Software-only Triple Diverse Redundancy on GPUs
for Autonomous Driving Platforms

Sergi Alcaide™', Leonidas Kosmidis¥, Carles Hernandez*, Jaume Abella'
TBarcelona Supercomputing Center (BSC)

! Universitat Politecnica de Catalunya (UPC)

Abstract—Autonomous driving (AD) imposes the need for safe
computations in high-performance computing (HPC) components
such as GPUs, thus with capabilities to detect and recover from
errors since a safe state may not exist anymore. This can be
achieved with Triple Modular Redundancy (TMR) for computa-
tion components. Furthermore, error detection capabilities need
to provide some form of diversity to avoid the case where a single
fault leads all redundant executions lead to the same error, which
would go undetected. In our past work, we assessed GPUs against
dual modular redundancy (DMR) with diversity, showing their
potential and limitations to provide diverse redundancy building
on reset and restart for recovery. However, such recovery scheme
may be too slow for some applications.

This paper proposes a software-only solution to deliver diverse
TMR on commercial off-the-shelf (COTS) GPUs. Our work
details how staggered execution can be achieved and assesses
the performance of TMR on COTS GPUs. Moreover, we identify
those elements where diversity cannot be guaranteed and provide
some discussion comparing the case of DMR and TMR for those

elements.
I. INTRODUCTION

The humongous computation requirements of autonomous
driving (AD) frameworks call for the use of high-performance
computing (HPC) devices in future automotive platforms.
Those HPC platforms, such as GPUs executing machine learn-
ing workloads for perception [1], have already been proven to
deliver the performance needed by AD systems — as shown in
recent AD systems demonstrations [2]. However, it is unclear
how these platforms will adhere to the highest Automotive
Safety Integrity Levels (ASIL) as dictated by the automotive
functional safety standards, i.e. [SO26262 [3].

In the context of ISO26262, safety measures need to be
deployed, and Validation and Verification (V&V) processes
must be followed in order to collect evidence to prove that
safety requirements are met even in the most stringer cir-
cumstances [4]. The level of assurance needed, provided that
testing is simply unable to cover all possible situations, varies
in accordance with the ASIL of the target application.

Automotive systems usually have a safe state upon a
failure, either by stopping the car or giving the control to
the driver to manage exceptional situations. This property
allows relieving HPC components from any safety requirement
as long as other components monitor the safe behavior of
both, HPC components as well as themselves. Those safety-
related monitors, therefore, inherit all safety requirements of
the functionality delivered jointly by themselves and the HPC
components. Upon an error in the HPC components, those
monitors only need to guarantee the timely detection of the
error, and transferring the system to a safe state within the
fault-tolerant time interval (FTTI), thus transforming errors in

* Universitat Politécnica de Valencia (UPV)

HPC components into an availability concern rather than a
safety one.

The highest integrity levels (i.e. ASIL-C/D) require avoiding
common cause failures (CCFs). A CCF is a failure caused by
a single fault affecting all redundant components. Avoiding
CCFs implies the use of diverse redundant designs so that
either the fault cannot affect all redundant components or, if
it may bring all them to error, such error manifests heteroge-
neously so that it can be detected. In particular, 1SO26262
demands the use of lockstep execution to avoid CCFs in
computation components, whose easiest incarnation is the
use of identical cores executing the same task with some
staggering (e.g. few cycles of delayed execution for redundant
elements) so that their state differs at any point in time and a
fault can only lead to different errors in both cores. This is,
for instance, the strategy implemented in ASIL-D compliant
Infineon AURIX microcontroller units (MCUs) [5]. Fail-safe
systems (those with a safe state), therefore, can be built using
an ASIL-D MCU and HPC components (e.g. a GPU) so that
the latter provides no safety at all, as long as the ASIL-D
MCU can safely manage faults in both, the HPC component
and the MCU itself.

However, in AD a safe state may not exist anymore since we
may not be able to transfer the control back to the hypothetical
driver, i.e. the car may even lack a steering wheel. Thus, error
recovery capabilities are mandatory for HPC components and
thus, we cannot further rely on an ASIL-D MCU to manage the
overall safety of the system. Fail-operational systems (those
that lack a safe state) impose, therefore, safety requirements
even for the HPC components (e.g. ASIL-D compliance).

