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Abstract—Process Control Systems (PCSs) are the operat-
ing core of Critical Infrastructures (CIs). As such, anomaly
detection has been an active research field to ensure CI
normal operation. Previous approaches have leveraged network
level data for anomaly detection, or have disregarded the
existence of process disturbances, thus opening the possibility
of mislabelling disturbances as attacks and vice versa. In this
paper we present an anomaly detection and diagnostic system
based on Multivariate Statistical Process Control (MSPC), that
aims to distinguish between attacks and disturbances. For this
end, we expand traditional MSPC to monitor process level
and controller level data. We evaluate our approach using the
Tennessee-Eastman process. Results show that our approach
can be used to distinguish disturbances from intrusions to a
certain extent and we conclude that the proposed approach can
be extended with other sources of data for improving results.

Keywords-Process control systems, Multivariate Statistical
Process Control, Tennessee-Eastman,

I. INTRODUCTION

Process Control Systems (PCSs) are at the core of Critical

Infrastructures (CIs), as they control, automate and monitor

most of the processes that power modern societies. Power

generation, transport, critical manufacturing, water treatment

and fuel transport are some examples of CIs. As such, it

is necessary to protect PCSs and related assets in order to

ensure the correct functioning of modern societies.

This necessity has been further revealed by the existence

of security incidents directly related to PCSs where skilled

attackers disturbed normal functioning of PCSs, affecting

the surrounding environment, some of them concerning CIs.

Examples of successful cyber-attacks involving PCSs with

physical impact include Stuxnet [1] and the German Steel

Plant incident [2].

Consequently, PCS security has been the object of con-

siderable research attention, specially in the development

of novel security mechanisms. Among these mechanisms,

Anomaly Detection Systems (ADSs) have a prominent

space. The predictable and static nature of PCSs make them

suitable candidates for anomaly detection [3]. However,

when detecting a particular anomalous event in PCSs, the

factors that cause it can be diverse. These factors can

be classified in two large sets: process disturbances or

malfunctioning, and attacks or intrusions.

In this paper we analyze the limitation and possibilities of

distinguishing process disturbances and intrusions by using

Multivariate Statistical Process Control (MSPC) in a process

agnostic manner.

The rest of the paper is organized as follows: Section II

presents related works in the literature. Section III introduces

Multivariate Statistical Process Control. Section IV outlines

our approach while Section V evaluates it experimentally.

Finally, Sections VI and VII extract some conclusions and

draw some lines for further work, respectively.

II. RELATED WORK

Anomaly detection in PCSs and industrial environments

in general has gathered wide attention from the scientific

community.

While most of the approaches leverage network level data

to detect anomalies in PCSs (see survey [3]), other proposals,

such as ours, address this task by leveraging process and

sensor-level data.

When dealing with process level data, proposals can

be further classified in two subgroups: (1) solutions that

require a model of the monitored process to detect anomalies

and (2) approaches where modelling the process is not

necessary. Process model dependant contributions include

the work of McEvoy and Wolthusen [4] and Svendsen

and Wolthusen [5]. While effective to detect anomalies,

these approaches require accurate modelling of the physical

process. This requirement poses an important obstacle for
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Figure 1. Example of a control chart. Control limits are presented for 95%
(lower dashed line) and for a 99% (upper dashed line) confidence levels

implementing detection systems of this nature, especially in

complex processes. More process-independent approaches

on the other hand, include the work of Kiss et al. [6] and

Krotofil et al. [7].

Kiss et al. [6] present an anomaly detection technique

based on the Gaussian mixture model clustering of the

sensor-level observations. Later, they use silhouette examina-

tions to interpret the results. Nevertheless, they only consider

attacks as possible factors for abnormal situations in the

process, without considering process faults or disturbances.

Therefore, process related anomalies could be mislabeled as

attacks and vice versa.

Krotofil et al. [7] propose a method to detect when

attackers tamper with sensor signals. To this end, they use

entropy to detect inconsistent sensor signals among a cluster

of correlated signals. Although they consider scenarios with

process disturbances, there is no direct comparison between

tampered sensor signals and similar process disturbances.

In this approach, we go beyond the state of the art by

presenting a novel security anomaly detection and diagnosis

technique for PCSs. Additionally, we also analyze the effect

of process disturbances and its effect when detecting security

anomalies.

