
The 1th IEEE International Conference on Data Stream Mining & Processing

23-27 August 2016, Lviv, Ukraine

Accelerating Recurrent Neural Network Training

using Sequence Bucketing and Multi-GPU

Data Parallelization

Viacheslav Khomenko 1, Oleg Shyshkov 1, Olga Radyvonenko 1, Kostiantyn Bokhan 1
1 Samsung R&D Institute Ukraine (SRK), 57, L’va Tolstogo Str., Kyiv, 01032, Ukraine, v.khomenko@samsung.com

Abstract—An efficient algorithm for recurrent neural

network training is presented. The approach increases the

training speed for tasks where a length of the input

sequence may vary significantly. The proposed approach is

based on the optimal batch bucketing by input sequence

length and data parallelization on multiple graphical

processing units. The baseline training performance without

sequence bucketing is compared with the proposed solution

for a different number of buckets. An example is given for

the online handwriting recognition task using an LSTM

recurrent neural network. The evaluation is performed in

terms of the wall clock time, number of epochs, and

validation loss value.

Keywords — recurrent neural network; mini-batch;

sequence bucketing; data parallelization; LSTM; GPU

I. INTRODUCTION

Deep neural networks have recently proven to be

successful in pattern recognition tasks. The Recurrent

Neural Network (RNN) is a subclass of neural networks

defined by presence of feedback connections.

Long Short-Term Memory (LSTM) [1] RNNs perform

better on tasks involving long time lags compared to

traditional RNNs. The gating mechanism permits LSTM to

bridge long time lags between relevant events (103 time

steps and more). Gated Recurrent Unit (GRU) networks

[2] have similar ideology to an LSTM, but they speed up

training due to architectural simplifications.

The ability of RNNs to memorize historical data makes

them a powerful sequence-modeling tool. They have found

applications in pattern recognition and classification tasks

where inputs and outputs are sequences: online

handwriting recognition [3], document analysis [4],

sentiment analysis [5], speech recognition [6] and synthesis

[7], language modeling [8].

However, RNN training on a big amount of data is still

a challenging problem. The aim of the paper is to

demonstrate an effective approach to accelerate RNN mini-

batch training on big amount of data.

This paper is organized as follows. The related works

overview is given in section 2. Section 3 describes the

training algorithm. The experimental evaluation is given in

section 4. Then, the results are discussed, and the

evaluation of the proposed sequence bucketing algorithm

against the conventional sequence shuffling is presented.

II. BACKGROUND AND RELATED WORK

The problem of accelerating the RNN mini-batch

gradient descent training is widely discussed in the literature

in the last years [8, 9]. Some works consider adaptive

learning algorithms with heuristics for tuning of learning

parameters (learning rate, weight decay, etc.) to improve

convergence of model training [8].

Many researchers have focused their efforts on

experiments with different network architectures and

parallelization techniques [6, 9 and 10].

Training parallelization and a two-stage network

structure for RNN [9] allow to speed-up training. However,

the two-stage architecture gives substantial acceleration

mainly when the number of outputs of the network is

sufficiently large (103 or more).

The BlackOut [11] approach allows to accelerate

training for even larger vocabularies (106 outputs). It relies

on weighted sampling strategy, employs a discriminative

training loss and is applied only to the softmax output layer,

in contrast to DropOut [12], which is typically applied to the

input and hidden layers. The application of BlackOut is also

limited to networks with large output size.

In its turn, the curriculum learning [13] consists in

organizing training samples in a meaningful way rather than

in purely random order. It improves LSTM training on the

program evaluation and memorization tasks [14].

It is commonly known that labeling of unsegmented

sequence input data is a ubiquitous problem in the real-

world sequence learning. It is particularly common in

perceptual tasks (e.g. handwriting, speech or gesture

recognition), where noisy real-valued input sequences are

annotated with non-aligned strings [15]. Since Connectionist

Temporal Classification (CTC) networks gained use in RNN

training as a sequence alignment technique, the problem of

RNN training using input sequences of different length

turned out to be more important and affecting training speed.

Usually, sequences are grouped into mini-batches. The

length of the longest sequence in the batch thus defines the

computational complexity of the training. Most of

benchmark datasets for perceptual machine learning tasks

(TIMIT [16], UNIPEN [17], IAMonDo [18]) contain

recordings of different length. Batch grouping algorithms

could be useful for organizing training data [19, 20].

However, the following two problems arise in this case:

1. Finding the optimal batch clustering by sequence

lengths.

2. Balancing between input data streamlining and the

need of shuffling training data sequences before RNN

training.

