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Abstract—This work presents BACGRAPH, a tool that extracts
relationships among configuration parameters of Building Au-
tomation and Control Systems (BACSs) implemented using the
BACnet protocol (ISO 16484-5). BACnet models these configura-
tion parameters as object data structures comprised of multiple
properties, some of which contain references to other objects.
Given the regular exchange of objects among devices, we leverage
these explicit references to build a graph of BACnet objects
exclusively from network traffic. We tested BACGRAPH using
traffic collected from a real building located at the University of
Twente. After analyzing 66.8 hours of traffic, the resulting graph
is comprised of 13,733 nodes and 3,169 edges. Such a graph
improves the system visibility that BACS administrators have
over their infrastructure, which is crucial for troubleshooting
and security.

I. INTRODUCTION

Building Automation and Control Systems (BACS) lie at the
core of smart-buildings. BACSs are control systems that use
sensors to collect information from the building and also have
the capability to influence the physical environment through
actuators (e.g., lights, pumps, valves, etc.) [1]. BACSs control
building services such as ventilation, heating, illumination,
and many more. Critical buildings such as airports and
hospitals are fully dependent on automated building services to
remain operational [2]. Thus, it is important to provide BACS
administrators with tools that help in the management process.

System visibility is a crucial aspect to successfully operate
BACSs. It allows BACS administrators to monitor what happens
in their infrastructure. BACSs visibility is typically achieved
using Supervisory Control and Data Acquisition (SCADA)
software, similar to that used in Industrial Control Systems
(ICSs). System visibility has long been acknowledged by the
ICSs community as an essential capability for troubleshooting
and security [3], [4].

BACSs can be implemented using a variety of industrial com-
munication protocols. Some of them, however, are specifically
tailored to meet the needs of the BACS domain. For example,
some BACS protocols have built-in functionality that make it
easier to handle lighting schedules, elevators, escalators, and
other common building services. In this work, we focus on
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the BACnet protocol, one of the most popular protocols in the
BACSs domain [5].

BACnet Protocol Overview. The Building Automation and
Control network (BACnet) protocol is an ASHRAE, ANSI, and
ISO 16484-5 standard [6]. BACnet spans through four layers
of a collapsed architecture that corresponds to the physical,
data link, network, and application layers of the OSI model.
Buildings automated using this protocol feature devices capable
of communicating with each other following the rules defined
in the BACnet standard.

The application layer of the BACnet protocol stores informa-
tion in predefined variables called BACnet properties, which
are in turn, encapsulated in predefined data structures called
BACnet objects. For example, sensor readings are stored in a
property called present-value, which could be within an Analog-
Input object if the sensor provides analog values, or within a
Binary-Input object if the sensor provides binary readings. By
aggregating different subsets of properties, BACnet has 60 built-
in objects that represent very high level abstractions such as the
Lighting-Output object, the Escalator object, and the Elevator
object. Moreover, the BACnet standard allows manufacturers to
include vendor-specific object types in their devices. However,
BACnet devices are required to implement only a subset of
these object types, depending on their profile (e.g., smart-
sensor, controller, router, etc.). BACnet devices typically store
many instances of the supported object types. For that reason,
each instance has a unique numeric identifier. BACnet devices
exchange information, in the form of BACnet objects, on a
regular basis. This information exchange through the network
allows the interoperability among different subsystems.

Most BACnet objects have properties that reference other
BACnet objects. Those explicit pointers establish specific
relationships among BACnet objects. However, the instanti-
ation of BACnet objects and their relationships is typically
hidden behind the programming environment used by BACS
administrators. Thus, the visibility of BACS administrators at
the application protocol level is limited.

Summary of our Contribution. We leverage (1) the rich
semantics of the application layer of the BACnet protocol; and
(2) the regular exchange of BACnet objects among devices,
to write a software that reads BACnet network traffic and
builds a graph data structure of BACnet objects and their
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relationships. We call our software BACGRAPH. The graph
produced by BACGRAPH enhances the overall visibility of
the system since it provides BACS administrators with a view
unavailable in SCADA software. In practice, the graph-based
view of the BACSs can help administrators to track the root
cause of problems during troubleshooting.

