
CC-BY 4.0. This is the author’s version of the work. The definitive version is published in the proceedings of the
2018 1st DSN Workshop on Byzantine Consensus and Resilient Blockchains (DSN-W/BCRB’18).

Towards Low-Latency Byzantine Agreement
Protocols Using RDMA

Signe Rüsch
TU Braunschweig, Germany

ruesch@ibr.cs.tu-bs.de

Ines Messadi
TU Braunschweig, Germany

messadi@ibr.cs.tu-bs.de

Rüdiger Kapitza
TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

Abstract—Byzantine fault tolerance (BFT) protocols can miti-
gate attacks and errors and are increasingly investigated as con-
sensus protocols in blockchains. However, they are traditionally
considered costly in terms of message complexity and latency due
to the required multiple rounds of message exchanges. With the
availability of Remote Direct Memory Access (RDMA) in data
centers, message exchange latency can be reduced compared to
TCP, as RDMA enables kernel bypassing and thereby avoids
intermediate data copying. Retaining the performance benefits
for RDMA during its integration, however, is non-trivial and
error-prone. While the use of RDMA has previously been
explored for key/value stores, databases and distributed file
systems, agreement protocols especially for BFT have so far been
neglected. We investigate the usage of RDMA in the Reptor BFT
protocol for low-latency agreement and show first steps towards
an RDMA-enabled consensus protocol. For this, we present
RUBIN, a framework offering similar functionality to the Java
NIO selector, which can handle multiple network connections
efficiently with a single thread and is employed in several BFT
protocol implementations such as BFT-SMART and UpRight.

Index Terms—Byzantine Fault Tolerance, Remote Direct Mem-
ory Access, Blockchain Consensus

I. INTRODUCTION

In recent years, the popularity of cryptocurrencies has
increased immensely, the most prominent examples being
Bitcoin and Ethereum. They operate on a blockchain, i. e. a
chain of blocks containing ordered transactions. These blocks
are linked together as each block includes the cryptographic
hash of the previous one. This prevents manipulation as any
changes of the hash would be immediately noticed. However,
most blockchain platforms are still severely limited with regard
to throughput, i. e. the number of processed transactions per
second (tps): in Bitcoin, the maximum throughput is 7tps and
the latency, i. e. the time until a transaction is processed (also
called “confirmation time”), is one hour. This is influenced by
the employed consensus protocol: Bitcoin uses Proof-of-Work
(PoW), in which miners try to create a block where the block’s
hash is below a certain threshold. As all other miners race to
solve this cryptographic puzzle while only one block is finally
accepted, this leads to a large amount of wasted computational
power. Additionally, the energy consumed during this compu-
tation is estimated to be higher than that of the Republic of
Ireland [1].

Acknowledgments: The authors thank the anonymous reviewers for their
valuable feedback. This research was supported by the German Research
Council (DFG) under grant no. KA 3171/1-2.

As a countermeasure, some blockchains employ different
consensus protocols. One class are Proof-of-Stake (PoS) proto-
cols, where the user’s economic stake in the network influences
the decision whether she can propose the next block. The
other prominent class of consensus protocols are Byzantine
agreement protocols, in which a group of replicas tries to reach
a consensus on the execution order and result of client requests
although a subset of these replicas may behave arbitrarily
faulty or maliciously. However, in a group of 3f + 1 replicas
where a majority of nodes behaves correctly, the agreement
scheme can tolerate up to f faulty nodes. BFT protocols are
especially well-suited for permissioned blockchains, where all
participants are known, their number is relatively stable, and
access to the blockchain is regulated. They are often used
e. g. for Supply Chain Management (SCM). Tendermint [2]
is one example of a permissioned blockchain that employs
a BFT protocol. Some recent approaches also employ BFT
protocols in permissionless blockchains, e. g. Algorand [3] and
HoneyBadgerBFT [4]. BFT protocols offer several advantages
compared to PoW: they guarantee consensus finality, i. e.
a block that has been appended to the chain cannot be
invalidated due to forks, and offer higher throughput and lower
latency [5].

