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Abstract—Reverse engineering of unknown network protocols
based on recorded traffic traces enables security analyses and
debugging of undocumented network services. One important
step in protocol reverse engineering is to determine data types
of message fields. Existing approaches for binary protocols (1)
lack comprehensive methods to interpret message content and
determine the data types of discovered segments in a message
and (2) assume the availability of context, which prevents the
analysis of complex and lower-layer protocols. Overcoming these
limitations, we propose the first generic method to analyze mes-
sage field data types in unknown binary protocols by clustering
of segments with the same data type. Our extensive evaluation
shows that our method in most cases provides clustering of up to
100 % precision at reasonable recall. Particularly relevant for use
in fuzzing and misbehavior detection, we increase the coverage
of message bytes over the state-of-the-art to 87 % by almost a
factor of 30. We provide an open-source implementation to allow
follow-up works.

Index Terms—field data type clustering, protocol reverse en-
gineering, vulnerability research, network security

I. INTRODUCTION

Protocol reverse engineering (PRE) based on traffic traces
aims to infer the specification of unknown network protocols
by analyzing traces of network messages typically gained
from observing communication of devices implementing this
protocol. PRE is often applied to understand malware commu-
nication and uncover data exfiltration [4], to configure smart
fuzzers [8], or to validate the correct and secure design and
implementation of undocumented network services [23]. As
a recent example, PRE was necessary to discover a severe
vulnerability in the proprietary Apple Wireless Direct Link
(AWDL) protocol stack [20], enabling a zero-click exploit [1]
affecting all of Apple’s iOS-based product lines. Thus, PRE
helps in identifying security implications that result from the
intended or unintended use of a specific unknown protocol.

PRE based on traffic traces encompasses the uncovering of
message types, message formats, semantics, and behavior of
the protocol. During this kind of analysis, semantic deduction
is one of the most tedious and scarcely automated tasks [13,
20]. One step in semantic analysis is inferring the data type or
value domain of fields which can help, for example, to more
efficiently configure smart fuzzers or to identify exfiltration [2,
4, 24]. While some methods are available that recognize
single field data types and correlations of values, no approach

determines relations between fields by their value similarity
that can be used to interpret the message contents.

Contribution. This paper proposes a novel method to
automatically cluster field data types. We base this inference
on the analysis of segments, i. e., subsequences of network
messages. We propose to distinguish segments into clusters
of the same field data type according to their similarity to
each other without actually identifying the data type. The
resulting knowledge of segments with identical type simplifies
follow-up analyses as value domains can be inferred and
spoofing or fuzzing require this knowledge. As opposed to
previous approaches [2, 3, 5] and particularly important for
security assessments of custom and proprietary protocols, we
make very few assumptions about the format and sequence of
messages. We summarize our main contributions as follows:
• We design the first method to cluster field types of

network messages and do so without a limiting set of
individual rules per type, making our approach applicable
to a wide range of protocols with diverse and unantici-
pated data representations.

• Based on empirical observations of typical network pro-
tocols, we devise a fully-automated parameter selection
method that is use-case-specific to the clustering of field
values.

• We implement our method as well as FieldHunter [2] and
CSP [9] and make all three publicly available.1

• Through extensive evaluation of both well-known and
proprietary protocols, we show that our method on aver-
age achieves an F-score of 0.92 for field type clustering.
At the same time, coverage of 87 % message bytes
exceeds the state-of-the-art by almost a factor of 30.

II. RELATED WORK

Surveys have proposed to structure the overall PRE process
into multiple phases [6, 12]. Typical phases are data collection
into traces, feature extraction, message type identification,
message format inference, semantic deduction, and behavior
model reconstruction. Existing PRE approaches differ substan-
tially for textual and binary protocols, where analysis of textual
protocols is often considered the easier task [2, 5, 6, 12]. Thus,

1https://github.com/vs-uulm/nemesys, fieldhunter, and goo-csp
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Fig. 1. Clustering of common kinds of message content data.

we focus on providing a solution for binary network protocols.
Previous work, like Discoverer [5], PRISMA [14], Netzob [3],
Goo et al. [9], NEMETYL [10], and many others, focused
either on the message type and format or on the behavior
model of unknown protocols. While most phases are well
covered in literature, approaches specifically addressing the
interpretation of the message contents, i. e., semantic deduction
of fields, are rare. All existing methods are rule-based [2, 3,
5, 9], i. e., they consist of a finite set of individual heuristic
rules that explicitly deduce the semantics of a predefined small
number of single specific field types, like number, identifier,
or network address. We consider FieldHunter [2] the state-
of-the-art approach as it has also been re-applied in recent
work [9]. If either, the protocol uses a representation of data
types that was not anticipated in any of the heuristic rules, or
the encapsulation is unknown so that context like addresses is
not available, FieldHunter fails to work. As there is no public
implementation, we re-implemented FieldHunter and evaluate
its results in comparison to our approach in this paper.