BACGRAPH relies exclusively on standard definitions of
the BACnet protocol. For that reason, it works on all BACnet
networks regardless of the devices’ brands and models. BAC-
GRAPH’s source code is freely available under the GNU/GPLv3
license (available at https://gitlab.com/bacgraph1/bacgraph).

Related Work. A variety of tools available on the market offer
visualization capabilities for BACnet networks. However, the
graphical capabilities in many of them is limited to a windows-
based Graphical User Interface (GUI) that shows a text-based
list of BACnet devices and their corresponding objects [7], [8],
[9]. These tools enable the manipulation of BACnet objects
and properties using their GUI. None of them, however, offers
a graphics-based visualization of network components such as
BACnet devices or BACnet objects.

Visual BACnet is a tool that offers more advanced graphical
visualizations but mostly about network traffic statistics [10].
It shows plots about network message types (e.g., broadcast,
unicast), histograms of the devices’ traffic, number of packets
observed over time, and others. However, this tool also lacks
a graphics-based visualization of network components. A
distinctive feature of Visual BACnet is that it works off-line by
analyzing previously captured network samples.

GRASSMARLIN is a passive network mapper developed by
the National Security Agency [11]. It analyzes network traffic
of diverse industrial control protocols, including BACnet. It is
capable to illustrate the network topology of physical devices
but does not provide visualizations of data at the BACnet
application layer.

To the best of our knowledge, BACGRAPH is the first tool
that takes advantage of BACnet object references to enhance
the visibility of BACnet networks.

II. BACGRAPH IMPLEMENTATION DETAILS

BACGRAPH is written in Python. BACGRAPH reads BACnet
network traffic captures using the pyshark library to dissect the
packets. It extracts information about BACnet objects – and
their references – and stores them in a Neo4j database [12].
Neo4j is a NoSQL database which uses instead the Cypher
Query Language. Using this language, it is possible to extract
specific parts of the graph. Moreover, the database clients,
available as desktop and web applications, have built-in graph
visualization capabilities. The handling of user queries and the
creation of graph visualizations are not part of BACGRAPH.

All BACnet object instances observed in the traffic become
nodes of the graph. Additionally, BACGRAPH looks for specific
properties in BACnet objects of certain types, which might
contain references to other object instances. These references
are used to create the edges of the graph. A deterministic Finite
State Machine (FSM) is implemented within BACGRAPH to

keep track of the current object instance (source of the edge)
and the referenced object instance (destination of the edge), if
any. An excerpt of the FSM is shown in Fig. 1.

A walk through the FSM starts with every network packet.
If a packet has data to be analyzed, the FSM transitions to
the (R)ead state. Once in the R state, the FSM reads the
packet in sequential order until it finds a BACnet object
instance. Such an object could be of any type, either standard
or vendor-specific. However, instances of most object types
rarely reference other object instances although they have the
properties to do so. BACGRAPH focuses on 5 object types
whose instances often contain references. Those object types
are: (S)chedule, (T)rend-Log, (L)oop, (E)vent-enrollment, and
(N)otification-class. Moreover, BACGRAPH also stores in the
database all (O)ther BACnet objects observed. The FSM defines
a state for each of those cases. From all object-related states, the
FSM can transition to other states triggered by the occurrence of
certain BACnet properties. Those properties contain references
to other object instances. Once the information about those
properties has been extracted, the FSM returns to the properties’
corresponding object state. These transitions (depicted in Fig. 1
with dashed lines) not only change the FSM state, but also
trigger the method that stores previously unknown information
in the database . For the sake of readability, Fig. 1 omits states
that look for additional information about BACnet objects to
enrich the graph and transitions that go from the object-related
states back to the R state. Next, we describe in detail the states
related to BACnet objects and their properties.

Schedule. This object type models a schedule of possibly
recurrent activities that must be executed by the BACS. For
example, turning the lights on at a certain time during work
days. Object instances of this type have one property that
might contain a list of pointers to other objects that must be
manipulated to accomplish the intended task. Such a property is
called list-of-object-property-references (loopr). If this property
is found, the FSM transitions to the S1 state to look for details
about the referenced objects.

Trend-Log. “A Trend-Log object monitors a property of a
referenced object and, when predefined conditions are met,
saves (“logs”) the value of the property and a timestamp in an
internal log buffer for subsequent retrieval” [6]. The referenced
object is stored in a property called Log-DeviceObjectProperty.
If it is found, then the FSM triggers the ldop transition to T1.

