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In this paper we study different approaches for time 
series modeling. The forecasting approaches using linear 
models, ARIMA alpgorithm, XGBoost machine learning 
algorithm are described. Results of different model 
combinations are shown. For probabilistic modeling the 
approaches using copulas and Bayesian inference are 
considered.  
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I. INTRODUCTION  
Time series analysis, especially forecasting, is an 
important problem of modern predictive analytics. The 
goal of this study is to consider different aproaches for 
time series modeling.  For our analysis, we used stores 
sales historical data from Kaggle competition 
“Rossmann Store Sales” [1]. These data represent the 
sales time series of Rossmann stores. For time series 
forecasting such approaches as linear models and 
ARIMA algorithm are widely used. Machine lerning 
algorithm make it possible to find patterns in the time 
series. Sometimes we need to forecast not only more 
probable values of sales but also their distribution. 
Especially we need it in the risk analysis for assessing 
different risks related to sales dynamics. In this case, 
we need to take into account sales distributions and 
dependencies between sales time series features (e.g. 
day of week, month, average sales, etc.) and external 
factors such as promo, distance to competitors, etc. 
One can consider sales as a stochastic variable with 
some marginal distributions. If we have sales 
distribution, we can calculate value at risk (VaR) which 
is one of risk assessment features. In probabilistic 
analysis of sales, we can use copulas which allows us 
to  analyze  the dependence between sales and different 
factors.  To find distributions of model parameters 
Bayesian inference approach can be used.  

 

II. LINEAR MODELS AND MACHINE 
LEARNING APPROACHES 

For our analysis, we used stores sales historical data. 
To compare different forecasting approaches we used 
two last  months of the historical data as validation data 

for accuracy scoring using root mean squared error 
(RMSE). For the comparison, we used the following 
methods: ARIMA using R package “forecast” [2], 
linear regression with LASSO regularization using  R 
package “lars” [3], conditional inference trees with 
linear regression on the leaf using mob() function from 
R package “party” [4], gradient boosting XGBoost 
model using R package “xgboost” [5]. Package  
“xgboost”  (short term for eXtreme Gradient Boosting)  
is an efficient and scalable implementation of gradient 
boosting framework [6,7]. The package includes 
efficient linear model solver and tree learning 
algorithm. We also used combined approaches such as 
linear blending ARIMA and gradient boosting model, 
stacking with the use of linear regression on the first 
step and gradient boosting on the second step.  We 
used two ways of classifications – the first way is 
based on the time series approach and the second one is 
based on the independent and identically distributed 
variables. We consider sales in the natural logarithmic 
scale. Figure 1 shows typical time series of store sales. 

 
Figure 1. Typical time series of store sales. 

Figure 2 shows the example of time series forecasting 
by different methods with RMSE error metric. Let us 
consider the case of time series forecasting using linear 
blending of ARIMA and XGBoost models. For 
arbitrary chosen store (Store 285) we received   
RMSE=0.11 for ARIMA model,  RMSE=0.107 for 
XGBoost model and RMSE=0.093 for   linear blending 
of ARIMA and XGBoost models. Let us consider the 
case of using stacking with linear regression on the 
first step and xgboost on the second step. For arbitrary 
chosen store (Store 95) we received RMSE=0.122 for 
XGBoost model  and RMSE=0.117 for stacking model. 



We also studied the case of time series forecasting 
using XGBoost model with time series approach  and 
xgboost model based on independent and identically 
distributed variables. For arbitrary chosen store (Store 
95) we received   RMSE=0.138 for  XGBoost model 
with time series approach  and  RMSE=0.118  for 

XGBoost model with i.i.d approach.  The obtained 
results show that for different stores the best accuracy 
is released by different approaches.  For each type of 
time series, we may develop an optimized approach 
which can be based on the combination of different 
predictive models. 

 

 
Figure 2. Time series forecastings by different methods. 

III.  COPULAS APPROACH FOR MODELING   
A copula is a multivariate probability distribution for 
which the marginal probability distribution of each 
variable is uniform. Copulas are used to describe the 
dependence between random variables. Sklar's 
Theorem states that any multivariate joint distribution 
can be written in terms of univariate marginal 
distribution functions and a copula, which describes the 
dependence structure between the variables. The 
copula contains all information on the dependence 
structure between the variables, whereas the marginal 
cumulative distribution functions contain all 
information on the marginal distributions. For the case 
study, we use the same sales time series, which 
represent sales in the stores network. We used “copula” 
R package [8] for modeling. We consider sales in the 
natural logarithmic scale. For our analysis, we take 
such features as sales (variable logSales), previous day 
sales (variable prevLogSales), number of customers 
that visited a store (variable Customers). First of all we 
take one sales time series for one arbitrary store. 
Marginal distributions and dependencies with 
correlation coefficient are shown on the figure 3. On 
the figures 4,5 the pseudo observations of investigated 
features are shown. These figures represent stochastic 
dependencies of investigated variable. Our next 
objective is to find such copulas, which will 
approximate these dependencies. We chose t-copula for 
modeling. Using maximum likelihood method, one can 
find fitting parameters for copula. The probability 

density function for calculated fitted t-copula is shown 
on the figure 6.  

 
Figure 3. Marginal distributions and correlation coefficient.  