As opposed to FieldHunter and all previous rudimentary
field type inference approaches mentioned in this section, we
aim for a more generic goal than using only a limited number
of individual heuristics for field types: Our work is the first to
propose clustering of arbitrary data types of message fields. We
stress that we do not attempt to identify particular field types
so that we are not limited to a predefined set of data types.
In this work, we do not consider clustering whole messages
into different message types since previous work like , e. g.,
Discoverer [5], PRISMA [14], Netzob [3], or NEMETYL [10],
already achieve this goal.

Our approach relies on message segmentation and dif-
ferent methods might achieve different quality. To consider
segmentation accuracy in our evaluation, we compare three
existing segmenters that work with variable-length fields:
Netzob [3] is based on sequence alignment, CSP [9] applies
frequency analysis of byte-strings, and NEMESYS [11] uses
statistical properties of the message contents to discern one
approximated field candidate from the other, forming heuristic
segmentations of unknown binary messages. Furthermore,
to compare segments to each other, we use the Canberra
dissimilarity [10], which we originally proposed for message
type identification. We now apply it directly for clustering of
segments while, in contrast, its original usage was to be input
for sequence alignment of messages.

III. CLUSTERING DATA TYPES

Our approach provides the means to cluster independent
message segments into what we call pseudo data types without
any further knowledge about the protocol. Individual steps
of this process are outlined in Figure 1. It is a heuristical
method to cluster the same types of data into groups of similar
field contents. Having such clusters of segments throughout
different messages of a trace reveals relationships of values
between messages regardless of the byte positions of the
segments within each message. We call the resulting clusters
pseudo data types because, at this point, we do not know which
data type or field semantic the cluster represents. An analyst
can still use this knowledge as basis to analyze the properties
of the clustered segments and infer their semantic meaning.
We now discuss the individual steps.

A. Preprocessing

We first preprocess each raw trace. This step includes
filtering for the desired protocol and de-duplicating payloads.
Our analysis method exploits variances in the contents of
messages, so duplicates carry no additional information.

B. Segmentation

We define a field in a binary protocol specification as a
sequence of bytes at a specific position in a message, with
a specific data type such as an integer, a sequence of chars,
or a timestamp, and a value domain. In contrast, we define a
segment to be a field candidate determined from the inference
that—in an optimal case—matches the true field from the
unknown protocol specification. Segmentation is an important
prerequisite for characterizing the contents of messages, which
is needed to determine the segments’ data types, infer their
semantics, and ultimately deduce an accurate field definition.

To obtain segments from the messages in the traces, we split
individual messages into subsequences. Messages of known
protocols can be segmented by using dissectors, like those
provided by Wireshark.2 While dissectors are unavailable
for unknown protocols to reliably determine message fields,
heuristic approximations can be used to find probable field
boundaries and obtain segments that are field candidates.
Thus, we require a segmenter that can identify segments in
unknown protocols. Available solutions include Netzob [3],
Goo et al. [9], and NEMESYS [11]. We evaluate these three

2https://www.wireshark.org
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segmenters that have the advantage that they work equally well
for protocols of fixed structure and such with dynamic field
lengths differing between messages. The idenfified segments
are now treated as candidates for protocols fields.

C. Dissimilarity

To calculate a similarity measure for segments, we interpret
each of these as a vector of byte values. We then calculate
a normalized dissimilarity value for each pair of segments
using the so-called Canberra dissimilarity [10], which extends
the better-known Canberra distance [15] to vectors of different
dimensions. We store the pairwise dissimilarities between all
segments in a dissimilarity matrix D.