Generally, protocols assuming a fail-stop approach are often
simpler to integrate, as BFT protocols still introduce a higher
complexity compared to their crash-tolerant counterparts. BFT
also requires more messages to be exchanged, which limits
scalability especially if more than the minimal number of
faults are to be tolerated. Reducing BFT’s high latency there-
fore motivates the increased deployment of these protocols in
blockchains. One cause of high latency in network communi-
cation is the behavior of TCP on which most distributed sys-
tems still rely. The CPU load distribution of a standard TCP/IP
connection shows that more than 50 % of all CPU cycles are
spent on intermediate data copying in the local host [6]. With
the recent advances in computer networks, RDMA becomes
an available solution with a comparable cost to Ethernet. In
RDMA communication, data is placed directly in the remote
memory of the communication partner in a zero-copy manner,
i. e. without intermediate copying as in TCP. It is already
often employed in data centers, where large delays are induced
by data copying during traditional TCP communication. This
makes RDMA-enabled interconnects a compelling solution to
alleviate the cost of message exchanges in BFT systems. For

https://doi.org/10.24355/dbbs.084-202001061606-0



permissioned blockchain settings, the BFT replicas responsible
for consensus can be placed inside a data center without
compromising the concept of the blockchain. Few researchers
have explored RDMA technology with consensus algorithms
so far [7]–[9]; however, all assume a fail-stop model. To our
knowledge, no contribution assumed a Byzantine fault model.

In this paper, we present RUBIN, an RDMA-based com-
munication framework modeled after the Java NIO selector,
and show first steps to integrate it into Reptor, a scalable
BFT framework [10]. RUBIN aims to allow Java-based BFT
frameworks to take advantage of RDMA counterparts without
the need to rewrite the communication stack, thereby providing
direct asynchronous communication and kernel bypassing. It
offers an abstraction of the Java NIO socket channel and
selector, which is used to efficiently handle multiple network
connections with a single thread. The Java NIO channel and
selector are employed in recent BFT protocol implementations
such as BFT-SMART for client communication and UpRight
as well as Reptor for replica communication [10]–[12]. RUBIN
can therefore be integrated into other protocol implementations
with only limited effort. Due to the higher level of abstraction
compared to the RDMA Verbs, it is possible to profit from
the performance gain of RDMA without completely changing
the communication stack of the application. However, it is not
trivial to achieve this performance gain as RDMA performance
can easily decrease to that of TCP with ill-advised configu-
ration. Lastly, we have to consider security aspects specific
to BFT, e. g. it should not be possible for a faulty replica to
compromise the safety and liveness properties of the protocol.

The paper is structured as follows: Section II gives an
overview over BFT and RDMA communication; we present
the design (Section III) and implementation (Section IV) of
RUBIN as well as optimizations to the RDMA communication;
Section V presents the evaluation results; Section VI gives an
overview over related work, and Section VII concludes this
paper.

II. BACKGROUND

In this section, we give an overview over RDMA technology
(Section II-A) and Byzantine fault tolerance (Section II-B) as
well as the Reptor protocol (Section II-C).

A. Remote Direct Memory Access
It has been shown that TCP/IP network stack processing

consumes a significant amount of system resources when
data is transmitted [13]. During TCP communication, two
copy operations are performed: first, the CPU copies data
from the user space buffer into a temporary socket buffer,
then the data is placed into a TCP segment and pushed to
the network controller through a DMA copy. To avoid this
overhead of intermediate data copies and OS context switches,
RDMA has been proposed to overcome the limitations of
traditional networks. RDMA is a hardware-based protocol
offloading technology enabling direct data movement between
the memory of remote machines without the involvement of
the operating system, and thereby manages to achieve high
throughput and low latency for high messaging rates. RDMA

uses the operating system only to establish a channel between
two hosts, then allows applications to exchange messages
without any kernel support in a zero-copy manner, i. e. with
direct data transfer from virtual memory. RDMA supports
asynchronous operations and is message oriented.