In the next sections, we present and evaluate the RNN

training approach with an effective sequence bucketing that

solves problems mentioned above.

Accepted version of the IEEE conference paper

V. Khomenko, O. Shyshkov, O. Radyvonenko and K. Bokhan, "Accelerating recurrent neural network training using sequence

bucketing and multi-GPU data parallelization," 2016 IEEE First International Conference on Data Stream Mining & Processing

(DSMP), Lviv, 2016, pp. 100-103. DOI: 10.1109/DSMP.2016.7583516
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7583516&isnumber=7583485

 “© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7583516&isnumber=7583485

III. TRAINING ALGORITHM BASED ON SEQUENCE

BUCKETING AND MULTI-GPU DATA PARALLELIZATION

We propose the RNN model training algorithm that

runs in parallel on multiple Graphical Processing Units

(GPUs). The developed solution uses a map-reduce

approach for parallel computing of individual models by

sub-partitioning training data. The training data is shuffled

before every epoch and is equally redistributed between

different GPU processes. Each training process applies

batch bucketing optimization scheme by clustering

training sequences considering input lengths. Final model

parameters are obtained by reducing results of each

training process.

The proposed training workflow is presented in the

diagram (Fig. 1).

Figure 1. Proposed training algorithm with multi-GPU data

parallelization. The sequence bucketing occurs in each GPU process

A. Sequence bucketing algorithm

We accelerate the training on the individual GPU by

sequence bucketing that deals with the problem of large

variation of input sequence lengths. The empirical

distribution of input sequence lengths and an example of

clusterization for the number of buckets Q = 6 are shown

in Fig. 2.

Figure 2. Lengths of input sequences for the online handwriting

recognition task and bucketing for Q = 6: blue is the distribution of the
input sequence lengths; orange are optimal buckets

The bucketing can be described as an optimization

problem. Let },...,,{ 21 nsssS  be the set of sequences

and ii sl  is the length of sequence i . Each GPU

processes sequences in a mini-batch in a synchronized

parallel manner, so processing time of a mini-batch

},...,,{ 21 ksssB  is proportional to  iki lO ,,1max 
 and

processing time of whole set is expressed as:

   ini lknOST ,,1max  (1)

The minimum and maximum sequence length in a

mini-batch might be very different if sequences were

shuffled randomly before splitting. As a result, a GPU

does additional work by processing empty tails of shorter

sequences. To overcome this flaw and decrease processing

time, we recommend an algorithm that optimizes batch

clustering.

Let's call bucketing a process when we cluster all

sequences into Q buckets by their lengths, where Q is

some small positive integer number. Let

},...,{ 11 


ii jji ssS be the i th bucket. For every bucket,

we perform mini-batch training. The processing time of

the whole set will become:

  
















 








QlknOSTOST
Q

i

pp

Q

i

i
ijij

11
11

max)(
 (2)

The dynamic programming algorithm is used to find

optimal bucket sizes. The bucket sizes only depend on

sequence lengths, so we use an array f that stores a

number of sequences for each length.

We use the following notations:

• Q is the desired number of buckets;

• f[l] is the number of frequencies with input length l;

• dp[i][k] is the best score of bucketing if first i

elements were cut into k groups;

• dp[0][0] is set to 0;

• dp[i][0] is set to INF;

• 







 







i

it

ij

j
tfikjdpkidp

1

1

1
][]1][[min]][[;

• prevDp[i][j] is the end index of the i – 1 bucket

when first j elements were split into i buckets.

The pseudo-code of the proposed algorithm for

sequence bucketing is presented below:

procedure DYNAMICBUCKETING (Q, f)

 n ← length(f)

 for q = 1 to Q do

 for i = 1 to n do

 curSum ← f[i]

 for j = i - 1 downto 0 do

 val ← curSum ∙ i + dp[q - 1][j]

 if val < dp[q][i] then

 dp[q][i] ← val

 prevDp[q][i] ← j

 end if

 curSum ← curSum + f[j]

 end for

 end for

 end for

 curId ← n - 1

 bests ← []

 for i = Q downto 1 do

 bests.push_front(curId)

 curId ← prevDp[i][curId]

 end for

 return bests

end procedure

The algorithm optimization result for the given

distribution of input sequence lengths and desired number

of buckets is presented in Fig. 2.

Viacheslav Khomenko

The first bucket contains shorter input sequences compared to the last bucket with the longest sequences.

Viacheslav Khomenko

We assume that all data has been shuffled randomly prior to any subsequent transformation described in the paper.