We exclude segments from the analysis that are only
one byte long as coincidental similarity of arbitrary single
bytes throughout messages prevents meaningful analysis of
such short segments. Using alternative analysis methods,
like frequency analysis, these one-byte segments can later
be reincorporated in the analysis. Furthermore, we consider
duplicate segment values only once since they increase the
computational load without adding new information for the
subsequent clustering.

The dissimilarity values for each pair of remaining unique
segments serve as affinity values to guide clustering by
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [7] in the next steps.

D. Auto-Configuration

Before clustering, we need to configure two parameters of
DBSCAN: the minimum number of elements to form a density
core min_samples and a measure ε of the least density to
be considered part of a cluster. Normally, these parameters
need to be configured and tuned manually. For unsupervised
and fully automated, configuration-less clustering, we present
a new method to automatically determine the parameters for
DBSCAN from the properties of the segments identified in the
previous step.

The ε auto-configuration searches for the knee point in the
empirical cumulative distribution function (ECDF) [22] Êk(d)
of the dissimilarities between the k-nearest-neighbors (k-NN)
of unique segments. For each trace, a set of functions Êk
exists, one ECDF for each k. An ECDF is an evenly-spaced
step function, jumping by 1

n for each of the n samples with a
measured value d. In our case, the samples are the segments si
and sj in a trace, and their measured value is the dissimilarity
d(si, sj). Applied to the k-NN function, the ECDF’s value
thereby is the fraction of all segments in a trace that have
a Canberra dissimilarity less or equal to their respective kth
nearest-neighbor. The ECDF plots the changes in distances
between neighbors. A clear drop dκ, located at the knee point
Êk(κ), is then considered a suitable choice for ε that allows
DBSCAN to reliably detect cluster boundaries.

Of all possible Êk, we want to dynamically select k in
such a way that its ECDF has the most distinct drop in the
density of the segment similarity. The function that contains
the most distinct change in distances between neighbors has

the sharpest knee point. Consequently, we search for the Êk
with the sharpest knee, with sharpness measured as the value
of the δd at the maximum of δÊk. Algorithm 1 describes the
process to select the desired k. We iterate k only between 2 and
round(lnn) to limit the number of unnecessary calculations.
This is sufficient since the sharpest relevant knees always are
in the distance distributions of neighboring segments.

To determine the rightmost knee point in Êk with the
selected k, we apply the Kneedle algorithm [19]. Kneedle
requires smoothing of the ECDF, for which we use a spline,
to remove local statistical fluctuations before accepting it as
input. Figure 2 illustrates the ECDF, the max(δÊk), the effect
of smoothing, and the detected knee, used as ε with segments
generated from a trace of 1,000 NTP messages. For the 2nd
parameter min_samples, we note that DBSCAN is not very
sensitive and setting it to lnn simply prevents scattering large
traces into too many small clusters.

E. Clustering

Next, we cluster segments with DBSCAN using the de-
termined parameters ε and min_samples. DBSCAN is
a popular and efficient clustering algorithm that makes no
assumptions about the shape of clusters, does not require
the target number of clusters as input, and treats outliers
as noise. These properties set it apart from traditional clus-
tering methods, e. g., k-means or spectral clustering, which
are unsuitable for our purpose since we do not know the
shape and number of clusters. For other clustering methods,
like agglomerative clustering, affinity propagation, or support
vector machines, automating the tuning of the parameters
for previously unseen traces is challenging. In comparison,
DBSCAN’s main advantage is that we can design a method
to directly derive its parameters from the dissimilarity distri-
bution of a trace, as described in the previous section. Thus,

Algorithm 1: ε auto-configuration

input : Set of dissimilarities D;
Sensitivity parameter of Kneedle S;
Smoothness parameter of B-Spline interpolation s;
output: ε

function kNN(D, k)
Determine the k-NN of all segments represented in
D;

return Dissimilarities of all segments’ kth-NN;
end

foreach 2 ≤ k ≤ round(lnn) do
Êk ← ecdf(kNN(D, k));
B̂k ← bSpline(Êk, s);

end
k′ ← argmax

k
δB̂k ; /* Value of the maximum

increase in distance */

dκ ← Kneedle(B̂k′ , s);
ε← dκ;
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the proposed configuration procedure is completely automated
and requires no re-training or iterative tuning for new traces
as may be the case for other clusterers.