RDMA operates on queue pairs (QPs): when communica-
tion is initiated, each side must create a queue pair of send
and receive queues for holding data transfer requests, so-called
work requests (WRs). These WRs provide information about
the data to be sent (send request) or received (receive requests).
Upon the completion of an RDMA operation, an event is added
to a completion queue (CQ) to notify the application about
this. An RDMA application is required to register memory
regions with the RDMA-enabled NIC (RNIC) prior to any
networking operation to specify access to these regions.

There are two main modes of RDMA communication that
we investigate for their suitability: one-sided and two-sided
operations. In one-sided operations, the RDMA Read/Write, an
application can access the remote memory directly without any
involvement of the remote CPU. Thus, only one side is actively
engaged in the communication process, while the remote side
is not aware that any access operation is performed on its
memory. This mode is well-suited for smaller messages, but
generally requires more communication rounds than the two-
sided operations. There, in the so-called RDMA Send/Receive,
both partners must actively participate in the transfer and
do not know the remote virtual memory location directly.
This mode behaves similarly to TCP and offers reliable
communication. However, unlike in one-sided primitives, each
send request must have a matching receive request specifying
where to receive data on the remote side before the operation
can be initiated. Therefore, it is important to allocate enough
receive requests to handle all incoming send requests. Each
communication partner has only partial knowledge of this
information required to complete the communication.

B. Byzantine Fault Tolerance

Byzantine agreement schemes, where a group of possibly
faulty replicas tries to reach a consensus on the execution
order and result of client requests, are considered a promising
alternative to PoW mining in blockchains. Typical BFT sys-
tems consist of two stages: agreement and execution. In the
agreement stage, replicas exchange asynchronous messages in
order to reach agreement on a specific value, e. g. the order
of client requests. This stage typically starts with the leader
proposing a request sequence number to other replicas. Next,
the replicas coordinate through broadcasting messages in order
to validate that the leader has provided them with the same
number, and reach a consensus on the total order of requests.
For BFT systems, reaching consensus typically requires a
majority quorum of 3f+1 nodes. This takes multiple rounds of
communication, which is especially costly for a large number
of replicas as most protocols require broadcasting steps [3],
[14], [15]. Thus, reaching consensus entails a large network
traffic and performance overhead. In the execution stage, the
replicated service uses the ordered requests provided by the

https://doi.org/10.24355/dbbs.084-202001061606-0



agreement stage as input, executes the client operations, and
finally sends a reply to the clients.

The agreement stage is often considered the bottleneck of
a BFT system due to the cost of the message exchanges,
especially when employing the traditional TCP/IP program-
ming model. To counteract this, requests in BFT protocols
are often batched, or hashes are transmitted instead of full
messages. We propose to leverage the advantages of RDMA
as a novel networking technology which is already deployed
in data centers and therefore well-suited for utilization in BFT
protocols.

C. Reptor
Behl et al. [10] presented a new parallelization scheme

allowing BFT systems to fully exploit improving hardware
trends such as modern multi-core processors. Splitting BFT
protocols into several functional modules for multi-threaded
execution still limits performance by the slowest of these
modules. In the proposed Consensus-Oriented Paralleliza-
tion (COP) scheme, the protocol is not divided according to
specific tasks such as agreement and message authentication,
but instead multiple protocol instances are parallelized while
the total order of requests is still maintained. This enables their
prototype Reptor, which uses PBFT [14], to scale with the
number of available cores and reach unprecedented through-
puts.

