
The 1th IEEE International Conference on Data Stream Mining  & Processing 

23-27 August 2016, Lviv, Ukraine 

Accelerating Recurrent Neural Network Training 

using Sequence Bucketing and Multi-GPU  

Data Parallelization

Viacheslav Khomenko 1, Oleg Shyshkov 1, Olga Radyvonenko 1, Kostiantyn Bokhan 1 
1 Samsung R&D Institute Ukraine (SRK), 57, L’va Tolstogo Str., Kyiv, 01032, Ukraine, v.khomenko@samsung.com 

 
Abstract—An efficient algorithm for recurrent neural 

network training is presented. The approach increases the 

training speed for tasks where a length of the input 

sequence may vary significantly. The proposed approach is 

based on the optimal batch bucketing by input sequence 

length and data parallelization on multiple graphical 

processing units. The baseline training performance without 

sequence bucketing is compared with the proposed solution 

for a different number of buckets. An example is given for 

the online handwriting recognition task using an LSTM 

recurrent neural network. The evaluation is performed in 

terms of the wall clock time, number of epochs, and 

validation loss value. 
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I. INTRODUCTION 

Deep neural networks have recently proven to be 

successful in pattern recognition tasks. The Recurrent 

Neural Network (RNN) is a subclass of neural networks 

defined by presence of feedback connections.  

Long Short-Term Memory (LSTM) [1] RNNs perform 

better on tasks involving long time lags compared to 

traditional RNNs. The gating mechanism permits LSTM to 

bridge long time lags between relevant events (103 time 

steps and more). Gated Recurrent Unit (GRU) networks 

[2] have similar ideology to an LSTM, but they speed up 

training due to architectural simplifications. 

The ability of RNNs to memorize historical data makes 

them a powerful sequence-modeling tool. They have found 

applications in pattern recognition and classification tasks 

where inputs and outputs are sequences: online 

handwriting recognition [3], document analysis [4], 

sentiment analysis [5], speech recognition [6] and synthesis 

[7], language modeling [8]. 

However, RNN training on a big amount of data is still 

a challenging problem. The aim of the paper is to 

demonstrate an effective approach to accelerate RNN mini-

batch training on big amount of data. 

This paper is organized as follows. The related works 

overview is given in section 2. Section 3 describes the 

training algorithm. The experimental evaluation is given in 

section 4. Then, the results are discussed, and the 

evaluation of the proposed sequence bucketing algorithm 

against the conventional sequence shuffling is presented. 

II. BACKGROUND AND RELATED WORK 

The problem of accelerating the RNN mini-batch 

gradient descent training is widely discussed in the literature 

in the last years [8, 9]. Some works consider adaptive 

learning algorithms with heuristics for tuning of learning 

parameters (learning rate, weight decay, etc.) to improve 

convergence of model training [8].  

Many researchers have focused their efforts on 

experiments with different network architectures and 

parallelization techniques [6, 9 and 10]. 

Training parallelization and a two-stage network 

structure for RNN [9] allow to speed-up training. However, 

the two-stage architecture gives substantial acceleration 

mainly when the number of outputs of the network is 

sufficiently large (103 or more).  

The BlackOut [11] approach allows to accelerate 

training for even larger vocabularies (106 outputs). It relies 

on weighted sampling strategy, employs a discriminative 

training loss and is applied only to the softmax output layer, 

in contrast to DropOut [12], which is typically applied to the 

input and hidden layers. The application of BlackOut is also 

limited to networks with large output size. 

In its turn, the curriculum learning [13] consists in 

organizing training samples in a meaningful way rather than 

in purely random order. It improves LSTM training on the 

program evaluation and memorization tasks [14]. 

It is commonly known that labeling of unsegmented 

sequence input data is a ubiquitous problem in the real-

world sequence learning. It is particularly common in 

perceptual tasks (e.g. handwriting, speech or gesture 

recognition), where noisy real-valued input sequences are 

annotated with non-aligned strings [15]. Since Connectionist 

Temporal Classification (CTC) networks gained use in RNN 

training as a sequence alignment technique, the problem of 

RNN training using input sequences of different length 

turned out to be more important and affecting training speed. 

Usually, sequences are grouped into mini-batches. The 

length of the longest sequence in the batch thus defines the 

computational complexity of the training. Most of 

benchmark datasets for perceptual machine learning tasks 

(TIMIT [16], UNIPEN [17], IAMonDo [18]) contain 

recordings of different length. Batch grouping algorithms 

could be useful for organizing training data [19, 20]. 