The algorithm identifies high-density cores within noisy
data and determines them to be clusters of similar segments.
The segment density is high in areas where segments have
a low dissimilarity to each other. Each cluster groups similar
segments and thus comprises fields of a common data type.
We validate the underlying assumption that clusters regularly
coincide with data types in the first part of our evaluation
(Section IV-B).

In rare cases where the dissimilarity distribution leads to
multiple knees in the ECDF, the so-determined ε does not
denote suitable densities to cluster field data types and is too
large. In this situation, a single large cluster contains more
than 60 % of the segments that are not considered noise. To
prevent this and instead select the next smaller knee for an ε,
we consider only a subset of the original Êk. More specifically,
we repeat the whole ε auto-configuration process for a Ê′k that
is trimmed to the last detected knee κ, which becomes the
rightmost value. Thus, Ê′k = Êk({d < dκ : d ∈ D}). We then
cluster with the new ε value.

F. Cluster Refinement

In situations where the variability of the field values in the
input trace is not uniformly distributed, multiple clusters may
result for the same data type. This overclassification is not
only a limitation of DBSCAN and we noticed that similar
alternatives, e. g., HDBSCAN and OPTICS, suffer from the
same effect. We favor DBSCAN since it provides more pos-
sibilities to fine-tune the cluster boundaries for our use case.
During pilot analyses of known protocols, we observed that

overclassified clusters are often linked via sparsely populated
but detectable areas. To mitigate the overclassification, we
introduce an additional step: cluster refinement.

In cluster refinement, we aim to automate the detection and
merging of clusters that are nearby and have a similar density.
For any two clusters ci and cj , we define the link segment
slinki,j as the segment in ci that is closest to cj , i. e.,

slinki,j = argmin
si∈ci

d(si, sj), ∀sj ∈ cj

dlinki,j is the distance between the link segments slinki,j and slinkj,i .
Using this definition, we propose two heuristic cluster merge

conditions: (1) The clusters are very close-by, and the densities
within an ε around the link segments are similar. (2) The
clusters are somewhat close-by, and the whole clusters have
similar densities. We quantify closeness and density differently
in both conditions since we intend to capture different notions
of closeness and density, i.e., local ε-density at elements
linking clusters and density of clusters as a whole.

In Condition 1, clusters are very close by if the link-
dissimilarity is less than the mean D(ci)arithm of the set of
pairwise dissimilarities in ci or respectively cj :

dlinki,j < max(D(ci)arithm,D(cj)arithm)

Further, we use a density definition for an ε-neighborhood
around the nearest points between similar clusters. W. l. o. g.,
we define sl = slinki,j . The density ρ within an ε around the
link segment in ci with the set of dissimilarities D(ci),

D(ε, sl) = {d(sl, sc) : d(sl, sc) ≤ ε, sl 6= sc, sc ∈ ci},

with D(ε, sl) ⊆ D(ci), is thus defined by ρε(sl) =
D(ε, sl)median. We observed that a suitable ε is half of the
maximum extent dmax of the cluster with the fewer segments:
ε = dmax

2 . The density around the link segment in cj is defined
accordingly. Finally, ε-densities around link segments are
considered similar if their difference is less than ερThreshold:∣∣ρε(slinki,j )− ρε(slinkj,i )

∣∣ < ερThreshold

Condition 2 allows a larger cluster distance but has a
stronger density requirement. Close-by here means closer
than the mean between both cluster’s “neighbor densities”
normalized to the extent of the cluster. To formalize this,
we need minmed(i), the median values for the 1st-nearest
neighbors that are the minimum distances for each segment to
any other in ci, respectively cj :

minmed(i) = {min
sb∈ci

({d(sa, sb) : sa 6= sb}) : sa ∈ ci}
median

In terms of Condition 2, clusters are somewhat-close-by if

dlinki,j <

minmed(i)

D(ci)arithm
+

minmed(j)

D(cj)arithm
2

As expression of the overall density in the cluster, we use
minmed. In contrast to the ε density defined above, whole
clusters have similar density if

|minmed(i)−minmed(j)| < neighborDensityThreshold.
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The selection of the values ερThreshold = 0.01 and
neighborDensityThreshold = 0.002 results from empirical
observation of real-world protocols.