Manufacturers have already started to sell products targeting
AD capabilities, such as the RENESAS R-Car H3 [6] and the
NVIDIA Xavier [7] platforms among others. These platforms
include multiple general purpose cores (e.g. ARM-based)
paired with some accelerators, including a GPU as a key
component to process huge amounts of sensed data quickly. So
far, those platforms have been regarded as ASIL-B compliant
and claimed to be ASIL-C/D capable. However, based on
the detailed specifications available, this is only achievable
by using redundant functionalities (e.g. based on GPUs and
Deep Learning accelerators) [8]. Still, this is a very costly
solution since it requires doubling or tripling a significant
part of the design and V&V costs, which is against strict
cost requirements in the automotive domain. Thus, it becomes
mandatory enabling some form of diverse redundancy (i.e.
lockstep execution) in the GPU part of the ASIL-C/D function-
alities to avoid using fully redundant GPUs. Since in terms of
costs and efficiency, setting up two GPUs increases hardware

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI 10.1109/DSN-§50200.2020.00045

costs and reliability concerns and communications are slower,
such lockstep must occur on-chip similarly to the case of the
general purpose cores (e.g. Infineon AURIX processors [5]).

In our previous work [9], we have show to what extent
diverse redundancy with dual lockstep execution can be ob-
tained by software means in a COTS GPU by launching
a redundant kernel for each kernel found in the baseline
application. Given that the launching occurs on the CPU
(serial) side, the launching itself creates a staggering be-
tween the redundant kernels, which adds diversity to the
execution by means of timing redundancy. However, dual
lockstep execution guarantees error detection, but correction
needs full reexecution (reset and restart) or partial reexecution
(checkpointing and recovery), even if errors affect a single
redundant element (the most common case). Such process may
require additional safety measures to tolerate large recovery
latencies, such as decreasing driving speed for a short time
lapse, which are visible to the user and hence, undesirable.
Instead, an alternative providing transparent error recovery for
faults affecting a single redundant element are those based on
Triple Modular Redundancy (TMR). Those must implement
diversity to avoid CCFs (even if reset and restart is needed),
but already deliver virtually immediate recover for most faults,
which affect a single redundant element.

This paper extends our previous work by moving from
dual diverse redundancy in GPUs by software only means
to TMR execution with diversity. Our work assesses to what
extent commercial off-the-shelf (COTS) GPUs provide already
appropriate means to deliver such a solution and identifies gaps
that need explicit hardware support.

In particular the contributions of this work are as follows:

o An extension of the software strategy in [9] to implement

diverse TMR inside a single COTS GPU.

o Quantitative evidence of how the staggering between

redundant execution is created in a single GPU.

e Some discussion on whether those CCFs remaining in

our previous work are still present in the case of diverse
TMR on COTS GPUs.

II. BACKGROUND

This section introduces some concepts related to the au-
tomotive safety standard ISO26262. In particular, how safety
systems are classified into different ASIL, as well as ASIL
decomposition. We also provide background on some well-
know dependability concepts, but relating them to the needs
of safety-critical systems.

A. ASIL in ISO26262

Automotive functionalities inheriting functional safety re-
quirements are classified into different ASIL based on their
functional safety risks. The levels go from ASIL-A to ASIL-
D, where ASIL-D corresponds to the highest safety risk.
Additionally, non-safety-related components are regarded as
QM (Quality Managed). The higher the ASIL of an item,
the more stringent the safety measures needed to avoid haz-
ardous situations. For instance, error detection (e.g. lockstep
execution) and recovery (e.g. reset and restart) features may
be required to preserve safety of an ASIL-D MCU. In the
context of [SO26262, the automotive safety standard, the ASIL
is attached to items based on their safety requirements and a

ASILC ASILD ASILD
ASILA ASILB || ASILB ASILB || ASILD QM

Fig. 1: Examples of ASIL decomposition.

hazard and risk analysis. Such ASIL is then propagated to the
different components following some rules (i.e. the default rule
consists of validating all components for the same ASIL as the
higher level item where they are integrated). However, since
increasingly higher ASIL have increasingly higher design and
V&V costs, alternative approaches are followed based on what
is referred to as ASIL decomposition.