III. MULTIVARIATE STATISTICAL PROCESS CONTROL

Multivariate Statistical Process Control (MSPC) [8] is a

process monitoring methodology that relies on the use of

multivariate control charts to detect unexpected changes in

the monitored process.

Figure 1 shows an example of a control chart. Under

normal process operating conditions, 99% of all the points

will fall under the upper control limit. In that case, we

consider that the process is in a state of statistical control.
It is important not to confuse the term statistical control

with other similar terms, such as automatic feedback control,

as they refer to different concepts. Statistical control refers

to the state of the process where only common causes of

variation are present [8].

The existence of consistent observation series over the

established control limit, is likely to be attributed to a new

special cause. In the case of PCSs, this variation source

may be attributed to attacks or process disturbances, i.e. an

anomaly.

By using tools such as Principal Component Analysis

(PCA), MSPC provides an efficient methodology to monitor

variable magnitude and relation to other variables.

A. PCA-based MSPC

Let us consider process historical data as an X =
N × M two-dimensional dataset, where M variables are

measured for N observations. PCA transforms the original

M -dimensional variable space into a new subspace where

variance is maximal. It converts the original variables into a

new set of uncorrelated variables (generally fewer in num-

ber), called Principal Components (PCs) or Latent Variables.

For a mean-centered and auto-scaled1 X and A principal

components, PCA follows the next expression:

X = TAPt
A +EA (1)

where TA is the N × A score matrix, that is, the original

observations represented according to the new subspace;

Pt
A is the M × A loading matrix, representing the linear

combination of the original variables that form each of the

PCs; finally, EA is the N ×M matrix of residuals.

In PCA-based MSPC, both the scores and the residuals are

monitored, each in a separate control chart [9]. On the one

hand, to comprise the scores, the D-statistic or Hotelling’s

T 2 [10] is monitored. On the other hand, in the case of the

residuals, the chosen statistic is the Q-statistic or SPE [11].

D and Q statistics are computed for each of the ob-

servations in the calibration data, and control limits are

set for each of the two charts. Later, these statistics are

also computed for incoming data and plotted in the control

chart. When an unexpected change occurs in one (or more)

of the original measured M variables, one (or both) of

these statistics will go beyond control limits. Thus, a M -

dimensional monitoring scenario is effectively converted into

a two-dimensional one.

In this work, we consider an event as anomalous when

three consecutive observations surpass the 99% confidence

level control limit.

Once an anomaly has been detected, we use oMEDA

plots [12] to diagnose the anomaly causes by relating anoma-

lous events to the original variables. In essence, oMEDA

plots are bar plots where the highest or lowest values in

a set of variables reflect their contribution to a group of

observations. Therefore, when computed on a group of

observations within an anomalous event, the most relevant

variables related to that particular event will be the ones with

the highest and lowest bars.

1Normalized to zero mean and unit variance
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Figure 2. Example of a PCS and used attack model.

IV. PROPOSED APPROACH

Figure 2 shows an example of a PCS. At the core of the

system resides a physical process, with a fixed number of

sensors and actuators. These sensors and actuators are the

input/output devices that controllers use to interact with the

process. Controllers read process data from the sensors, and

according to the control algorithm implemented in them,

they decide what is the next step to be performed on the

actuators. Once the actuators change, the process evolves

and with it, the sensor reading. Then, sensor data is fed to

the controllers again, thus repeating the steps.

However, the communication between process controllers

and sensor/actuators is often performed over insecure trans-

mission lines, frequently using unencrypted, unauthenti-

cated, legacy protocols. Thus, it is possible for an attacker

to interact with the communication, performing Man-in-the-

Middle (MitM) attacks.

This can lead to situations where the data fed to the

controller is not the real read by the sensors, or that the

actuators receive data that was not sent as such by the

controllers.

In this work we use MSPC over a simulated industrial

process, the Tennessee-Eastman [13], to detect anomalies

and diagnose their cause distinguishing between natural

(disturbances) and human induced (attacks) factors.

A. Tennessee-Eastman process

The Tennessee-Eastman (TE) process is a well-known

challenge process, modeled after a real chemical process.

First presented by Downs and Vogel [13], it has been

widely used by researchers to test different control strategies.

Though initially designed as a process control challenge,

the TE process has also become a prominent choice among

security research works [4], [14], [7], [6].

