State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects’

P. Narasimhan, L. E. Moser and P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsh.edu, moser@ece.ucsh.edu, pmms@ece.ucsh.edu

Abstract transparencyof its approachi.e., neither the CORBA applica-

The Eternal system provides transparent fault tolerance f6pP" nor the ORB needs to be mod|f|eq to benefit from the fault
olerance that the Eternal system provides.

CORBA applications, without requiring the modification of ei-
ther the application or the ORB. Eternal replicates the appli-
cation objects, and ensures strong replica consistency by ed- 1 N€ Eternal System

ploying reliable totally-ordered multicast messages for CONVeype Etemal system provides fault tolerance for applications
ing the IIOP messages of the application. To maintain rePl'%nning over commercial off-the-shelf implementations of
consistency even as replicas fail and are recovered, Eternal dqrpa The mechanisms implemented in the Eternal system
sures the retrieval, assignment and transfer of the three kingds together efficiently to providetrong replica consistency

of state — application-level, ORB/POA-level and infrastructurgg 1o\ overheads, and without requiring the modification of
level state — that are associated with each replicated Objegitherthe application or the ORB.

Eternal’s mechanisms for recovery include the synchronizationI the Eternal system, the client and server objects of the
of the state retrieval and the state assignment messages, as &l@ﬂ:{ ’

he 10aai d repl f d checknoi BA application are replicated, and the replicas are dis-
as the logging and replay of messages and checkpoints. tributed across the system. Different replication styles — active,

] cold passive and warm passive replication — of both client and
1 Introduction server objects are supported. To facilitate replica consistency,

Standards, such as the Object Management Group's Comriidh Eternal system conveys the IIOP messages of the CORBA
Object Request Broker Architecture (CORBA) [13], aim to sim@Pplication using the reliable totally-ordered multicast messages
plify application development by freeing the application prd?f the underlying Totem system [9]. o
grammer from low-level system details. CORBA applications TN€ Structure of the Eternal system is shown in Figure 1. The
consist of client objects and server objects, with client objedtéermnal Replication Manager replicates each application object,
invoking server objects that return responses to the client @cording to user-specified fault tolerance properties (such as
jects after performing the desired operations. CORBA's Objefe replication style, the checkpointing interval, the fault moni-
Request Broker (ORB) acts as an intermediary between a clif{nd interval, the initial number of replicas, the minimum num-
object and a server object, allowing them to interact, transcef§" Of replicasetc) and distributes the replicas across the sys-
ing differences in their programming languages and their phyg"r'-m'
cal locations. The Portable Object Adapter (POA), a server-sidel e Eternal Interceptércaptures the 11OP messages (con-
entity that deals with the actual implementations of a CORB&INING the client's requests and the server's replies), which are
server object, allows application programmers to build impléitended for TCP/IP, and diverts them instead to the Eternal
mentations that are portable across different vendors' OREREPlication Mechanisms for multicasting via Totem. The Eter-
CORBA's General Internet Inter-ORB Protocol (GIOP) and it8al Replication Mechanisms, together with the Eternal Recovery
TCP/IP-based mapping, the Internet Inter-ORB Protocol (”OFi\jI,echamsms, maintain strong conslstency (_)f tr_\e replicas, detect
allow client and server objects to communicate regardless of difid recover from faults, and sustain operation in all components
ferences in their operating systems, byte orders, hardware ar€h@ partitioned system, should a partition occur.
tectures, etc. The Eternal Resource Manager monitors the system re-
Enhancing CORBA with fault tolerance while maintaining@urces, and maintains the initial and the minimum number of
CORBA's transparency and simplicity of application progran{eplicas. The Eternal Evolution Manager exploits object repli-
ming is a challenge. The Eternal system [10] addresses thion to support upgrades to the CORBA application objects.
challenge by providing fault tolerance for CORBA applicationd,h€ Replication Manager, the Resource Manager and the Evo-
without requiring the application programmer to be concerné¢fion Manager are themselves implemented as collections of
with the difficult issues of fault tolerance. The value of Ete/CORBA objects and, thus, can benefit from Eternal’s fault tol-

nal in developing fault-tolerant CORBA applications lies in th8"@nce. The Eternal system implements the new Fault Tolerant

CORBA standard [14].
*This research has been supported by the Defense Advanced Research

Projects Agency in conjunction with the Office of Naval Research and the Air 1Unlike CORBA's ORB-level portable interceptors, Eternal’s Interceptor is
Force Research Laboratory, Rome, under Contracts N00174-95-K-0083 andIOP message interceptor that is not part of the ORB stack and is located
F3602-97-1-0248, respectively. outside the ORB, at the ORB’s socket-level interface to the operating system.

CORBA Application
EURUPIRHER PR Evolution
- Manager

Replication 3 Client Server

- Replica Replica Resource
Manager ¢ p ____________ p f Manager

|
CORBA ORB CORBA ORB
| [IOP Messages
Recove Replication «g<— * Replicatio Recovery

MechaniermQS. Meghanismt Interceptor Interceptor Mechanisms ->Mechanism

b

Reliable

Reliable > Totally Ordered Reliable
Multicast i i Multicast Message Multicast
L
tog ‘ Platform / Platform o0
Figure 1: The structure of the Eternal system.
2.1 Strong Replica Consistency true fault tolerance, it must be possible to recover a failed

replica, and to reinstate it to be useful again. However,
beforea new or recovered replica issues an invocation, per-
forms an operation, or returns a response, its state must be
synchronized with that of the other operational replicas of
the object. The focus of this paper is on Eternal’s mecha-
nisms for providing state transfer and recovery for strongly
consistent replicated CORBA objects.