Unlike overclassification, occasional underclassification
combines different field data types in one cluster. This may be
the case if a single value is similar to a group of others but has
a distinct function, like an enumeration value. To compensate
for this, we split clusters if they have extremely polarized value
occurrences, e. g., they exhibit many unique values, together
with very few, very high occurring ones. For this purpose,
occurrences are defined as the count |b| of segments s ∈ c
with a value b. We count all different values bi and calculate
the standard deviation σ({|bi| : 0 ≤ i < |c′|}) for this cluster
c′, with bi being the value of one or multiple segments s. To
interpret the counts of values of one cluster, we use the percent
rank PR [18] as a combined measure of the value occurrence
frequency and value diversity. A PR(c′, F ) = 95 means that
95 % of the value counts in cluster c′ are below the given
occurrence frequency of interest F . We select F depending on
the cluster size to be ln |c′|. Thus, the same value is the pivot to
split the cluster into two subclusters containing all segments
with value count |bi| ≤ F and another for |bi| > F for i
enumerating all distinct values of segments in the cluster. Con-
sequently, if PR(c′, F ) > 95 ∧ σ({|bi| : 0 ≤ i < |c′|}) > F ,
we split c′ at the pivot F = ln |c′|.

G. Summary

After completing this fully automated procedure, we now
have generated vectors for each segment, calculated their
pairwise Canberra dissimilarity, determined a suitable ε value,
clustered the segments using DBSCAN, and refined the clus-
ters. This completes the clustering of segments into pseudo
data types. Next, our evaluation will show how accurately this
can be done.

IV. EVALUATION

Using our proof-of-concept implementation, we evaluate
two different aspects of our approach. First, we validate that
data types can be clustered accurately by segment similarity.
Second, we evaluate the accuracy achievable by using heuristic
segmentation in the absence of ground truth. We illustrate the
validity of these two aspects by clustering statistics.

A. Metrics and Setup

For a quantitative representation of the clustering quality, we
calculate precision P and recall R of the clusters compared
to the true data types by the number of true positives (TP),
false positives (FP), and false negatives (FN) as:

P =
TP

TP + FP
and R =

TP
TP + FN

For clustering into more than two clusters, TP, FP, true
negatives (TN), and FN are defined combinatorically via the
correct and incorrect pairwise assignments of unique segments,

as described by Manning et al. [16]. Hence, the number of
positives and negatives for m clusters ci are given as:

TP+FP =
∑
i

(
|ci|
2

)
and TN+FN =

∑
i,j

(|ci| · |cj |) ,

where j = {0 . . . (m− 1)} \ i. The true positives are:

TP =
∑
i

∑
l

(
|ti,l|
2

)
,

where ti,l denotes the segments of data type l in cluster i.
The false negatives are defined through the missed true pairs
by false assignments to different clusters and to the noise.
Thus, the count of false negatives is given by the sum of both
kinds of false negatives through:

FN =
∑
i

∑
l

(|tl| − |ti,l|) · |ti,l|
2

+
∑
l

(
|tn,l|
2

)
+
∑
l

(|tl| − |tn,l|) · |tn,l|
2

,

where tn,l are the segments of data type l assigned to the
noise.

To compare the quality between different protocols and
input segments, we require an overall quality measure. There-
fore, we calculate the F 1

4
score from precision and recall. The

Fβ score is a common measure for the clustering accuracy and
defined by the harmonic mean of precision and recall [17].
Parameter β adjusts the weight of precision and recall in
the mean. With β = 1

4 , we place four times more emphasis
on precision than recall. We decided on this weighting since
precise clusters are crucial for a meaningful data type analysis
in protocols. At the same time, low recall diminishes the
coverage but does not reduce the validity of the overall analysis
result. As coverage we define the ratio between the number of
inferred bytes and all bytes of all messages in a trace. Since
coverage refers to the number of bytes and precision and recall
to segment pairs the result statistics are not directly correlated.