In this work we use Ricker’s [15] decentralized control

strategy, along with the added randomness model by Krotofil
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(b) Attack on XMV(3)

Figure 3. Comparison of the evolution of XMEAS(1) under disturbance
IDV(6) or an integrity attack on XMV(3).

et al. [7].

The TE model has 41 measured variables (XMEAS), 12

manipulated variables (XMV) and 20 process disturbances

(IDV) implemented. For a full description of the variables

and disturbances, refer to [13]. The XMEAS are read by

the controllers, and interact by setting values to the XMVs.

Compared to the simplified Figure 2, XMEAS variables

correspond to the sensor readings and XMVs to the actuator

settings. Process disturbances are unexpected and undesired

changes in process conditions that can affect process normal

operation.

Out of the modelled disturbances, IDV(6) is one of the

most difficult to handle. It models a loss of reactant in an

input feed (Feed A).

The input flux of feed A is measured by XMEAS(1),

whereas XMV(3) is the manipulated that controls the valve

of feed A. Therefore, it is to be expected that attacks on

closing the valve XMV(3) and the existence of disturbance

IDV(6), will affect similarly to XMEAS(1).

Figure 3 shows both situations. When monitoring

XMEAS(1), there is almost no difference between IDV(6)

and an integrity attack on XMV(3) where the attacker

commands closing the valve controlling feed A, as the flow

decreases abruptly in both cases. Both the disturbance and

the attack occur at the tenth hour. After 17 hours and 43

minutes, the process shuts down in both cases as the stripper

liquid level becomes too low to continue safe operation of

the plant.

Having a process disturbance and a potential attack on a

process variable that react almost identically with the process

provides a sound setup to test the performance of techniques

that try to distinguish them.

B. Adversary modelling

The adversary and attack models considered in this sce-

nario are the ones proposed by Krotofil et al. [7].

We consider that the adversary is able to read and manip-

ulate network traffic, between controllers and the physical

process as depicted in Figure 2.

Therefore, the attacker is capable of manipulating input

data both at the controllers’ (forged XMEAS data) and/or
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the physical process’ (forged XMV data) end, performing

an integrity attack.

Following the model of Krotofil et al. [7], we consider

an attacked variable Y ′
i (t) at time t, 0 ≤ t ≤ T as follows,

where T is the duration of the simulation and Ta the arbitrary

attack interval. An integrity attack is defined as follows:

Y ′
i (t) =

{
Yi(t), for t /∈ Ta

Y a
i (t), for t ∈ Ta

(2)

where Y a
i (t) is the modified variable value injected by the

attacker.

Similarly, during DoS, the attacker effectively stops com-

munication, and no communication reaches the actuator or

the controller. Krotofil et al. [7] define as a DoS attack

starting at ta as:

Y a
i (t) = Yi(ta − 1) (3)

where Y a
i is the last value received before the DoS attacks.

V. EXPERIMENTAL RESULTS

In order to evaluate our approach, we conduct a set of

experiments where the randomized TE model is run ten

times per anomalous situation. The model we used for the set

of experiments is the DVCP-TE model presented by Krotofil

and Larsen [16], freely available on Github2. The time length

of each simulation is 72 hours, except in the cases where

the process shut itself down due to safety constraints. For

each simulation hour, variable data is recorded 2000 times,

that is, every 1.75 seconds. Calibration data consists of 30

runs, and this data is used to build the MSPC model and

establish the control limits of the D and Q statistics.

All anomalies start at the 10th hour of simulation. For

each of the anomalous situations, we calculate the Average

Run Length (ARL), that refers to the lapsed time between

the start of the anomalous event and its detection in the

control charts. As previously stated, an event is flagged as

anomalous when three consecutive observations surpass the

99% control limit.

Once an anomaly is flagged, oMEDA charts are computed

for the set of the first observations that surpass control limits

in each of the ten runs in either of the two control charts

(monitoring D and Q-statistic).

For each anomalous event two plots are created, one with

real process data (data the process receives and sends), and

the other with controller level data. Both data sets will be

identical in case of an attack free environment. But, in the

case of attacks, both data sets will diverge.

For the analysis of the process data, and plotting purposes,

we used the MEDA toolbox [9].

