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Abstract – The work presents results of a numerical 

study of fractal characteristics of multifractal stream at 

addition of stream, which does not have multifractal 

properties. They showed that the generalized Hurst 

exponent of total stream tends to one of original 

multifractal stream with increase in signal/noise ratio. 
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I. INTRODUCTION 

Numerous researches of processes in a network have 

shown that statistical characteristics of the traffic have 

property of time scale invariance (self-similarity). Self-

similar properties were discovered in the local and 

global networks, particularly traffic Ethernet, ATM, 

applications TCP, IP, VoIP and video streams. The 

reason for this effect lies in the features of the 

distribution of files on servers, their sizes, and the 

typical behavior of users. It was found that initially not 

having self-similarity data streams passing on nodal 

processing servers and active network elements became 

self-similar. 

The self-similar traffic has the special structure that 

preserves on many scales. There are always a number of 

extremely large bursts at relatively small average level 

of the traffic. These bursts are cause significant delays 

and losses of packages, even when the total load of all 

streams are more less than maximal values. In a classical 

case for Poisson stream buffers of an average size will 

be enough. The queue can be formed in short-term 

prospect, but for the long period buffers will be cleared. 

However in a case of self-similar traffic queues have 

more greater length.  

Now the multifractal properties of traffic are 

intensively studied. Multifractal traffic is defined as an 

extension of self-similar traffic due to take account of 

properties of second and higher statistics. 

Thus, an important task to improve the network 

quality of service is the study of self-similar and 

multifractal properties of data streams. A characteristic 

feature of computer networks is the multiplexing of 

streams, so characteristics of the additive self-similar 

streams have special significance. In [1-2], theoretical 

and numerical properties of self-similar additive 

processes were studied. It was shown that sum of several 

self-similar processes with different values of the Hurst 

exponent has maximal one. In [3-6], the results of 

experimental studies of the properties of additive data 

traffic which confirm the theoretical results are 

presented. However, these studies do not take into 

account multifractal properties of streams, the 

quantitative characteristic of which is the generalized 

Hurst exponent. 

The purpose of the present work is to research 

numerically the changing in fractal characteristics of 

multifractal stream at addition of stream, which does not 

have multifractal properties. 

II. CHARACTERISTICS OF SELF-SIMILAR AND 

MULTIFRACTAL PROCESSES 

Stochastic process ( ), 0X t t   with continuous 

real-time variable is said to be self-similar of index 

, 0 1H H  , if for any value 0a   processes 

( )X at  and ( )Ha X at−
 have same finite-dimensional 

distributions: 

   Law ( ) Law ( ) .HX at a X t=   (1) 

The notation Law  means finite distribution laws 

of the random process. Index H  is called Hurst 

exponent. It is a measure of self-similarity or a measure 

of long-range dependence of process. For values 

0,5 1H   time series demonstrates persistent 

behaviour. In other words, if the time series increases 

(decreases) in a prior period of time, then this trend will 

be continued for the same time in future. The value 

0.5H =  indicates the independence (the absence of 

any memory about the past) time series values. The 

interval 0 0.5H   corresponds to antipersistent 



 

  

time series: if a system demonstrates growth in a prior 

period of time, then it is likely to fall in the next period.  

The moments of the self-similar random process can 

be expressed as 

( ) ( )
q qHE X t C q t  = 

 
  (2) 

where the quantity ( ) (1)
q

C q E X =
 

. 

In contrast to the self-similar processes (1) 

multifractal processes have more complex scaling 

behavior: 

( )Law{ ( )} Law{ ( ) }X a t a X t=    (3) 

where ( )a  is random function that independent of 

( )X t . In case of self-similar process ( ) Ha a= .  

For multifractal processes the following relation 

holds: 

( )( ) ( ) qh qq
E X t c q t  = 
 

 (4) 

where ( )c q  is some deterministic function, ( )h q  is 

generalized Hurst exponent, which is generally non-

linear function. Value ( )h q  at 2q =  is the same 

degree of self-similarity H . Generalized Hurst 

exponent of monofractal process does not depend on the 

parameter q : ( )h q H= . 