B. ASIL decomposition

Under a given ASIL, some specific diagnostic coverage
must be achieved and some random failure rates are deemed
as acceptable, being coverage and failure rates more stringent
for the highest ASIL. Since reaching certain coverage levels
and failure rates may impose excessive cost (e.g. requiring
expensive safety measures such as lockstep execution), specific
ASIL levels can be reached with the appropriate combination
of lower ASIL components. This is illustrated with some ex-
amples in Figure 1. For instance ASIL-C can be reached with
ASIL-B and ASIL-A items providing independent redundancy.
Independent redundancy relates to some form of diversity to
avoid CCFs, and is explicitly requested in ISO26262.

Such a solution is often used because lower ASIL items
are cheaper to design and verify than higher ASIL ones. A
common example, is building an ASIL-D MCU by using two
ASIL-B cores operating in lockstep. However, in order to
apply the ASIL decomposition, redundant components must
prove to have independent behavior. In the case of computing
components, diversity is typically achieved using identical
cores and software stacks running with some staggering.

Furthermore, ASIL decomposition is also used for cost
reduction trading off availability for fail-safe systems. In
particular, a component of a given ASIL (e.g. ASIL D) can be
decomposed into, for instance, one ASIL-D component and
one or several QM ones, as shown in rightmost example on
Figure 1. In this case, the ASIL-D component must be able
to preserve safety despite failures of the other components.
For instance, as explained before, the HPC part may be
deemed as QM, as long as an ASIL-D MCU guarantees error
management for errors occurring in the HPC component.

While most systems related to braking and steering resort
to some sort of driver intervention to manage potentially
hazardous situations, for the highest autonomy levels in AD —
levels 3 to 5 as described in J3016 standard [10] — control can
only be transferred to the driver in some circumstances (levels
3 and 4) or simply can never be transferred (level 5). Hence, if
HPC components need to be included due to the performance
constraints in automotive systems and they have to carry tasks
related to AD, these accelerators (e.g. GPUs) must be certified
to reach ASIL-D on their own. Otherwise, if we combine
an ASIL-D low-performance CPU with a QM GPU, being
the latter in charge of running ASIL-D processes (e.g. object
detection), on a GPU failure, the ASIL-D CPU will be able to

detect the failure, but will not be able to guarantee safety due
to the lack of a safe state (i.e. the car must keep taking driving
decisions). Therefore, similar solutions to those for MCUs (i.e.
diverse redundancy) must be achieved for GPUs and the other
accelerators.

C. Independent Redundancy, Diversity and Sphere of Repli-
cation

According to ISO26262 software faults and some hardware
faults are regarded as systematic, and must be proven that
failure risk is residual. Still, random hardware faults cannot be
avoided and means are required to prevent them from causing
hazards.

Those faults can be caused by, for example, voltage droops,
crosstalk, process variations, etc. In order to reach a given
ASIL, it must be proven with appropriate diagnostic coverage
and failure rate targets that any such single fault cannot
lead the system to a hazard. Special care must be taken
to protect against CCFs which can affect more than one
component at the same time as explained before. For instance,
cores implementing DMR could experience a voltage droop
and, if no diversity exists, cores could experience identical
errors, which would not be detected upon output comparison.
Thus, 1SO26262 imposes the use of independent (diverse)
redundancy for the highest ASIL. As explained before, the
most usual solution in automotive systems due to cost reasons
is implementing staggered DMR, where the execution in one
core is delayed by few cycles w.r.t. the execution in the other
core. Staggering requires some buffering to manage inputs
and outputs so that staggering is enforced at all times. This
is the solution adopted by Infineon AURIX processors for
automotive systems [5] as well as some ARM Cortex-R
processors [11], [12]. Otherwise, using physically diverse
hardware or diverse software impacts noticeably design and
V&V costs.

1S0O26262 provides no explicit recommendations on how
to assess whether diversity has been achieved to a sufficient
degree, and quantifying to what extent two different implemen-
tations performing the same functionality are diverse is still
an open challenge [13]. Hence, diversity is typically assessed
qualitatively by safety experts against potential CCFs.

Redundancy can be applied at different granularities accord-
ing to the sphere of replication (SoR). The SoR determines
the parts of the system that must be duplicated, how inputs
need to be delivered redundantly, and where outputs need to
be compared removing redundancy so that redundant compo-
nents behave externally as if they were a single component.
Choosing the right SoR and the number of replicas depends
on several tradeoffs like area overheads, re-design costs, fault
detection time, and overall system costs. In the context of
1SO26262 safety-critical processing components, the SoR is
placed at the level of the CPU (core), as done for the AURIX
processors. This requires including two replicas of the same
core and compare their memory transactions, which requires
roughly duplicating computational resources in the chip and
being able to ensure that replicas can provide independent
behavior. On the other hand, storage (memories, caches) and
communication means (buses, crossbars) do not need to be
fully replicated and can build upon Error Correction Codes

(ECC) and Cyclic Redundancy Check (CRC) as a form of
lightweight redundancy with diversity.