However, the following two problems arise in this case:  

1. Finding the optimal batch clustering by sequence 

lengths. 

2. Balancing between input data streamlining and the 

need of shuffling training data sequences before RNN 

training.  

In the next sections, we present and evaluate the RNN 

training approach with an effective sequence bucketing that 

solves problems mentioned above. 
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III. TRAINING ALGORITHM BASED ON SEQUENCE 

BUCKETING AND MULTI-GPU DATA PARALLELIZATION 

We propose the RNN model training algorithm that 

runs in parallel on multiple Graphical Processing Units 

(GPUs). The developed solution uses a map-reduce 

approach for parallel computing of individual models by 

sub-partitioning training data. The training data is shuffled 

before every epoch and is equally redistributed between 

different GPU processes. Each training process applies 

batch bucketing optimization scheme by clustering 

training sequences considering input lengths. Final model 

parameters are obtained by reducing results of each 

training process. 

The proposed training workflow is presented in the 

diagram (Fig. 1). 
 

 
Figure 1.  Proposed training algorithm with multi-GPU data 

parallelization. The sequence bucketing occurs in each GPU process 

A. Sequence bucketing algorithm 

We accelerate the training on the individual GPU by 

sequence bucketing that deals with the problem of large 

variation of input sequence lengths. The empirical 

distribution of input sequence lengths and an example of 

clusterization for the number of buckets Q = 6 are shown 

in Fig. 2. 
 

 
Figure 2.  Lengths of input sequences for the online handwriting 

recognition task and bucketing for Q = 6: blue is the distribution of the 
input sequence lengths; orange are optimal buckets 

 

The bucketing can be described as an optimization 

problem. Let },...,,{ 21 nsssS   be the set of sequences 

and ii sl  is the length of sequence i . Each GPU 

processes sequences in a mini-batch in a synchronized 

parallel manner, so processing time of a mini-batch 

},...,,{ 21 ksssB   is proportional to  iki lO ,,1max 
 and 

processing time of whole set is expressed as:   

   ini lknOST ,,1max   (1) 

The minimum and maximum sequence length in a 

mini-batch might be very different if sequences were 

shuffled randomly before splitting. As a result, a GPU 

does additional work by processing empty tails of shorter 

sequences. To overcome this flaw and decrease processing 

time, we recommend an algorithm that optimizes batch 

clustering.  

Let's call bucketing a process when we cluster all 

sequences into Q buckets by their lengths, where Q is 

some small positive integer number. Let 
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ii jji ssS  be the i th bucket. For every bucket, 

we perform mini-batch training. The processing time of 

the whole set will become:  
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The dynamic programming algorithm is used to find 

optimal bucket sizes. The bucket sizes only depend on 

sequence lengths, so we use an array f that stores a 

number of sequences for each length. 

We use the following notations: 

• Q is the desired number of buckets; 

• f[l] is the number of frequencies with input length l; 

• dp[i][k] is the best score of bucketing if first i 

elements were cut into k groups; 

• dp[0][0] is set to 0; 

• dp[i][0] is set to INF; 
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• prevDp[i][j] is the end index of the i – 1 bucket 

when first j elements were split into i buckets. 

The pseudo-code of the proposed algorithm for 

sequence bucketing is presented below: 

 

procedure DYNAMICBUCKETING (Q, f) 

    n ← length(f) 

    for q = 1 to Q do 

        for i = 1 to n do 

            curSum ← f[i] 

            for j = i - 1 downto 0 do 

                val ← curSum ∙ i + dp[q - 1][j] 

                if val < dp[q][i] then 

                    dp[q][i] ← val 

                    prevDp[q][i] ← j 

                end if 

                curSum ← curSum + f[j] 

            end for 

        end for 

    end for 

    curId ← n - 1 

    bests ← [] 

    for i = Q downto 1 do 

        bests.push_front(curId) 

        curId ← prevDp[i][curId] 

    end for 

    return bests 

end procedure 

 

The algorithm optimization result for the given 

distribution of input sequence lengths and desired number 

of buckets is presented in Fig. 2. 
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The first bucket contains shorter input sequences compared to the last bucket with the longest sequences.
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We assume that all data has been shuffled randomly prior to any subsequent transformation described in the paper.



B. Parallel training of recurrent neural networks 

For the parallel training of the RNNs on GPU we 

propose the following algorithm which allows massive 

parallel model training and can scale up to a large number 

of GPUs: 

1. Initialize base model parameters. 

2. Build Q models (for optimal input sequence 

lengths) and serialize models to storage, for example, the 

file system. Parameters of each model are initialized 

randomly. 