 
Figure 4. Pseudo observations for logSales and prevLogSales 

variables. 

  
Figure 5. Pseudo observations for logSales and Customers variables. 

 
Figure 6. The probability density function for fitted t-copula. 

Having fitted copula and marginal distributions, we can 
generate pseudo-random samples of investigated 
variables by applying inverse marginal comulative 

distribution function (CDF) to each dimensional 
variable of fitted copula. To construct multivariate 
distribution of dependent variables, we chose gamma 
distribution for marginal distributions of logSales and 
Customers variables. Having fitted copula and finding 
parameters for these gamma distributions from 
historical data, we generate pseudo-random samples 
with the probability density function (PDF), shown on 
the figure 7. 
 

 
Figure 7. The PDF of generated pseudo-random samples using fitted 

t-copula and marginal distributions.  

If we need to analyze multivariate dependences with 
more than two variables, it is effective to use vine 
copulas, which enable us to construct complex 
multivariate copula using bivariate ones. For studying 
vine copula, we used CDVine R package [9]. Let us 
consider such features of sales time series as sales 
(variable logSales), mean sales per day for store 
(variable meanLogSales) and promo action (variable 
Promo). In this case, we analyze sales for stores chain. 
To analyze the stochastic dependence we used 
canonical vine copula. First tree for fitted canonical 
vine copula with Kendall’s tau values is shown on the 
figure 8. 

  
Figure 8. The tree for fitted canonical vine copula with Kendall’s tau 

values. 



We chose a t-copula for the logSales-Promo 
dependency and a normal for the logSales-
meanLogSales dependency. The pseudo observations 
for constructed canonical vine copula are shown on the 
figure 9 in the dimension of logSales and 
meanLogSales . 

 
Figure 9. Pseudo-observations for constructed canonical vine copula. 

As the case study shows, the use of copula make it 
possible to model stochastic dependencies between 
different factors of sales time series separately from 
their marginal distributions. This can be considered as 
an additional approach in the sales time series analysis. 

IV. BAYESIAN INFERENCE  
For Bayesian inference case study, we take such 
features as promo, seasonality factors (week day, 
month day, month of year). As well as in the previous 
studies, we consider sales in the natural logarithmic 
scale. As the example we take one sales time series for 
one arbitrary store. For Bayesian inference, we used 
Markov Chain Monte Carlo (MCMC) algorithm from 
MCMCpack R package [10]. For time series modeling, 
we used the linear regression with Gaussian errors.  
Trace plots of samples vs the simulation index can be 
very useful in assessing convergence. The trace plot for 
promo coefficient is shown on the figure 10.  

 
Figure 10. Trace plot for promo coefficient. 

The trace plot demonstrates the stationary process, 
which means good convergence and   sufficient burn-in 
period in the MCMC algorithm. The similar trace plots 
were received for other coefficients in the linear 
regression. The density of distributions of some 
regression coefficients for chosen arbitrary store are 
shown on the figure 11. 
 

 
Figure 11. Density of distributions of regression coefficients. 

 
The figure 12 shows the examples for box plots for 
some regression coefficients  

 

 
Figure 12. Box plots for  regression coefficients. 

Sales time series can have outliers and it is important to 
take into account this fact using heavy tails 
distributions instead of Gaussian distribution. For the 
linear regression with variables with different type of 
distributions we used Bayesian hierarchical model. We 
conducted the case study using JAGS sampler [11] 
software with “rjags” R package. For modeling, we 
take into account mean sales for the store, sales, and 
promo.  We consider sales and mean sales for the store 
in the natural logarithmic scale. For mean sales for 
stores, we used Gaussian distribution, for sales – 
Student distribution, and  for promo – Bernoulli 



distribution.  In this model, we consider sales as an 
independent and identically distributed random 
variable without separating sales for different stores. 
Info about the store is represented by mean sales for 
the store values. Mean sales for the store (variable 
meanLogSales) vs  sales (variable logSales) obtained 
for considered Bayesian model are shown on the  
figure 13.  

 
Figure 13. Mean sales for the store (variable meanLogSales) vs  sales 

(variable logSales) obtained for fitted Bayesian model. 

 
As the case study shows, the use of Bayesian approach 
allows us to model stochastic dependencies between 
different factors of sales time series and receive the 
distributions for model parameters. Such an approach 
can be useful  for assessing different risks related to 
sales dynamics. 

 

V.  CONCLUSION 
In our cases study we showed different approaches 

for time series modeling. Forecasting with using linear 
models, ARIMA algorithm, xgboost machine learning 
algorithm are described. The results of different models 
combinations are shown. For probabilistic modeling, 
the approach with using copulas is shown. The 
Bayesian inference was applied for time series linear 
regression case. For time series forecasting the 
different models combinations technics can give better 
RMSE accuracy comparing to single algorithms. The 
probabilistic approach for time series modeling is 
important in the risk assessment problems. The copula 
approach gives one the ability to model probabilistic 
dependence between target values and extreme factors 
which is useful when a target variable has non Gausian 
probability density function with heavy tails. Bayesian 
models can be used to find distributions of coefficients 
in the linear model of time series. Having model 
parameters distributions one can find the distribution of 

target values using Monte-Carlo approaches. For each 
type of time series, one can develop an optimized 
approach, which can be based on the combination of 
different predictive models.  
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