As discussed before, DMR and TMR offer different trade-
offs in terms of cost and time to recovery. Obviously, DMR has
lower cost, but in the context of automotive, builds on the usual
reset and restart recovery actions. However, upon intermittent
errors, such recovery solution may not solve the problem in
time, thus potentially violating the FTTI of the corresponding
functionality. Automotive systems usually perform several
retries and, if no recovery is achieved, the system is transferred
to a safe state. However, some AD functionalities are fail-
operational and no safe state exists. In that case, fault-tolerance
may be needed, thus imposing diverse TMR rather than diverse
DMR. In our work, we focus on TMR in the context of GPUs,
since GPUs are of particular interest of end users and chip
vendors as discussed before.

III. ENABLING ASIL-D COMPLIANT FAULT-TOLERANT
OPERATION ON COTS GPUs

In this section we introduce the target platform and how
safety is preserved in the different components, we analyze
the relevant aspects of GPU design and execution model for
our work, and present how TMR execution can occur safely
on a COTS GPU building on software-only means. Finally,
we present a discussion on to what extent TMR and DMR
limitations differ.

A. Target Platform

We build our approach on a platform analogous to that in-
troduced in [9], which consists of an ASIL-D compliant MCU
together with an HPC accelerator delivering high computation
throughput, specifically, a GPU. Such platform is in line with
the existing AD platforms. However, the adherence of the
GPUs to the requirements of the automotive safety standard,
1S026262, is unknown. Thus, the usage of these accelerators
for ASIL-C/D systems requires investigation. Without loss of
generality, we focus on NVIDIA GPUs analogous to those
in NVIDIA Drive and Xavier automotive families. Still, the
findings in this work can easily be extrapolated to other
products and manufacturers.

In the proposed platform, the sequential (control) code
is executed in the ASIL-D MCU, which deploys lockstep
execution, as needed to reach ASIL-D compliance. The ASIL-
D MCU offloads intensive (parallel) computations to the GPU,
which delivers high computation throughput. These intensive
computations are mainly tasks related to AD such as the
continuous rendering of the surrounding environment, which
involves object recognition and tracking among other high
ASIL functionalities. Memory data and on-chip communica-
tion during the execution phase of the GPU occur on the
same resources (shared) as those used by the ASIL-D MCU
and hence, they are naturally protected by specific Error Cor-
recting Codes (ECCs). Additionally, communications between
the memory subsystem, the microcontroller and the GPU
must be ECC/CRC (Cyclic Redundant Check) protected to
guarantee diverse redundancy also on the communication side.
A schematic of the proposed hardware platform is showed on
Figure 2.

As explained before, such a platform is needed for AD
systems and has some specific constraints on the GPU: (1)

GPU core

/
. . EIIIIIIIiIIII
: AiEEEEEEEEEEE
; INEEEEEEEEEE
AN
0 OR - ANEEEEE .
: AEEEEEEEEEEE

Reliable Interconnect
Memory
Subsystem

Fig. 2: Proposed computing platform architecture (simplified).

it must provide diverse redundancy, (2) TMR is needed to
achieve quick error recovery as needed for some time-critical
applications, and (3) everything needs to occur within a single
GPU for efficiency and reliability reasons.

In this work, we assess to what extent such diverse TMR
execution on COTS GPUs can be achieved by software means
only to understand whether some hardware support is needed,
which would likely be more efficient. Nevertheless, our so-
lution offers the flexibility to be used on COTS GPUs with
the aim of avoiding redesigning costs and, potentially, being
used on any GPU. For that purpose, we take advantage of the
already intrinsic redundant design of the GPUs, whose some
relevant aspects for our work we analyze next.

B. Relevant GPU Features

Since different components have different names across
GPU vendors, we adhere to NVIDIA nomenclature for the
sake of simplicity (and because NVIDIA already targets the
automotive domain [7]), but concepts apply to virtually any
COTS high-performance GPU.