B. Parallel training of recurrent neural networks

For the parallel training of the RNNs on GPU we

propose the following algorithm which allows massive

parallel model training and can scale up to a large number

of GPUs:

1. Initialize base model parameters.

2. Build Q models (for optimal input sequence

lengths) and serialize models to storage, for example, the

file system. Parameters of each model are initialized

randomly.

3. Generate training data (1st epoch) or re-generate

training data by re-shuffling between portions of data for

following epochs. The number of data portions is equal to

the number of GPUs. This is possible under the

assumption that the amount of training data is

sufficient [9].

4. For each of the training data portions, spawn

individual training processes. The process iterates over

the mini-batches in the data portion. The batches are

formed considering input sequence lengths. The

appropriate models are selected. The parameter update

rule of the individual model is ADADELTA [21].

5. Each of the training processes returns model

parameters. The aggregation of parameters is done in the

main process according to the model update rule

proposed in [9]. We have found that setting parameter

1 gives the best results for our model and leads to the

following equation:

     1 tVtVtV 
 (3)

where  tV are the parameter values at the current epoch;

 1tV are the parameter values at the previous epoch (or

initial values for the first epoch);  tV are the mean

parameter values over parallel models; 6101  is the

regularization term that leads to weight decay

proportionally to their values.

IV. EMPIRICAL EVALUATION

A. Experimental setup

The system was evaluated on online handwriting

recognition task. The raw data contain 1 Gb samples of

Afrikaans and English languages in binary form.

The dataset was collected on Samsung Galaxy S-Note

devices with stylus input. The validation set is created

from 5% of randomly selected samples of different length.

The dataset contains textual labels that serve as a

reference to output sequences. However, these labels are

not explicitly aligned with input handwriting stroke

sequences. At every epoch, the system was first fed with

shorter sequences (first bucket), and then gradually the

bucket number increased.

The LSTM model was trained with CTC cost function

using Theano [22] and Lasagne [23] frameworks.

The recurrent neural network model training procedure

was evaluated on a rack of 6 NVidia Tesla K40m GPUs.

B. Model training

The validation loss as a function of the wall clock time

and epoch number is given in Fig. 3; the best acceleration

with minimum validation loss was achieved for Q = 3.

a)

b)

Figure 3. Validation loss of the LSTM model training for different

bucket number Q. The baseline case corresponds to Q = 1

In terms of the wall clock time, the system without

bucketing (purely random split of sequences on mini-

batches) has the longest epoch time (4 hours per epoch,

Fig. 4). The epoch time reduces as Q increases. For the

value of Q = 3, the speed up factor is close to 4.

Figure 4. Mean epoch training time of the LSTM model as a

function of Q for parallel training on 6 GPUs

From the comparison, we can observe the influence of

the sequence buckets on the training speed and loss.

We observed faster convergence of the validation loss

especially at the beginning of the training.

The validation loss as a function of wall clock time for

different number of used GPUs is presented in Fig. 5a,

and as a function of epoch number in Fig. 5b.

The experiment shows that the validation error for

30 hours of training is better by 23% for 6 GPU case (see

Fig. 5a, 1 GPU vs 6 GPU comparison).

Viacheslav Khomenko

That result has been achieved by an intrinsic property of the method: within epoch, the system has been first trained on shorter sequences (first bucket), and then gradually the sequence lengths increased (bucket number increased).

a)

b)

Figure 5. Validation loss of LSTM model training for multiple-GPU

architecture. The bucket number Q = 6

CONCLUSION

In this paper, the algorithm of RNN training

acceleration based on sequence bucketing and multi-GPU

data parallelization was presented.

Previous work demonstrated approaches for

accelerating RNN gradient descent training involving

heuristics for tuning of learning parameters, different

network architectures and parallelization techniques.

Those solutions, however, did not take into account that

the data for perceptual machine learning tasks usually

contain input sequences of different length. At the same

time, the computational complexity of the training is

defined by the longest sequence in the data batch.

The proposed approach improves training speed by

clustering sequences into buckets by their length, thus

finding a compromise between data structuring and

shuffling.

An example of application to online handwriting

recognition task with LSTM RNN is given. We obtained

the acceleration factor 4 for the number of buckets Q = 3.

Due to data parallelization in its turn, we observed the

reduction of the validation loss by 23% for the same wall

clock time compared to the single GPU case. In future

work, we plan to investigate different strategies of bucket

ordering during training on the model generalization.

This approach may also be useful for LSTM and GRU

training in speech recognition, language modelling and

other perceptual machine learning tasks.

REFERENCES

[1] F. A. Gers, J. Schmidhuber, F. Cummins, “Learning to forget:

Continual prediction with LSTM,” Neural computation, vol.

12(10), pp. 2451–2471, 2000.