Fig. 1 shows plot example of generalized Hurst 

exponent ( )h q  for monofractal and multifractal 

stochastic processes. In the case of a monofractal 

process Hurst exponent is a straight line.  

 

 
Figure 1. Generalized Hurst exponent  for monofractal (straight) 

and multifractal (curve) stochastic processes.  

 

 

III. MODELS OF SELF-SIMILAR AND 

MULTIFRACTAL DATA TRAFFIC  

The main tool for the study and predict the behavior 

of self-similar data streams is simulation, which requires 

a model of self-similar and multifractal input load.  

Fractional Brownian motion (fBm) with a parameter 

H  is often considered as a stochastic process 

possessing self-similar properties and it is widely used 

in the theory of network traffic [7]. fBm with a 

parameter 0.5H =  is ordinary Brownian motion. The 

increment process of fBm is known as fractional 

Gaussian noise (fGn). Theoretically fGn can be 

considered as a model of self-similar traffic with a 

defined Hurst exponent and the corresponding long-term 

dependence. However, this model has a number of 

shortcomings one of which is zero mean and negative 

values.  

Easy transition from fGn to self-similar traffic with 

positive values is the transformation that has been 

proposed in [8]. In the simplest case, the modeling 

traffic realization is 

( ) Exp[fGn( )]Y t t= .                       (5) 

The proposed transformation preserves the long-term 

dependence of the stochastic process. The stochastic 

process ( )Y t  is a self-similar stochastic process as the 

same Hurst exponent H , as the initial fractal Gaussian 

noise. The variable ( )Y t  has a log-normal distribution. 

A suitable model of the traffic with predetermined 

multifractal properties are stochastic cascade processes. 

It was proposed to use for modeling multifractal traffic 

realizations of the stochastic multiplicative binomial 

cascade [7, 9]. In the construction of stochastic cascades 

the weight coefficients are independent values of a 

random variable. In [9] the beta-distribution random 

variable was used for weights. This allows to generate 

the trafic realizations with varying degree of 

heterogeneity, i.e. with a large range of multifractal 

properties. 

Graph of typical multifractal cascade realization is 

represented at the top of the Fig. 2. In the middle part of 

the Fig. 2 the realization of traffic, which has 

independent values ( 0.5H = ) and generates according 

to (5) is shown. At the bottom of the Fig. 2 the 

realization of the total stream is shown. 

Modern information networks are built on the 

multiplex data streams. The mechanism of statistical 

multiplexing of information streams is widely used in 

telecommunications, because it allows to economical 

use of the bandwidth of the main channels. It consists in 

the fact that the individual sources are added streams in 

the main channel with saving bandwidth.  

We wondered how the multifractal characteristics of 

the total stream change. In each case the basic stream 

were multifractal cascade realizations, to which the 



 

  

realizations of various probability and correlation 

properties were added. They were exponents of white 

noise obtained in accordance with (5), exponent of fGn 

having a long-term dependence, autoregressive time 

series having short term memory and series of various 

distribution independent random values. 
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Figure 2. Model realizations: multifractal,  

exponents of white noise and total  

 

IV. RESEARCH RESULTS  

In the work the investigation of multifractal 

properties of total streams of various types was carried 

out.  