Figure 2 shows a schematic of the main GPU components
relevant for this discussion. GPUs contain multiple Streaming
Multiprocessors (SM) (SM; to SM, in the figure). Each
one contains the same number of CUDA cores, load/store
units and other complex cores. For the sake of the discussion
we group them all as simply cores. SMs also contain other
internal resources such as a shared memory, register files and
an internal scheduler among other components. The GPU also
contains other resources that are shared across SMs, such
as a second level cache (L2), DRAM interfaces and other
interfaces, as well as a kernel scheduler.

The CPU dispatches kernels to the GPU, these kernels are
dispatched from the kernel scheduler to SMs. Each kernel
consists of a number of thread blocks, the kernel scheduler
assigns thread blocks to the SMs. When a thread block is
assigned to an SM, it is bound to that SM for its entire
execution and cannot be migrated, and multiple thread blocks
from the same kernel can coexist in the same SM if there
are enough resources. However, we assume that at most one
kernel can use an SM simultaneously, since removing this
constraint increases hardware complexity and performance
gains achievable are limited with such fine grain changes.
In any case, how thread blocks are scheduled to SMs is an
undisclosed feature for the main GPU vendors in general, and
NVIDIA in particular.

Thread Block

1 2 3 4 5

Kernel 1

Kernel 1

[CUCEG 1 2 3 4 5

GPU
B B 1
2 2
3
TELE
5 4 “im

Fig. 3: Spatial and time redundancy in a GPU execution.
Three redundant kernels that contain 5 thread blocks each are
scheduled in a 8 SM GPU.

CPU | | R (rmER (EM

=
g
S
°
)
<
[*3
n
o
=
3
~

C. Enabling GPU ASIL-D Operation with Software-only Di-
verse TMR

To implement our software-only diverse TMR solution on
the GPU, we use as SoR granularity the GPU kernel, in
line with our previous work [9]. This facilitates generating
TMR versions automatically — although we perform such
process manually for our evaluation — by replicating inputs
and comparing outputs. Note that output variables (as well
as input/output variables) need to be replicated to allow
for redundant executions and comparisons. Memory transfers
between the CPU and the GPU (e.g. cudaMemCpy in CUDA)
are also replicated.

By launching each redundant kernel using a different CUDA
Stream, this allows them to execute in parallel (with some
staggering). This is a key point to obtain the physical redun-
dancy, which means ensuring that same computations from
the redundant executions are performed in different hardware.
As we showed in [9], when multiple kernels are executed
using different CUDA Streams at the same time in the GPU,
different SMs are allocated to each kernel. This solution splits
the computational resources across redundant kernels. Hence,
redundant thread blocks are assigned to different SMs as
illustrated in Figure 3. Upon an error affecting one redundant
execution, fault-tolerance is still preserved. Note that data
replication and computation occur in the ASIL-D MCU, thus
being already safety compliant. Also, if an error prevents
one redundant kernel from finishing, the MCU will detect
such circumstance and will provide correct results as long
as the other two redundant kernels complete their fault-free
execution.

Regarding staggering, which we require to be able to avoid
CCFs from affecting more than one redundant execution
in the same way, it is achieved automatically due to the
serial offloading process on the GPU performed by the CPU.
Therefore, kernels are launched one after the other even though
they can coexist in the GPU. In particular, when launching
a kernel from the CUDA programming model, the CUDA
Runtime thread needs to perform several tasks to offload the
kernel to the GPU. Later on, in the Evaluation section we
deepen on this aspect.

Finally, results are transferred back to the MCU which
performs a majority voter algorithm to determine the correct
one. Such comparison could also be done faster in the GPU
side, but it should be performed in TMR for fault-tolerance

reasons. Thus, for the sake of simplicity and due to the
relatively short time to perform such process, we perform it
in the MCU side.

D. Diversity Limitations: from DMR to TMR

In our previous work for diverse DMR [9], we identified
two main sources of CCFs that cannot be avoided with our
software only solution. The first type relates to physical layout
effects that may make some specific mask patterns be prone to
faults. Since all SMs are, in general, identical, errors induced
by layout effects may produce the same error in all redundant
copies despite occurring in different SMs at different times.
Note, however, that having these effects manifesting for the
first time almost simultaneously, and causing exactly the same
effects in two different physical locations in the chip is
unlikely. This relates to effects like process variation, both
random and systematic, that may affect different locations
differently. In the case of TMR, having three such almost
simultaneous first manifestations is even more unlikely to
occur. Hence, while this CCF is not avoided completely, TMR
is expected to be much less exposed to it than DMR.

