model that allows taking into account

event polling, an analysis method that allows studying the

respect of deadlines, and an implementation corresponding to

this execution model (including a ROS2 patch).

We have given different solutions for the analysis method

depending on the possible system configurations. Some have

an analytical formula. For the general case, we have proposed

a model in SMT that allows solving this problem and a specific

algorithm. We explained the efficiency gain of the algorithmic

version with the help of benchmarks. Finally, we presented

our implementation in ROS2 for this new task model.

Our future work will first focus on the experimentation and

deployment of these developments. Then we want to extend

this execution model to take into account communication time

because in certain configurations the networks we use allow

it.
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