III. DESIGN

Our work aims to enable the Reptor framework to take
advantage of RDMA without fundamentally changing the de-
sign of the framework’s communication stack. RDMA enables
low-latency communication for applications by reducing the
number of intermediate data copies, thereby alleviating the
network overhead as well as taking advantage of the offered
bandwidth. Also, by modeling the components of the RDMA
communication after traditional socket connections, this eases
the cost of redesigning the Reptor framework as well as other,
suitable frameworks. We develop the RUBIN framework which
recreates the behavior of the non-blocking Java NIO with a
selector tailored for the RDMA communication model. This
provides an abstraction of the RDMA queue-based program-
ming model, thus enabling direct asynchronous communica-
tion between replicas. The Java NIO selector enables efficient
handling of multiple network connections using only a single
thread, and is used in several BFT protocol implementations
either for replica [10], [12] or client communication [11].
As the majority of BFT messages are typically exchanged
between replicas, this is what we aim to enhance using RDMA.

In this section, we first explain our decision to use two-
sided RDMA Send/Receive semantics (Section III-A) and
describe the components of our implementation as well as
their interaction (Section III-B), before evaluating the security
of our framework (Section III-C).

A. The Choice of RDMA Semantics
The RDMA Send/Receive semantics are better suited for

replica communication, as it (i) ensures that both sides can

Fig. 1: Components of RUBIN based on Java NIO

operate independently, and (ii) does not require participants to
know the address of the remote memory to exchange data. This
means that an application can post, i. e. send, a request without
specifying the remote address as the receiver decides in which
buffer to place the data. This is similar to the behavior of Java
NIO sockets. Read/Write semantics, however, often entail a
read/write race resulting in corrupted data [16] or failed retries
because of the required coordination with increasing number
of hosts [17]. They are therefore not suitable for our needs,
as we assume a high number of replicas to participate in BFT
protocols employed in blockchains.

B. Components of RUBIN

The RUBIN framework consists of a set of components
shown in Figure 1 inspired by Java NIO that were adapted
for the RDMA queue pair model. These components are
the RDMA channels, the RDMA selector, and the RDMA
selection keys. An RDMA channel represents an RDMA
connection. The abstraction behaves similar to a non-blocking
NIO socket channel, which offers read() and write() methods,
and includes all necessary RDMA resources such as QPs and
WRs. When an RDMA channel is created, the list of buffers
that the application will use for send and receive operations is
also allocated and registered for RDMA communication. This
abstraction is flexible because the number of WRs as well
as the size of buffers can be independently specified, thereby
allowing for the versatility needed by BFT protocols. Note that
every created channel is associated with a unique connection
identifier.

The RDMA selector is the key component in RUBIN. It
checks without blocking if an RDMA channel is ready for re-
trieving an I/O event. For example, if we are interested to know
whether there is an incoming connection, the selector will re-
ceive a notification when an event of type OP CONNECT has
been added to the event channel. Afterwards, the selector will
check if this event belongs to the channel through comparing
the event ID with the channel ID and eventually returns the
number of ready channels. This enables processing numerous
RDMA channels in a single thread, similar to the Java NIO
selector.

The RDMA selection key is the result of an RDMA channel
registration with the selector and has a unique ID characteriz-
ing the connection. When an RDMA channel is registered, the
type of events in which the channel is interested is specified.
A selection key has four possible interests for a channel
based on RDMA connection and completion notifications: an
interest in incoming connections (OP CONNECT), in con-

https://doi.org/10.24355/dbbs.084-202001061606-0



Fig. 2: An overview of the RDMA selector

nection establishments (OP ACCEPT), in received messages
(OP RECEIVE), and in sending messages (OP SEND). The
selection key is then added to the list of connections that
the selector checks when the select() function is invoked. In
addition to the interest tag, a selection key has a ready tag that
is updated when an I/O event occurred in the related channel.

Figure 2 shows the process of how these components
interact in order to provide asynchronous communication.

1) The same blocking call for transmission and connection
events

The Java NIO selector checks the readiness of both trans-
mission and connection I/O on the same blocking call. RUBIN
therefore includes a hybrid event queue containing copies of
both the event channel elements and the completion queue
elements. When an event is added to these channels, a copy
of it will be added to the hybrid event queue of the RUBIN
selector, notifying it about this new I/O operation.