[2] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” arXiv
preprint, arXiv:1412.3555, 2014.

[3] A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber and

S. Fernández, “Unconstrained on-line handwriting recognition
with recurrent neural networks,” Advances in Neural Information

Processing Systems, 2008, pp. 577–584.

[4] T. Van Phan and M. Nakagawa, “Combination of global and local
contexts for text/non-text classification in heterogeneous online

handwritten documents,” Pattern Recognition, vol. 51, 2016,

pp. 112–124.
[5] O. Irsoy and C. Cardie, “Opinion Mining with Deep Recurrent

Neural Networks,” in Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP),
2014, October, pp. 720–728.

[6] D. Yu and L. Deng, “Deep convex net: A scalable architecture for

speech pattern classification,” in Proceedings of Interspeech,
2011, pp. 2285–2288.

[7] H. Zen and H. Sak, “Unidirectional long short-term memory

recurrent neural network with recurrent output layer for low-
latency speech synthesis,” in Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International Conference, 2015,

pp. 4470–4474.
[8] Y. Shi, M.-Y. Hwang, K. Yao and M. Larson, “Speed Up of

Recurrent Neural Network Language Models With Sentence

Independent Subsampling Stochastic Gradient Descent,” in
INTERSPEECH, 2013. pp. 1203–1207.

[9] H. Zhiheng, et al. “Accelerating recurrent neural network training
via two stage classes and parallelization,” in Automatic Speech

Recognition and Understanding (ASRU), 2013 IEEE Workshop,

2013.
[10] M. Zinkevich, M. Weimer, A. Smola and L. Li, “Parallelized

stochastic gradient descent,” in Advances in Neural Information

Processing Systems, vol. 23, 2010, pp. 2595–2603.
[11] S. Ji, S. V. N. Vishwanathan, N. Satish, N., M. J. Anderson and

P. Dubey, “BlackOut: Speeding up Recurrent Neural Network

Language Models With Very Large Vocabularies,” arXiv preprint,
arXiv:1511.06909, 2015.

[12] V. Pham, T. Bluche, C. Kermorvant and J. Louradour, “Dropout

improves recurrent neural networks for handwriting recognition,”
in Frontiers in Handwriting Recognition (ICFHR), 2014 14th

International Conference, pp. 285–290.

[13] Y. Bengio, J. Louradour, R. Collobert et al. “Curriculum
learning”. In Proceedings of the 26th annual international

conference on machine learning. ACM, 2009. pp. 41–48.

[14] W. Zaremba and I. Sutskever, “Learning to execute”. arXiv
preprint, arXiv:1410.4615, 2014.

[15] A. Graves, S. Fernández, F. Gomez, “Connectionist temporal

classification: Labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the International

Conference on Machine Learning, ICML-2006, pp. 369–376.

[16] J. S. Garofolo et al. “DARPA TIMIT acoustic-phonetic
continuous speech corpus CD-ROM,” National Institute of

Standards and Technology, NISTIR 4930, 1993.

[17] I. Guyon et al. “Unipen project of on-line data exchange and
recognizer benchmarks,” in Pattern Recognition, vol. 2-

Conference B: Computer Vision & Image Processing, Proceedings

of the 12th IAPR International. Conference on, vol. 2, IEEE, 1994,
pp. 29–33.

[18] E. Indermühle, M. Liwicki and H. Bunke, “IAMonDo-database:

an online handwritten document database with non-uniform
contents,” in Proceedings of the 9th IAPR International Workshop

on Document Analysis Systems, ACM, 2010, pp. 97–104.

[19] K. Tran, A. Bisazza and C. Monz, “Recurrent Memory Network
for Language Modeling.” arXiv preprint, arXiv:1601.01272, 2016.

[20] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao and

A.Y. Ng, “Large scale distributed deep networks,” In Advances in
Neural Information Processing Systems, 2012, pp. 1223–1231.

[21] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,”

arXiv preprint, arXiv:1212.5701, 2012.
[22] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi,

C. Angermueller, D. Bahdanau, A. Belopolsky, “Theano: A

Python framework for fast computation of mathematical
expressions,” arXiv preprint, arXiv:1605.02688, 2016.

[23] Lasagne, Lightweight library to build and train neural networks in

Theano, 2016 [http://lasagne.readthedocs.org/]

	I. Introduction
	II. Background and related work
	III. Training algorithm based on sequence bucketing and multi-GPU data parallelization
	A. Sequence bucketing algorithm
	B. Parallel training of recurrent neural networks

	IV. Empirical evaluation
	A. Experimental setup
	B. Model training

	Conclusion
	References