3. Generate training data (1st epoch) or re-generate 

training data by re-shuffling between portions of data for 

following epochs. The number of data portions is equal to 

the number of GPUs. This is possible under the 

assumption that the amount of training data is 

sufficient [9]. 

4. For each of the training data portions, spawn 

individual training processes. The process iterates over 

the mini-batches in the data portion. The batches are 

formed considering input sequence lengths. The 

appropriate models are selected. The parameter update 

rule of the individual model is ADADELTA [21]. 

5. Each of the training processes returns model 

parameters. The aggregation of parameters is done in the 

main process according to the model update rule 

proposed in [9]. We have found that setting parameter 

1  gives the best results for our model and leads to the 

following equation: 

     1 tVtVtV 
 (3) 

where  tV  are the parameter values at the current epoch;  

 1tV  are the parameter values at the previous epoch (or 

initial values for the first epoch);  tV  are the mean 

parameter values over parallel models; 6101   is the 

regularization term that leads to weight decay 

proportionally to their values. 

IV. EMPIRICAL EVALUATION 

A. Experimental setup 

The system was evaluated on online handwriting 

recognition task. The raw data contain 1 Gb samples of 

Afrikaans and English languages in binary form.  

The dataset was collected on Samsung Galaxy S-Note 

devices with stylus input. The validation set is created 

from 5% of randomly selected samples of different length. 

The dataset contains textual labels that serve as a 

reference to output sequences. However, these labels are 

not explicitly aligned with input handwriting stroke 

sequences. At every epoch, the system was first fed with 

shorter sequences (first bucket), and then gradually the 

bucket number increased.  

The LSTM model was trained with CTC cost function 

using Theano [22] and Lasagne [23] frameworks. 

The recurrent neural network model training procedure 

was evaluated on a rack of 6 NVidia Tesla K40m GPUs. 

B. Model training 

The validation loss as a function of the wall clock time 

and epoch number is given in Fig. 3; the best acceleration 

with minimum validation loss was achieved for Q = 3.  

a)  

b)  

Figure 3.  Validation loss of the LSTM model training for different 

bucket number Q. The baseline case corresponds to Q = 1 

 

In terms of the wall clock time, the system without 

bucketing (purely random split of sequences on mini-

batches) has the longest epoch time (4 hours per epoch, 

Fig. 4). The epoch time reduces as Q increases. For the 

value of Q = 3, the speed up factor is close to 4. 

 

 
Figure 4.  Mean epoch training time of the LSTM model as a 

function of Q for parallel training on 6 GPUs 

 

From the comparison, we can observe the influence of 

the sequence buckets on the training speed and loss. 

We observed faster convergence of the validation loss 

especially at the beginning of the training. 

The validation loss as a function of wall clock time for 

different number of used GPUs is presented in Fig. 5a, 

and as a function of epoch number in Fig. 5b.  

The experiment shows that the validation error for 

30 hours of training is better by 23% for 6 GPU case (see 

Fig. 5a, 1 GPU vs 6 GPU comparison).  
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That result has been achieved by an intrinsic property of the method: within epoch, the system has been first trained on shorter sequences (first bucket), and then gradually the sequence lengths increased (bucket number increased).



a)  

b)  

Figure 5.  Validation loss of LSTM model training for multiple-GPU 

architecture. The bucket number Q = 6 

CONCLUSION 

In this paper, the algorithm of RNN training 

acceleration based on sequence bucketing and multi-GPU 

data parallelization was presented. 

Previous work demonstrated approaches for 

accelerating RNN gradient descent training involving 

heuristics for tuning of learning parameters, different 

network architectures and parallelization techniques. 

Those solutions, however, did not take into account that 

the data for perceptual machine learning tasks usually 

contain input sequences of different length. At the same 

time, the computational complexity of the training is 

defined by the longest sequence in the data batch. 

The proposed approach improves training speed by 

clustering sequences into buckets by their length, thus 

finding a compromise between data structuring and 

shuffling. 

An example of application to online handwriting 

recognition task with LSTM RNN is given. We obtained 

the acceleration factor 4 for the number of buckets Q = 3. 

Due to data parallelization in its turn, we observed the 

reduction of the validation loss by 23% for the same wall 

clock time compared to the single GPU case. In future 

work, we plan to investigate different strategies of bucket 

ordering during training on the model generalization. 

This approach may also be useful for LSTM and GRU 

training in speech recognition, language modelling and 

other perceptual machine learning tasks. 
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