2) An event-based mechanism replacing epoll
The Java NIO selector internally relies on epoll to check

the readiness of the channels [18]. In RUBIN, an event manager
is associated with the selector to keep track of the events added
to the queue and to notify the selector. As shown in Figure 2,
four phases are performed for a send or receive operation:

1 Accepted RDMA channels start by registering to the
selector and specifying which event they are interested in.

2 The result is a set of selection keys, defining the
relationship between the selector and the RDMA channel and
holding the interest set. A selection key is a way to track the
interest of the user and can be updated. Note that a registered
channel is referred to as selectable channel.

3 An invocation of a select() will start an indefinitely
blocking call while there is no incoming I/O event.

4 When an event occurred, a copy of it is added to the
hybrid event queue. Afterwards, the event manager notifies the
selector about this new incoming event.

5 The selector checks whether the corresponding RDMA
channel is interested in it. This is done by comparing the IDs
and the type of the event, i. e. connection or transmission type.
When the correct channel is found, its selection key’s ready
set is updated.

C. Security Analysis
Even though RDMA has its own protection mechanisms

such as Protection Domains and access permissions on the
memory area, the appealing protocol flexibilities have been

proven to bring security issues [19]. However, most of these
issues are design specific and only relevant for one-sided
communication. In a remote Read/Write design, a client might
try to read data while a second host is writing into the same
buffer which results in corrupted data for the host attempting
to read. A second security concern is related to the buffer
identifier, the Steering Tag (STag), which will be sent to a host
aiming to directly access a remote buffer. An adversary might
get access to a buffer with STag enabled access, which allows
her to conduct a Man-in-the-Middle attack. She can now read
or modify the contents of this buffer or even invalidate the
STag which prevents access of legitimate applications. Prior
work [20]–[22] suggests solutions such as extended memory
protection mechanisms or devising a mechanism according to
the chosen design limitations.

As we use two-sided operations, this alleviates most security
issues. An application does not need to expose its buffers to
the connected remote nodes, but instead decides independently
where the data will be placed. Now, if an attacker has com-
promised the memory keys, the affected BFT replica cannot
operate reliably as it might not possess consistent data and will
therefore be considered faulty, which can be tolerated by the
protocol. Additional integrity protection mechanisms such as
HMACs are employed in Reptor to detect invalid messages.

IV. IMPLEMENTATION

RUBIN is based on the OpenFabrics Enterprise Distribution
(OFED) 4.0-2 by Mellanox, which offers an implementation
of the RDMA Verbs interface allowing user-space processes
to leverage the RNIC functionalities.

We use the jVerbs [23] library DiSNI1 developed by IBM for
support of RDMA communication. DiSNI offers two interfaces
for RDMA programming: the low-level Verbs interface and
an endpoints interface, which is an abstraction of the native
Verbs functions similar to the regular socket functions. In our
implementation, the endpoints interface is used as it resembles
the non-blocking socket API and is therefore more suitable for
recreating the behavior of the Java NIO channel. DiSNI was
extended to support the non-blocking Java NIO features. The
Reptor prototype is written in Java and implements the PBFT
algorithm. We integrated RUBIN into Reptor, where it replaces
the Java NIO selector and socket channel, and implemented
several optimizations to the RDMA communication proposed
by prior work [6].