The second source of CCFs relates to the use of non-
redundant components such as the kernel scheduler, which is
unique in GPUs. The serial offloading of the kernels brings
some diversity, as well as the fact that the second kernel may
find a different scheduler state to that of the first kernel, thus
reducing the chances of a fault causing identical errors in both
kernels for DMR. In the case of TMR, as for the case of
layout effects, the use of 3 redundant copies instead of 2,
further decreases the chances of this type of CCF. However, it
is not completely avoided and, as in the case of layout effects,
hardware support is convenient to guarantee that CCFs are

avoided. IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

We build on Pascal-based NVIDIA GPUs for our evaluation,
whose architecture is analogous to that of NVIDIA PX2
AutoChauffer ones used in some cars. The latter are only
available to some NVIDIA automotive partners. While not
restricted to any particular GPU, we use for our evaluation
an NVIDIA GeForce GTX 1080 Ti GPU including 28 SMs
with 128 CUDA cores each, and 11GB of GDDR5 memory.
On the CPU side, we use an AMD Ryzen 1800X 8-core CPU
with 64GB of memory.

Since we lack appropriate AD benchmarks for our eval-
uvation, we use the Rodinia Benchmark Suite [14], [15],
often used for GPGPU assessment. Rodinia includes relevant
kernels for AD such as those for image processing and pattern
recognition.

As explained before, we implement TMR by manually
tripling memory allocations, data transfers, and kernel of-
floading, and performing the output comparison back in the
CPU side. Part of our future work involves creating an auto-
matic framework to generate diverse DMR and TMR kernels
automatically. Note that no fault injection has been done
since TMR is known to tolerate any fault affecting a single
redundant instance. Instead, the objective of our evaluation is
assessing the execution time impact of implementing software-
only diverse TMR in GPUs.

Results are shown in Figure 4. As we can observe, TMR
increases execution time w.r.t. DMR, as expected. However,
while DMR causes a nearly-linear slowdown w.r.t. the baseline
execution time, TMR generally leads to execution times clearly
below 3X w.r.t. the non-redundant case. Further investigation
reveals that some relatively low contention causes a large
impact, and additional contention has a lower impact mostly
due to further serialization of the execution.

B. Slack Measurements Results

We have analyzed how serial kernel offloading favors stag-
gering. The sub-procedures that are executed during kernel
offloading are: Configure Call, Kernel Setup Arguments and
CUDALaunch. We executed 100 times an application from
the Rodinia Benchmark Suite (myocyte) modified to use
redundant kernel execution and collected measurements using
the NVIDIA Profiler (see Figure 5). The line on the top is the
slack observed from the start of the first kernel until the start of
the second (redundant) kernel, while the stacked bars are the
sum of the sub-procedures executed by the CUDA Runtime in
the serial CPU when launching the second kernel. The small
discrepancy between both values is caused by the NVIDIA
profiler, which only provides the execution time of the CUDA
calls, neglecting some little CPU code executed in between.

Since each kernel launch on the GPU occurs after the
completion of these operations executed on the CPU, and CU-
DALaunch (the dominant call) has a nearly-constant kernel-
independent execution time cost, there will always be a
minimum staggering time of few microseconds (10us in this
particular example) across kernel start times, thus enabling
implicitly a staggering between redundant kernels. Due to
the intrinsics of CPU-GPU interaction, similar behavior is
expected for other GPUs based, for instance, on OpenCL.

C. Result Comparison

In order to guarantee that kernel executions on the GPU
are correct, a comparison must be done between redundant
kernel results in the lockstep MCU. Such comparison could
be parallelized and performed (redundantly) on the GPU. Still,
our results show that the comparison time is small (less than
1%) for most of the kernels, thus not making worth the effort
of porting the comparison to the GPU for most of them.