The messages we use for developing our approach are
collected from traces of the binary network protocols DHCP,
DNS, NBNS, NTP, and SMB.3 All traces are publicly avail-
able.4 In addition, we also use traces of two proprietary pro-
tocols, namely Apple Wireless Direct Link (AWDL) and Auto
Unlock (AU). AWDL is a Wi-Fi-based link-layer protocol
for peer-to-peer communication. AU is a proprietary distance
bounding protocol.5 Both protocols were not publicly docu-
mented until they recently were reverse engineered manually.
The reverse-engineered specification of AWDL, including a
dissector, is publicly available [20], and we had access to a
private Wireshark dissector of the AU protocol. Thus, both

3Dynamic Host Configuration Protocol (RFC 2131), Domain Name System
(RFC 1035), NetBIOS Name Service (RFC 1002), Network Time Protocol
(RFC 958), and Server Message Block

4DHCP, NBNS, NTP, and SMB extracted from http://download.netresec.
com/pcap/smia-2011/; DNS extracted from https://ictf.cs.ucsb.edu/archive/
2010/dumps/ictf2010pcap.tar.gz

5https://support.apple.com/en-us/HT206995
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TABLE I
CLUSTERING STATISTICS FOR DATA TYPE

CLUSTERING FROM GROUND TRUTH.

proto. msg.s fields ε P R F 1
4

DHCP 1000 1017 0.172 0.96 0.93 0.95
DNS 1000 839 0.063 1.00 0.95 1.00
NBNS 1000 734 0.049 1.00 0.91 0.99
NTP 1000 3822 0.121 1.00 0.96 1.00
SMB 1000 1175 0.218 0.59 0.70 0.60
AWDL 768 2190 0.096 1.00 0.77 0.98
DHCP 100 229 0.212 0.76 0.66 0.75
DNS 100 114 0.143 1.00 0.89 0.99
NBNS 100 131 0.121 1.00 0.56 0.96
NTP 100 470 0.198 1.00 1.00 1.00
SMB 100 171 0.169 0.92 0.48 0.87
AWDL 100 396 0.101 0.99 0.59 0.95
AU 123 316 0.366 1.00 0.44 0.93

Worst cases are printed in bold.

TABLE II
COMBINATORIAL CLUSTERING STATISTICS AND COVERAGE (COV.)

FOR PSEUDO DATA TYPES OF HEURISTIC SEGMENTS.

Netzob NEMESYS CSP
P R F 1

4
cov. P R F 1

4
cov. P R F 1

4
cov.

fails 0.88 0.33 0.80 99 % 0.85 0.35 0.79 99 %
0.99 0.96 0.99 100 % 1.00 0.85 0.99 99 % 0.95 0.76 0.93 99 %
0.99 0.74 0.97 100 % 1.00 0.95 1.00 100 % 0.90 0.30 0.80 99 %
0.94 0.90 0.94 88 % 0.65 0.61 0.64 95 % 0.68 0.53 0.67 73 %

fails 0.57 0.02 0.24 81 % 0.38 0.01 0.11 79 %
1.00 0.93 0.99 99 % 0.80 0.16 0.64 98 % fails
0.44 0.11 0.38 83 % 0.83 0.52 0.80 87 % 0.24 0.07 0.21 87 %
0.98 0.86 0.97 100 % 0.98 0.75 0.96 95 % 0.46 0.13 0.40 87 %
0.91 0.85 0.91 93 % 0.98 0.56 0.94 99 % 0.93 0.32 0.84 82 %
0.98 0.23 0.82 65 % 0.87 0.01 0.19 39 % 0.71 0.00 0.05 65 %
0.59 0.20 0.53 81 % 0.84 0.12 0.63 67 % 0.42 0.11 0.36 74 %
0.99 0.51 0.94 90 % 0.59 0.05 0.35 92 % 0.99 0.43 0.92 92 %

fails 1.00 0.05 0.49 84 % 1.00 0.14 0.74 81 %
Best (green) and worst (red) cases are printed in bold and colored.

protocols constitute realistic use cases where ground truth is
available to verify our results. We use only protocols with
ground truth to compare our results to, which is not available
for truly unknown protocols. Otherwise, statistical analysis of
the quality of our approach would not be possible.

As the source of the ground truth, we parse the Wireshark
dissectors’ output for each message. All evaluated protocols
are binary, while DNS, DHCP, SMB, and AWDL also contain
embedded char sequences. The binary fields of DNS, NBNS,
and NTP have fixed length, while DHCP, SMB, AWDL, and
AU use a mix of fixed and variable-length fields. DHCP,
DNS, NBNS, SMB, AWDL, and AU support varying num-
bers of fields in different messages while NTP has a fixed
structure. Thus, our set of traces represents a wide variety of
different protocol properties. For the evaluation of clustering
and recognition, we truncate the traces to achieve comparable
results. We truncate to 100 and 1 000 messages per protocol
to show the impact of the trace size on the inference quality.
Fewer messages were available for AWDL and AU, which we
consider in the discussion of the results.