These optimizations concern the requests as well as the
buffer and completion event handling. A pool of buffers for
send and receive requests are pre-registered and can be reused
as needed. To reduce the overhead of posting, the requests are
posted in batches of the maximum number of requests sup-
ported by the device. With selective signaling, no notification
about the completion has to be created. Such a notification
is only necessary after a certain number of messages, thus
reducing the overhead for the RUBIN selector. Copying data
from the application buffer to the buffer of the send request or

1DiSNI library. https://github.com/zrlio/disni

https://doi.org/10.24355/dbbs.084-202001061606-0

https://github.com/zrlio/disni


1 10 100

200

400

600

800

Payload (KB)

L
a
te
n
cy

(µ
s)

TCP

RDMA Send/Recv

RDMA Read/Write

RDMA Channel

(a) Latency

1 10 100
0

5

10

Payload (KB)R
eq
u
es
ts

p
er

se
co
n
d
(k
rp
s) TCP

RDMA Send/Recv

RDMA Read/Write

RDMA Channel

(b) Throughput

Fig. 3: Measurements for the RDMA Channel

vice versa adds significant overhead for large messages, where
buffer registration would be more performant. We therefore
register the application’s send buffer directly for RDMA
communication, while data is still copied into a separate buffer
on the receiver side. Here, we are limited by the type of buffers
used in the DiSNI library and the Reptor prototype, as they are
incompatible. We plan to adopt several optimizations in future
versions of this work: Depending on the size of the messages,
it is best to either copy the data into the request buffers
(for messages ≤256Bytes) or register the application buffer
directly for RDMA communication for larger messages. We
therefore intend to remove any buffer copy from the RDMA
communication except for small messages. The select() call
of RUBIN is less performant than that of the highly optimized
Java NIO selector. We intend to improve this by implementing
this functionality in native code. Sending messages as inline
provides better latency, as the RDMA device does not need to
perform additional read operations to get the payload. This is
especially beneficial for small messages.

V. EVALUATION

In this section, we present the results of our performance
evaluation. We conducted the measurements on two machines
with 4-core Xeon v2 CPUs and 16GB of memory running
Ubuntu 16.04. Each machine is equipped with an RDMA-
capable Mellanox Connect MT27520 network card working
with RDMA over Converged Ethernet (RoCE), which enables
RDMA communication over Ethernet. The machines are con-
nected with a 10Gbps, full-duplex link and use the OFED
4.0-2 RNIC drivers.

First, we present a micro-benchmark implementing a sim-
ple client-server echo application between two machines in
Figure 3. We compare the throughput (Figure 3b) and the
latency (Figure 3a) of TCP, RDMA Read/Write, and RDMA
Send/Receive with our implementation of an RDMA channel
including the optimizations as presented in Section IV. All

20 40 60 80 100

102

103

Payload (KB)

L
at
en
cy

(µ
s)

Rubin TCP

(a) Latency

20 40 60 80 100

104

105

Payload (KB)

R
eq
u
es
ts

p
er

se
co
n
d Rubin TCP

(b) Throughput

Fig. 4: Measurements for the RUBIN and Java NIO selector

measurements show the average of five runs where client and
server each exchange 1000 messages. We consider message
sizes between 1KB and 100KB: BFT protocols exchange
mostly small messages of several kilobytes, only rarely are
larger messages necessary, e. g. for HTTP and IMAP use cases
as presented in [24].

The measurements show that RDMA Read/Write entails
the lowest latency with ≈46 % less compared to RDMA
Send/Receive and 53–79 % compared to TCP. This is due
to RDMA Read/Write having one-sided operations, meaning
that only the client writes messages to the server without
waiting for a response. This semantic, however, does not
offer the required security as RDMA Send/Receive does. The
RDMA channel, however, enables both client and server to
coordinate the message exchanges while still maintaining a
latency 33–43 % lower than that of TCP. The positive effect
of the selective signaling is especially noticeable for messages
smaller than 16KB where the latency decreases by up to
30 % compared to Send/Receive; for larger messages, the
performance degradation due to the buffer copy for receiving
messages becomes obvious. The throughput behaves accord-
ingly: RDMA Read/Write achieves the highest throughput
by 53–79 % more compared to TCP, while the throughput
of the RDMA channel is up to 30 % higher than RDMA
Send/Receive for messages smaller than 16KB. The RDMA
channel is 33–43 % more performant than TCP.