Loop. The Loop object allows the implementation of the closed
control loop programming pattern [13]. A loop is comprised
of tree basic components: a sensor, a setpoint, and an actuator.
It operates by continuously comparing current sensor readings
against the predefined setpoint and aims to minimize the
difference by influencing the physical process using the actuator.
The physical process could be e.g., temperature control, illumi-
nation control, etc. The Loop object type contains 3 properties
that reference its basic components: the controlled-variable-
reference (cvr) that points to the sensor; the manipulated-
variable-reference (mvr) that points to the actuator; and the
setpoint-reference (sr) that points to the setpoint.
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Figure 1. Simplified illustration of the Finite State Machine (FSM). It contains
the most important states and transitions to identify BACnet objects and
references in network traffic captures. We highlight with dashed lines the
transitions that cause previously unknown objects and references to be stored
in the database.

Event-Enrollment. In BACnet jargon, events typically refer
to changes in the values stored in BACnet properties. An
Event-Enrollment instance defines what constitutes an event
on arbitrary objects (e.g., a temperature increase of 5◦C). The
reference to the object and property being monitored by the
Event-Enrollment object is stored in a property called object-
property-reference (opr). If this property is found in an Event-
Enrollment instance, the FSM transitions from the E state to
the E1 state.

Notification-Class. This object provides a standardized way to
distribute event notifications within BACnet systems. Whenever
an event occurs, a Notification-Class object is transmitted to a
predefined list of devices stored in a property called recipient-
list (rl). Conveniently, BACnet has a standard Device object
type to be used, among other purposes, to specify recipients of
Notification-Class objects. Typically, among those recipients is
the SCADA software available in the network.

Others. Object instances that are not of the Schedule, Trend-
Log, Loop, Event-Enrollment, or Notification-Class types are
also stored in the database. In this case, the FSM looks for
a property called notification-class (we write it in lowercase
to distinguish it from the homonym BACnet object) which, as
expected, references Notification-class objects.

III. USING BACGRAPH

We collect BACnet traffic from the University of Twente
BACS. The network tap is located in the core switch of one
of the buildings, which allows to observe the traffic exchanged
among BACnet devices in this particular building. There are 4
general purpose BACS controllers in this building. The building
hosts 375 employees in 252 rooms. The time span of the traffic
collection is 66.8 hours. The traffic collection procedure is
passive; we do not introduce any messages to the network
during the collection period. The size of our dataset is 9.8 GB.

We executed BACGRAPH in a PC that features an AMD
Ryzen 5 1400 Quad-Core Processor @3.2 GHz and 8 GB
of RAM. It took BACGRAPH 40 minutes (wall-clock time)
to analyze the traffic. The resulting graph is comprised of
13,733 nodes (BACnet objects) and 3,169 edges (BACnet object

Table I
OBSERVED BACNET OBJECT TYPES AND THEIR NUMBER OF INSTANCES.

BACnet Object Type Count BACnet Object Type Count
Schedule 105 Event-Enrollment 350
Trend-Log 1,374 Notification-Class 379
Loop 94 Others 11,431

relationships). A break down of the object types observed in
the traffic is shown in Table I. The 5 specific object types for
which the FSM has a dedicated state add up to 2,302 object
instances whereas the vast majority are other types of objects
(11,431 instances). Out of those 11,431 instances, 9,918 belong
to 12 standard object types and 1,513 to 22 vendor-specific
object types. Since the definition of vendor-specific objects is
out of the standard, the current BACGRAPH implementation
does not look for any properties in them. However, vendor-
specific objects are stored in the database as well, typically as
isolated nodes.

To evaluate BACGRAPH’s success in discovering object
instances from network traffic, we look at engineering docu-
ments listing the object instances stored in BACnet controllers.
According to those documents, there are 11,293 object instances
stored in the building’s controllers. There are two main reasons
that explain why BACGRAPH found a larger amount of
objects in the network. The first reason is that the engineering
documents only include object instances of standard types and
not of proprietary object types. The second reason is that there
are other BACnet devices in the network that are not controllers
(e.g., routers and other device profiles), all of which exchange
BACnet objects in the network on a regular basis. Although
we do not have an absolute ground truth about how many
object instances are stored in the building BACS, our results
suggest that the graph comprises most of the expected nodes.
To ensure graph completeness in terms of object instances, an
active elicitation of BACnet objects from all devices is needed.