V. RELATED WORK

ASIL-D compliant MCUs implementing diverse DMR have
already been deployed in cars (e.g. Infineon AURIX [5] and
the ST Microelectronics SPC56XL70 [16]). However, DMR
recovery time may be prohibitive for some fail-operational
ASIL-D systems with relatively low FTTI [11]. Some works
aim at reducing error detection latencies in these systems by
exposing internal MCU contents periodically [17], whereas
others aim at reducing recovery latency by means of efficient
checkpointing and roll-back [18]. However, AD brings un-
precedented performance requirements for safety critical appli-
cations requiring safe HPC platforms for a timely and reliable
execution [19]. In this context, NVIDIA has recently disclosed
a fault-tolerant AD platform building on diverse TMR by
running AD software on the GPU, the CPU and an application-
specific accelerator [8]. However, such an approach involves
different software designs, thus tripling some design and V&V

3.5
3
2.5
2
1.5
1

0.5

0
backprop gaussian pathfinder srad b+tree

hotspot hotspot3D leukocyte

Original Kernel m Dual redundant Kernel

Triple Kernel

lud myocyte nw lavaMD bfs nn

Fig. 4: Execution time of diverse DMR and TMR normalized w.r.t. non-redundant execution.

18 I “‘Configure Call” of the redundant kernel
16 I “Kernel Setup Arguments” of the redundant kernel

Time (in ms)

N

R I I S I A I 2 U)

[—JCudalLaunch of the redundant Kernel
——Slack Time observed

"

YL HEREEEE RN RSP E® PP 8

Myocyte Executions

Fig. 5: Slack observed and subprocedures of the kernel launching for the consecutive executions of the Myocyte kernel

costs, which challenges the strict cost constraints in automotive
products. Thus, alternative solutions based on hardware and
software reuse (e.g. creating diversity by execution staggering)
are needed for AD workloads.

NVIDIA labs have released SASSIFI [20], an architecture-
level fault injection tool for GPUs based on SASSI [21], which
injects instrumentation code at assembly level. However, the
GPUs required in order to enable the use of the framework
are very limited. Thus, recently SASSI has been deprecated
and will be replaced by NVBit [22]. Part of our future work
is using NVBit whenever released to perform fault injection
campaigns to further verify the effectiveness of our approach.

Some works analyze the different power/performance trade-
offs for AD applications when using GPUs, FPGAs or ASIC
designs [23]. Their results show that each hardware paradigm
is an appropriate fit for at least some AD applications. How-
ever, GPUs have the advantage of being already deployed on
some commercial AD platforms [2], [6].

Redundancy (without diversity) has been widely studied
to deal with random independent faults due to, for instance,
radiation, building on time redundancy [24], [25], space redun-
dancy [26], [27] or both of them [28], even for GPUs [29],
[30]. However, those works, by not providing diversity, cannot
deal with most CCFs. To the best of our knowledge, only the
work in [31] provides some hardware support in the kernel
scheduler of GPUs to avoid CCFs. Differently to those works,
our work targets CCFs, which are of prominent importante in
safety-related automotive systems. In particular, our previous
work analyzes DMR solutions [9], while this paper considers
TMR ones.

VI. CONCLUSIONS

This paper analyzes the suitability of COTS GPUs to deliver
fault tolerance by implementing software-only diverse TMR,
thus extending our previous work on diverse DMR. Our
evaluation on a real GPU has shown the following:
(1) Execution times of the kernels were below 3x w.r.t. non-
redundant execution in all the cases, proving that the relative
costs of redundancy with TMR w.r.t. DMR are lower.
(2) Result comparison has low relative execution time w.r.t.
kernel execution, so MCUs can carry out this task.
(3) A minimum initial staggering (10us) between the redun-
dant executions is guaranteed by the different subprocedures
intrinsic of the CPU-GPU interaction for kernel offloading.

While staggering exists at kernel launching time, part of our
future work consists of studying to what extent staggering is
preserved during the entire kernel execution. Moreover, we are
also very interested on an updated version of SASSIFI, which
would allow us to perform fault injection campaigns in the
GPU to further validate our approach, and to generate evidence
supporting the lower error recovery overheads of TMR w.r.t.
DMR for our approach.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der grant agreement No 871467 (SELENE). Jaume Abella and
Leonidas Kosmidis have been partially supported by the Span-
ish Ministry of Economy and Competitiveness (MINECO)
under a Ramon y Cajal and a Juan de la Cierva Formacién
postdoctoral fellowship with numbers RYC-2013-14717 and
FICI-2017-34095 respectively.