2http://github.com/satejnik/DVCP-TE

We set four different scenarios: a) Disturbance IDV(6),

b) Integrity attack on XMV(3), c) Integrity attack on

XMEAS(1), and d) Denial of Service on XMV(3).

Resultant oMEDA for controller level and process level

variables are shown in Figures 4 and 5, respectively.

Figures 4a and 5a show the oMEDA charts for the case

of disturbance. As the A feed level is much lower than

expected, XMEAS(1) stands out as the major contributing

variable to this anomaly in both levels.

Figures 4b and 5b show the oMEDA charts for the case

of where the attacker performs and attack and closes the

valve of feed A. In this case, from the controllers point of

view, the anomaly is similar to the one with IDV(6). It is

when we look at process-level data that we see that the real

concerned variable is not XMEAS(1). Rather, the attacker

is manipulating XMV(3) to perform the attack.

Figures 4c and 5c shows the oMEDA plots of an scenario

where the attacker manipulates the XMEAS(1) variable

and sets it to zero. Therefore, the controller receives the

information that there is no flow in Feed A. That is why the

XMEAS(1) value from the controller point of view is lower

than usual, because the attacker has set it so. As the control

algorithm tries to tackle the situation, it opens XMV(3)

more, and thus flowing more reactant A to the process. From

the process point of view, that is the reason XMV(3) and

XMEAS(1) have higher values than usual.

oMEDA plots for a DoS attack on XMV(3) are shown

in Figures 4d and 5d. In this scenario, the process keeps

receiving a constant value, previous to the attack. Neither of

the oMEDA plots show a variable, let alone XMV(3) that

stands out clearly among others. It is worth noting that the

ARL, on the other cases almost immediate, in DoS attacks is

significantly higher. In this case, DoS detection takes almost

an hour.

A. Discussion

Our approach detects all anomalous situations of distur-

bances and attacks.

However, when diagnosing an anomaly, controller-based

readings –on witch traditional MSPC has relied on– are not

enough to do so correctly. Both integrity attacks and the

process disturbance are diagnosed in a very similar way, in

a manner that it is not feasible to distinguish what caused

the anomaly.

To address this matter, we have extended the MSPC model

and measure both process and controller level variables.

Having this two level input makes possible monitoring a

wide range of process variables. Moreover, when anomalies

occur, it is possible to distinguish the origin of the anomaly.

When considering DoS attacks, the ARL is significantly

longer than with integrity attacks or process disturbances

and the diagnosis is not as clear as in the other scenarios.
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Figure 4. oMEDA plots of different anomalies from the controller point of view
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Figure 5. oMEDA plots of different anomalies from the process point of view

VI. CONCLUSIONS

We have presented a process-independent approach to

detect and distinguish process disturbances from related

attacks. Unlike previous approaches, it is not a process-

dependant approach and it is able distinguish between dis-
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turbances and attacks.

Our methodology is based on MSPC for anomaly detec-

tion and oMEDA plots for anomaly diagnosis. We have used

the popular Tennessee-Eastman process to experimentally

evaluate our approach.

Distinguishing process disturbances and low level attacks

in PCSs is a complex task, especially if all controller’s I/O

are to be considered compromised.

We extended the traditional MSPC model to monitor

both controller and process level variables, to efficiently

monitor PCSs. Often, PCSs assign measured variables to

the manipulated ones, so this approach is feasible in these

environments. This scenario, would also complicate the work

of an attacker, as it would need to forge both the target

manipulated variable and the associated measured one to

avoid detection.

When analyzing process disturbances or integrity attacks,

the oMEDA plots clearly show the implicated variables. In

the case of DoS, detection time is significantly longer and

the diagnosis with oMEDA is not related to the attacked

variable.

VII. FUTURE WORK

To overcome current anomaly diagnosis limitations, it is

necessary to add more information to the MSPC model.

In the case of PCSs, a promising source of additional

information is the one created at the network level (packets,

flows, logs etc.).

MSPC-like methodologies have already been used in regu-

lar IT networked environments for security monitoring [17].

We are confident that adding network-level variables to

the ones of the process will ease anomaly diagnosis (e.g.

by detecting increased traffic in the case of network DoS

attacks) and will also shorten the ARL required to detect

anomalies, as while the process might be slow to surpass

control limits due to slow dynamics, network variables show

more immediate information.
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