The investigated model additive stream is introduced 

as 

( ) ( ) ( )SUM MULTI NOISEX t X t X t= + , (6) 

where ( )MULTIX t  is  realization of multifractal cascade 

process, ( )NOISEX t  is additive noise realization. The 

factor SNR  is the factor which characterizes the ratio 

of multifractal stream and noise one: 

Var[ ] / Var[ ]MULTI NOISESNR X X= .  (7) 

Consider how the generalized Hurst exponent ( )SUMh q  

of total stream changes in the case where the additive 

( )NOISEX t  is the exponent of white noise. Fig. 3 shows 

the generalized Hurst exponent ( )h q  in the range of 

parameter 10 10q−   . The top solid line 

corresponds to ( )MULTIh q  of multifractal realization 

( )MULTIX t ; dotted line 1 corresponds to ( )SUMh q  for 

total realization ( )SUMX t  when value 5SNR =  and 

dotted line 2 is ( )SUMh q  in case  1SNR = . It is 

obvious that the generalized Hurst exponent ( )SUMh q  

and the Hurst exponent ( )MULTIh q  of the original 

multifractal stream ( )MULTIX t  in case 1 are very close 

for positive values of the parameter q . This means that 

the multifractal properties of original stream do not 

change and can be easily identified. 

 

 
Figure 3. Generalized Hurst exponents of the original multifractal 

stream and total streams with different signal/noise ratio. 

 

Taking into account these results, further analysis of 

the generalized Hurst exponent ( )h q  only the positive 

values of the parameter q  were considered. Numerical 

research showed that at signal/noise ratio 5SNR   the 

generalized Hurst exponent ( )SUMh q  of total stream 

and ( )MULTIh q of the original multifractal stream are 

almost identical at values 0q  . 

Generalized Hurst exponent ( )SUMh q  was 

numerically investigated by changing the signal / noise 

ratio SNR . It is shown that with decreasing the ratio 

value SNR  of 5 to 1 generalized Hurst exponent 

( )SUMh q  tends to the ( )MULTIh q  of original stream. 

Fig. 4 shows the function ( )MULTIh q  of the original 

multifractal realization (●-line) and ( )SUMh q  of total 

ones when a number of the coefficient SNR = 2 (*-

line), 4 (Δ-line), 5 (-line) and 10 (-line). 

Numerical studies have shown that this relation 

holds for all kinds of additive traffic: exponent of fGn 

with different Hurst parameter ( 0.5H  ), traffic 

realization having autoregressive dependence. The case 

when the additive traffic does not possess the self-

similar properties and does not have the normal 

distribution was also investigated. 



 

  

 

 
Figure 4. . Generalized Hurst exponents of the original 

multifractal stream (●-line) and total ones with different signal/noise 

ratio: 2 (*-line), 4 (Δ-line), 5 (-line) and 10 (-line) in case of self-

similar noise. 

 

Fig. 5 shows the function ( )MULTIh q  of the original 

multifractal realization (●-line) and ( )SUMh q  of total 

ones with different signal/noise ratio when the additive 

traffic is independent values of uniform distribution 

random variable. In this case the lines of ( )SUMh q  

correspondent at SNR = 2 (Δ-line), 4 (-line) and 

5 (-line). 

 

 
Figure 5.  Generalized Hurst exponents of the original multifractal 

stream (•-line) and total ones with different signal/noise ratio: 

2 (Δ-line), 4 (-line) and 5 (-line) in case of not self-similar noise.  

 

Obviously, in the case of uncorrelated not self-

similar additive stream ( )NOISEX t  the total one 

( )SUMX t  has the multifractal properties of the original 

stream ( )MULTIX t  at smaller values of the ratio SNR . 

V. CONCLUSION 

The work presents results of a numerical study of the 

changing in fractal characteristics of multifractal stream 

at addition of stream, which does not have multifractal 

properties. The study results showed that the fractal 

characteristics of multifractal stream are saved 

depending on the magnitude of signal/noise ratio. With 

increase in signal/noise ratio the generalized Hurst 

exponent of total stream tends to one of original 

multifractal stream in the region of positive values of the 

parameter. If additive stream does not have self-similar 

properties, multifractal characteristics hold at smaller 

ratio. 

Further work is expected to investigate the other 

models of self-similar processes and to study 

characteristics of the total multifractal data streams. The 

research results have applied significance not only in 

telecommunications but also in radio engineering and 

digital seismology, where one of the main problems is of 

the useful signal in a noisy environment. 
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