[1]

[2

—

[3

[t

[4

=

[5

=

[6

[}

[7]

[8]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

SC Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: ACM, 2018, pp. 751-766. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173191

TESLA, “Full Self-Driving Hardware on All Cars,” https://www.tesla.
com/autopilot.

International Standards Organization, ISO/DIS 26262. Road Vehicles —
Functional Safety, 2009.

J. Espinosa et al., “Analysis and RTL Correlation of Instruction Set
Simulators for Automotive Microcontroller Robustness Verification,” in
DAC, 2015.

Infineon, “AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Gen-
erations,” 2012, http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2012/INFATV201205-040.html.

“RENESAS R-Car H3)” https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

D. Shapiro, “Introducing Xavier, the NVIDIA Al Supercomputer for the
Future of Autonomous Transportation,” NVIDIA blog, 2016. [Online].
Available: https://blogs.nvidia.com/blog/2016/09/28/xavier/

NVIDIA, “NVIDIA Announces World’s First Functionally Safe
Al Self-Driving Platform,” 2018, https://nvidianews.nvidia.com/news/

nvidia-announces-worlds-first-functionally- safe-ai- self-driving-platform.

S. Alcaide et al., “Software-only diverse redundancy on gpus for
autonomous driving platforms,” in 2019 IEEE 25th International Sym-
posium on On-Line Testing and Robust System Design (IOLTS), July
2019, pp. 90-96.

SAE International, J3016: Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems, 2014.

X. ITturbe et al., “Addressing Functional Safety Challenges in Au-
tonomous Vehicles with the Arm Triple Core Lock-Step (TCLS) Ar-
chitecture,” IEEE Design and Test, vol. 35, no. 3, pp. 1-1, 2018.

B. Venu et al., “A Fail-Functional Automotive CPU Subsystem Archi-
tecture for Mitigating Single Point of Failures,” in IEEE International
Workshop on Automotive Reliability and Test, 2017.

S. Alcaide et al., “DIMP: A low-Cost Diversity Metric based on circuit
Path analysis,” in DAC, 2017.

S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

, “A characterization of the Rodinia benchmark suite with compar-
ison to contemporary CMP workloads,” IISWC, 2010.
STMicroelectronics, “32-bit Power Architecture microcontroller for au-
tomotive SIL3/ASILD chassis and safety applications,” 2014.

C. Hernandez et al., “Timely Error Detection for Effective Recovery
in Light-Lockstep Automotive Systems,” IEEE TCAD, vol. 34, no. 11,
2015.

, “Low-cost checkpointing in automotive safety-relevant systems,”
in DATE, 2015.

ARM, “ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade,” 2015, https://www.arm.com/about/newsroom/

[26]

[27]
[28]
[29]

[30]

[31]

arm-expects-vehicle-compute- performance- to-increase- 100x-in-next-decade.

php.

SKS Hari et al., “Sassifi: An architecture-level fault injection tool
for gpu application resilience evaluation,” in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
April 2017.

M. Stephenson et al., “Flexible software profiling of gpu architectures,”
in 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), June 2015.

O. Villa et al., “Nvbit: A dynamic binary instrumentation framework
for nvidia gpus,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO °52, 2019.
[Online]. Available: http://doi.acm.org/10.1145/3352460.3358307

S. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in ASPLOS, 2018.

A. Mahmoud et al., “Optimizing software-directed instruction replication
for gpu error detection,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis,
2018. [Online]. Available: https://doi-org.recursos.biblioteca.upc.edu/
10.1109/SC.2018.00070

M. B. Sullivan et al., “Swapcodes: Error codes for hardware-software
cooperative gpu pipeline error detection,” in MICRO, 2018.

D. A. G. Oliveira et al., “Modern gpus radiation sensitivity evaluation
and mitigation through duplication with comparison,” IEEE Transactions
on Nuclear Science, vol. 61, no. 6, 2014.

M. Dimitrov et al., “Understanding software approaches for gpgpu
reliability,” in GPGPU, 2009.

J. Wadden et al., “Real-world design and evaluation of compiler-
managed gpu redundant multithreading,” in ISCA, 2014.

C. Kalra et al., “Performance evaluation of compiler-based software rmt
in an hsa environment,” 03 2016.

M. Gupta et al., “Compiler techniques to reduce the synchro-
nization overhead of gpu redundant multithreading,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2017,
pp. 1-6.

S. Alcaide et al., “High-integrity gpu designs for critical real-time auto-
motive systems,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019.