We also evaluate the performance of the RUBIN selector
compared to the Java NIO selector with an echo server using
the Reptor communication stack running locally on one of the
machines. For both protocols, the window size and batching
was set to 30 and 10 messages, respectively. The results can be
seen in Figure 4. It shows comparable throughput and latency
for TCP and RDMA. The latency of RUBIN for messages of
1KB is 19 % lower than that of TCP; for large messages of
100KB, it is 20 % lower. For message sizes from 20KB to

https://doi.org/10.24355/dbbs.084-202001061606-0



80KB, RUBIN’s latency increases up to 20 %. The throughput
of RDMA is higher than that of TCP with values between
25 % for message sizes of 100KB and 38 % for 20KB. The
performance degradation of RDMA due to the buffer copy on
the receiver is again noticeable. We plan several additional
optimizations to further exploit RDMA capabilities especially
focusing on the performance for large message sizes and
optimizing the throughput of RUBIN by removing any buffer
copy steps during communication.

VI. RELATED WORK

RDMA has gained recognition because of the high per-
formance it can achieve. It has already been explored for
key/value stores [25], databases [26], and distributed file
systems [27], [28], but has received limited attention so far
in connection with consensus protocols. Three approaches
for RDMA-enabled crash-tolerant consensus protocols have
been proposed. DARE [7], an RDMA-tailored replicated state
machine protocol, aims to optimize for low latency in replica
communication. The protocol uses one-sided primitives and
replicates state machine updates through RDMA Read/Write
operations. APUS [8] combines RDMA with Paxos and fo-
cuses on scalability regarding concurrent connections. Dere-
cho [9] is a C++ library offering replicated crash fault-
tolerant services, also aiming for RDMA communication in
data centers. However, these protocols consider only fail-stop
failures; to our knowledge, there is no previous work that as-
sumed Byzantine faults. We present first steps towards RDMA
communication in BFT protocols. JSOR [29] also models its
RDMA endpoints after the Java socket interface, but offers a
higher level of abstraction. However, this comparability layer
limits the performance gain of using RDMA as it still includes
intermediate buffer copies. Instead, we propose a level of
abstraction between that offered by JSOR and that of RDMA’s
native endpoints, which currently allows us to partially profit
from RDMA’s zero-copy features while simultaneously allow-
ing easy integration into existing frameworks.

VII. CONCLUSION

Current BFT protocols still induce a high latency due to the
required multiple rounds of message exchanges, even when the
replicas are placed inside a data center, as TCP/IP includes
several intermediate data copy steps. This latency hinders
their adoption as consensus protocols in blockchain platforms.
In the BFT protocols that are deployed in blockchains, the
number of participants will presumably be higher than in
traditional deployment scenarios, thereby leading to a further
increase in latency for inter-replica communication. This can
be avoided by using RDMA, which offers kernel bypassing
and zero-copy operations. We presented RUBIN, a framework
to leverage RDMA interconnect features for BFT protocols
such as Reptor. It does not require a redesign of the existing
BFT communication stack as it is modeled after the behavior
of the Java NIO selector.

In our future work, we plan to investigate how several
optimizations using additional RDMA features impact the

performance of RUBIN, remove any additional buffer copy
steps, and to extensively evaluate the fully replicated system.

REFERENCES

[1] A. Hern. (2018) Bitcoin’s energy usage is huge – we can’t afford to
ignore it. [Online]. Available: https://goo.gl/z8MNSM

[2] J. Kwon. (2014) Tendermint: Consensus without mining. [Online].
Available: https://tendermint.com/static/docs/tendermint.pdf

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in SOSP ’17,
2017.

[4] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger
of BFT Protocols,” in CCS ’16, 2016.

[5] M. Vukolić, “The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication,” in IFIP WG 11.4 International Workshop, iNetSec
2015, 2015.