An important feature of the automatically generated graph is
to remain up-to-date. Whenever new objects and references are
created, they will likely be observed in the network and added
to the database. In the case of deleted objects and references,
such changes must also be reflected in the graph. To do so,
BACGRAPH keeps two timestamps for each node and reference.
The first timestamp records the creation time i.e., the first time
that it was observed; and the second timestamp records the
last time that it was observed. The second timestamp can be
used to determine when a node or reference is stale and should,
therefore, be removed from the graph.

SCADA software provides a physical oriented view of the
BACS. Fig. 2a shows a heating module as seen on the SCADA
software. The radiator shown takes hot water from the pipe
on top and, after heating up the environment, exhausts colder
water through the pipe at the bottom. Moreover, there is a
valve that mixes hot water coming from the building’s boiler
(not shown in the picture) and the radiator’s exhaust pipe. The
proportion of hot and cold water in the mix is determined by
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(a) View from the SCADA soft-
ware.

(b) View from the graph database
client.

Figure 2. The same heating module as seen on the SCADA software (a) and
the BACnet objects graph (b).

a pre-established setpoint. The temperature sensor shown in
the figure measures whether the current water mix is at the
setpoint value. Otherwise, the valve has to be adjusted.

BACnet object graphs provide a configuration oriented view
of the BACS. Fig. 2b depicts an excerpt of the graph extracted
exclusively from network traffic. The image shows the nodes
that represent the valve and the temperature sensor in Fig. 2a.
Moreover, it shows the setpoint and the Loop object that
controls the valve. Since the setpoint and loop are part of
the BACS configuration instead of physical components, they
are typically not shown in the SCADA view by default. On
the other hand, the radiator is not shown in the graph because
its modeling is not needed as part of the BACS configuration.
It is worth noting that Fig. 2b also depicts the context in
which the heating module is involved. All the other nodes
shown in the graph are part of different modules in the same
subsystem. This context improves the system visibility since
the configuration dependencies among different components
are explicitly shown.

BACnet object graphs can help BACS administrators to
identify problems in their infrastructures. In real BACSs, it
is common to find components that are shared by multiple
modules. SCADA software typically displays the hardware
components used in each module, but not their role in other
modules. Whenever atypical behavior is observed in different
modules, a graph-based view of the BACS can help to quickly
identify the possible root cause of the problem (e.g., a common
ancestor in the graph).

IV. CONCLUSION

System visibility is a desirable property in Building Au-
tomation and Control Systems (BACSs). Although SCADA
software provides a view of the system emphasizing the
physical components, configuration components typically suffer
from: (1) lack of visibility since they are difficult to find among
multiple menus; and (2) lack of context since they are shown
in isolation.

In this work, we have presented BACGRAPH, a tool that
creates graphs of related BACnet objects. The graphical display

of such graphs enhances the visibility of the configuration
components of BACSs implemented using the BACnet protocol.
Moreover, the links between nodes provide the context needed
to better understand the role that each of them plays in the
infrastructure. Our graphs are generated in a fully automated
way using exclusively network traffic. We believe that the BACS
visibility provided by BACGRAPH at the configuration level is
complementary, and not a replacement, to the visibility provided
by SCADA software that focuses on physical components.

Our experience using BACGRAPH shows that close-to-
complete graphs are created in short time. Using approximately
3 days of passively collected traffic, we created a graph
comprised of 13,733 nodes and 3,169 edges. However, a faster
graph creation is possible by actively eliciting BACnet objects
and properties from all the devices in the network.

Although the traffic processing speed is primarily determined
by the protocol dissector (not part of our contribution), we
showed that BACGRAPH can analyze traffic collected during
66.8 hours in approximately 40 minutes, using modest hardware
resources. This is relevant because it indicates the feasibility
to analyze live traffic.

For future work, we plan to use BACGRAPH as the core
component of a monitoring tool that looks for modifications
in BACS graphs using live traffic. Keeping track of changes
in BACS graphs is important because they could be a sign of
unintended misconfiguration or active attacks on BACSs.
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