B. Pseudo Data Type Clustering Validation

First, we validate our base assumption that data types of
segments can be clustered using the Canberra dissimilarity.
Section III describes the process to cluster for pseudo data
types. For validation, we compare the clustering results to
the true field data types from the Wireshark dissectors. This
provides a baseline to validate that different data types can
correctly be distinguished by our dissimilarity measure.

Cluster statistics quantify the accuracy of the match between
data types and clusters. As overall quality metrics, we provide
P , R, and F-score for our test protocols in Table I. For
reference, we include the number of messages in the trace, the
number of unique fields in the trace, and the auto-configured
ε. The amount of noise identified by DBSCAN is always zero.

The F-score values in Table I are near the optimum of 1
which shows that data types can be clustered with high utility.
However, the SMB trace with 1 000 messages stays behind
the other results due to its low precision. Inspection of the
individual clusters shows that timestamps and signatures have

erroneously been placed together in one cluster. Ignoring this
single cluster for the sake of the argument, we gain a precision
of 0.96 while the recall drops to 0.37. This is the only instance
in all our test runs where a parameter selection fails with
such a significant impact, hinting towards great robustness
of the method. Protocols with complex message formats,
like DHCP and SMB, require a large amount of variability
in the trace to allow for a decent analysis result. Table I
shows this by the lower F-scores and specifically the lower
recall for these complex protocols with smaller traces of 100
messages compared to the results for 1 000 messages of the
same protocols. This is due to multiple clusters representing
a disjointed group of similar segments, reducing the recall.

Based on the high precision of almost all clustering results,
we conclude that most field types can accurately be clustered
by means of dissimilarity. Overall, this aspect of our evaluation
shows that clusters match with true field types and thus
validate our approach of data type clustering.

C. Clustering with Imperfect Segmentation

Next, we present our evaluation of clustering similar seg-
ments of real-world protocols without relying on perfect
segmentation from Wireshark dissectors. Instead, we use the
existing heuristic segmenters Netzob [3], NEMESYS [11],
and CSP [9] on our set of known test protocols. This way,
we emulate the lack of ground truth during clustering while
retaining the possibility to measure the inference quality.

We compare three existing heuristics segmenters that are
available for unknown binary protocols as a basis for our
field data type clustering. According to our results, no single
segmenter is clearly superior to the others and each has its
strengths and weaknesses with regard to the kind of analyzed
protocol. Table II contains the clustering statistics P , R, and
the F-score per test protocol. We mark the best-performing
segmenter for each protocol trace by bold printed values in
the table. Four analysis runs fail due to exceeding runtime or
memory constraints.

A significant number of segments cannot be clustered cor-
rectly and concisely as their boundaries are shifted relative to
the true position they should optimally mark. These fragments
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Fig. 3. Typical errors in heuristically inferred segment boundaries (vertical
lines) that should approximate timestamps. The shaded area marks static bytes.

blur some segment clusters to the extent that we cannot clearly
separate the affected data types. Figure 3 illustrates how this
affects the dissimilarity measure and, thus, the clustering result
with an example of three timestamps that have incorrect addi-
tional boundaries splitting the true field. These least significant
bytes of the timestamps, regarded by themselves, seem random
and thus cannot be clustered based on their value. This error is
not an effect of the dissimilarities used as segment features or
the clustering algorithm, but stems from incorrect partitioning
of the message by the segmenters.

This error in the approximated boundaries of high-entropy
fields is the reason for SMB’s low recall as it contains a
signature that is randomly split by all of the segmenters,
since its contents look random across different messages. AU’s
segments suffer from a slightly different but related issue:
long sequences of 32-bit integers, representing measurement
results, look static in some instances and random in others
so that the dissimilarity is not successfully exploitable for
clustering. Since for AU we only have 123 messages available
to evaluate, we hypothesize that the variance incurred by larger
traces would have a positive impact if available. For the other
traces of different sizes of all protocols, the precision stays
high compared to the true-fields baseline (Section IV-B).