[6] P. W. Frey and G. Alonso, “Minimizing the Hidden Cost of RDMA,”
in ICDCS ’09, 2009.

[7] M. Poke and T. Hoefler, “DARE: High-Performance State Machine
Replication on RDMA Networks,” in HPDC ’15, 2015.

[8] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui, “APUS: Fast and Scalable
Paxos on RDMA,” in SoCC ’17, 2017.

[9] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel,
S. Zink, K. Birman, and R. van Renesse, “Building Smart Memories
and Cloud Services with Derecho,” 2017.

[10] J. Behl, T. Distler, and R. Kapitza, “Consensus-Oriented Parallelization:
How to Earn Your First Million,” in Middleware ’15, 2015.

[11] A. Bessani, J. a. Sousa, and E. Alchieri, “State Machine Replication for
the Masses with BFT-SMaRt,” Tech. Rep., 2013. [Online]. Available:
http://repositorio.ul.pt/bitstream/10451/14170/1/TR-2013-07.pdf

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “UpRight Cluster Services,” ser. SOSP ’09, 2009.

[13] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz,
and S. K. Reinhardt, “Performance Analysis of System Overheads in
TCP/IP Workloads,” in PACT ’05, 2005.

[14] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in OSDI
’99, 1999.

[15] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst., 2010.

[16] C. Mitchell, Y. Geng, and J. Li, “Using One-sided RDMA Reads to Build
a Fast, CPU-efficient Key-value Store,” in USENIX ATC’13, 2013.

[17] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “RFP: When RPC is
Faster Than Server-Bypass with RDMA,” in EuroSys ’17, 2017.

[18] Oracle. Enhancements in Java I/O. [Online]. Available: https:
//goo.gl/sfZyQ7

[19] J. Pinkerton and E. Deleganes, “Direct Data Placement Protocol
(DDP)/Remote Direct Memory Access Protocol (RDMAP) Security,”
Internet Requests for Comments, RFC 5042, 2007.

[20] B. Li, P. Zhang, Z. Huo, and D. Meng, “Early Experiences with Write-
Write Design of NFS over RDMA,” in NAS ’09, 2009.

[21] M. Lee, E. J. Kim, and M. Yousif, “Security Enhancement in InfiniBand
Architecture,” in IPDPS ’05, 2005.

[22] R. Noronha, L. Chai, T. Talpey, and D. K. Panda, “Designing NFS with
RDMA for Security, Performance and Scalability,” in ICPP ’07, 2007.

[23] P. Stuedi, B. Metzler, and A. Trivedi, “jVerbs: Ultra-low Latency for
Data Center Applications,” in SOCC ’13, 2013.

[24] B. Li, N. Weichbrodt, J. Behl, P.-L. Aublin, T. Distler, and R. Kapitza,
“Troxy: Transparent access to byzantine fault-tolerant systems,” in DSN
’18, 2018, accepted for Publication.

[25] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast
Remote Memory,” in NSDI ’14, 2014.

[26] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The
End of Slow Networks: It’s Time for a Redesign,” Proceedings of the
VLDB Endowment, 2016.

[27] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High Performance RDMA-
based Design of HDFS over InfiniBand,” in SC ’12, 2012.

[28] M. Tatineni, X. Lu, D. Choi, A. Majumdar, and D. K. D. Panda,
“Experiences and Benefits of Running RDMA Hadoop and Spark on
SDSC Comet,” in XSEDE ’16, 2016.

[29] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. (2014) Transparent network acceleration for Java-based
workloads in the cloud. [Online]. Available: https://goo.gl/P5Gtj3

https://doi.org/10.24355/dbbs.084-202001061606-0

https://goo.gl/z8MNSM
https://tendermint.com/static/docs/tendermint.pdf
http://repositorio.ul.pt/bitstream/10451/14170/1/TR-2013-07.pdf
https://goo.gl/sfZyQ7
https://goo.gl/sfZyQ7
https://goo.gl/P5Gtj3