Considering the best case per protocol, only the larger trace
of SMB exhibits an unsatisfactory precision of of 0.57, which
is still remarkable, since knowing the true segments leads
to only a very small improvement (R = 0.59). The smaller
SMB trace and the AU trace are unsatisfying due to their low
recall while precision in both cases remains high. We marked
the three unsatisfying cases by red-colored F-scores and in
contrast colored all F-scores of at least 0.8 green, which we
consider successful analyzes. Most of the results even score
above 0.9 with a precision of also better than 0.9. In the face
of the identified problems that are realistic for working with
unknown protocols, we argue that our method can cope with
the inaccurate segmentation to a large degree.

The remaining challenge is to select the most suited seg-
menter for a protocol trace. We see that Netzob is most
suited for protocols with distinct patterns of repeating value
sequences, e. g., NTP having fixed structure and AWDL with
a type-length-value (TLV) record structure. Large messages
cause Netzob to fail due to the exponential increase in runtime,
which is the case for larger traces of DHCP and SMB, and for
the AU trace. NEMESYS deals well with large and complex
messages, especially since they contain a mixture of number
values and chars, which fits the heuristic of NEMESYS
best. CSP performs minimally worse for larger traces than
NEMEYS, but it lags behind for smaller traces. As CSP is

more dependent an the variance in the trace, it is best applied
to large traces where it poses an alternative to NEMESYS.

D. Evaluation Summary

This evaluation provides two insights about our approach:
(1) field data type clustering works as intended with very little
requirements towards and assumptions about the protocols, but
(2) field data type clustering highly depends on the segmenta-
tion result, where we rely on existing approaches that provide
results of only limited quality. The higher the correctness of
the heuristic segmentation, the better the message field type
clustering can perform.

In comparison, FieldHunter is able to discern the concrete
data type of typically one or two fields per message, leading
to a coverage of 3 % on average across all protocols. While,
in contrast, our clustering method per se cannot determine
the field type, it achieves an average coverage of 87 % (see
Table II), which means that we can provide information about
the structure of messages in terms of field similarity and field’s
value domains for almost the complete content of all messages.

V. CONCLUSION

In this paper, we propose a novel method to cluster field data
types in messages of unknown binary protocols. It requires
recorded network traces and leverages the similarity of seg-
ments to group them into clusters representing a common data
type. Our efficient clustering of message segments facilitates
subsequent analyses to identify their likely semantic function.
We envision that identified data types and visual analytics will
improve the analysis efficiency of unknown network messages
by providing the means to determine the most security relevant
message parts to investigate further in a given trace.

In PRE, a typical high-effort task is to understand the large-
scale structure of messages. Knowing such structure is often
the basis to analyze, e. g., data exfiltration by malware, privacy
violations, targets for spoofing and fuzzing for vulnerability
testing as we illustrated, e. g., in Kröll et al. [13] and Stute
et al. [21]. Automating this process saves effort and time and
our work contributes to such automation. Opposed to previous
work that uses a set of heuristics to recognize a fixed number
of field types, clustering of segments is also applicable if
the protocol contains unanticipated data representations, e. g.,
encodings, since it only relies on the segments’ similarity and
occurrence. Thus, we can cover large parts of the messages in
the trace, while previous work—with a coverage of only 3 %
on average—leaves most of the message content completely
unintelligible. While clustering per se does not reveal data
types, it simplifies an analyst’s interpretation of the message
content. Our method increases the coverage of the interpretable
message content to 87 % on average, outperforming the state-
of-the-art by almost factor 30 and enabling comprehension of
the large-scale message structure.

We first evaluated our approach for both publicly docu-
mented as well as undocumented protocols relying on ground
truth message fields derived from Wireshark dissectors. We
find that most field data types can be clustered with high
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precision when knowing correct field boundaries. In realistic
situations, where field boundaries are not known and heuristic
segmenters like Netzob, NEMESYS, or CSP are applied, the
recall is lower, but data types can still be distinguished with a
precision close to 100 % in most cases. Our approach works
also for protocols without IP encapsulation, like AWDL and
AU, where previous work could not be applied due to the field
type heuristics’ reliance on context information.

We see two main areas for future work. Firstly, we propose
to combine our data type clustering with the deduction of intra-
and inter-message semantics similar to FieldHunter [2]. This
would enable the interpretation of, e. g., length fields and mes-
sage counter fields. Moreover, we intend to automatically learn
value generation rules from the cluster contents using LSTM
or similar machine learning methods to predict probable field
values for fuzzing and misbehavior detection.
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