For ensuring strong replica consistency of the application, ap-
plication objects must beéeterministicn their behavior so that

if two replicas of an object start from the same initial state,
and have the same sequence of messages applied to them, in
the same order, the two replicas will reach the same final state.
Challenges in maintaining replica consistency include:

e Ordering of operations. All of the replicas of each repli-
cated object must perform the same sequence of operatighs Supporting Replication Styles
in the same order to achieve replica consistency. Eternal
achieves this by exploiting a reliable totally-ordered multifhe mechanisms required for the consistent recovery vary with
cast group communication system for conveying the 110fe replication style — active replication, warm passive replica-
invocations (responses) to the replicas of a CORBA servién, cold passive replication — of the replicated object. For ac-
(client), thereby facilitating replica consistency under bottive replication, as shown in Figure 2(a), each server (client)
fault-free and recovery conditions. replica responds to (invokes) every operation. For passive repli-
)) L) cation, one of the replicas, designated the primary replica, re-
* Duplicate operathns. Repl|ca_t|on, by its very nature, onds to (invokes) every operation. With warm passive repli-
may lead .to duplicate operatlonsf. For gxamplg, Wh tion, as shown in Figure 2(b), the remaining passive replicas,
every replica of a three—_vvay replicated pllent object "nown as backups, are synchronized periodically with the pri-
vokes a method of a replicated server object, every Serygp, ranjica's state. With cold passive replication, a backup

replica will receive three copies of the same Invocatioyjic4 is loaded into memory and its state initialized from a log
one from each of the invoking client replicas. Eternal procinly if the existing primary replica fails
vides unique invocation (response) identifiers that enable '

the Replication Mechanisms to ensure that such duplicate
invocations (responses) from a replicated client (server) @el Recovering an Active Replica

never delivered to their target server (client) objects.))] o . .
) _) Masking the failure of an active replica is relatively simple. If an
e Multithreading. Many commercial ORBs and CORBA gctive replica fails while performing an operation, the remaining
applications employ multithreading, a significant source gf:tive replicas of the object continue to perform the operation
non-deterministic behavior. Replicas of a multithreadeghq return the result.

object might become inconsistent if the threads, and the . . . L .
. The failure of a single active replica is relatively easy to mask,
operations that they execute, are not carefully controlled. .) . : .
. : ; and is transparent to the other replicated objects involved in the
Eternal provides mechanisms [11] to ensure replica consis- i : o ; .
. . nested operation. Thus, active replication yields substantially
tency, regardless of the multithreading of the ORB or the . . . :
> more rapid recovery from faults. When a failed active replica
application. . . :
is recovered, the state of the new or recovering replica must be
e Recovery.Replicating an object allows it to continue prosynchronized with the consistent state of an existing operational

viding useful services when one of its replicas fails. Faeplica of the object.

Actively Replicated Actively Replicated Passively Replicated Passively Replicated

Client Object A Server Object B Client Object A ‘Server Object B
e RI1 Replica 2- . __-'Réﬁlical Replica 2 Repiica 3.
A, A, B, B, By . (Be;cllfgp) (Pﬁ%g;) 7 (Primary) (Backup) (Backup) .
: N > = Do : » » :
// / / __./,/ v,
S Ty e e 0 (e N (o (E e s R (o0 £ i et

LT T
N \, \ \
. \ v
Eternal Eternal ‘ Eternalﬂ ‘ Eteméj Eternal D Etemal Eternal ‘ Etemnal U ‘ Eternal U ‘ Eternal U
)] oy o # B A] 0 A K k)
Reliable multicast messaggs Reliable multicast messages

v Y Y

=

Duplicate invocation Duplicate respgnses
suppressed (a) suppresse (b)

State Transfer

Figure 2: Replication styles supported by the Eternal system (a) active replication and (b) passive replication.

3.2 Recovering a Passive Replica 4 Consistent State

If a backup replica fails, it can be simply removed while thE/nfortunately, the state required to recover a failed CORBA
operation continues to be performed by the primary replica. ®@plica consistently is not located in a single place. For the
the other hand, if the primary replica fails, one of the backup!rposes of recovery, every replicated CORBA object can be
replicas must be promoted to be the new primary replica. ~ regarded as having three kinds of stagplication-level state

Before the new primary replica can become fully operationgRB/POA-level stateandinfrastructure-level stateAny fault-
(and start processing normal invocations and responses), its S@ifgfant CORBA system that aims to provide strong replica con-
must be synchronized with the state that the old primary repligt€NCy must maintain consistent application-level, ORB/POA-
had just before it failed. However, because the old prima"?/vel state and infrastructure-level state across all of the replicas
replica is no longer available once it has failed, an operatiorfj|€VeY replicated CORBA object.

primary’s state must be periodically captured and logged so thgy Application-Level State

it is available for reinstating a new primary replica. S .
g P yrep Application-level state is represented by the values of the data

structures of the replicated object, and is completely determined

3.3 Logging Checkpoints and Messages by the application programmer. Of the three kinds of state, the

. . application-level state is possibly the most visible, and the easi-
Because the system continues to operate during the recoverygf, identify, retrieve and restore.
a replica, a recovering replica may be the target of normal in-1q gnaple application-specific state to be captured, in accor-
vocations and responses from other objects in the system, &48Rce with the Fault-Tolerant CORBA standard, every repli-
as it is having its state restored. Eternal does not discard thesg,y cOrRBA object must inherit the OMG-IDCheck-
normal invocations and responses, but instead, enqueues tB%mtable interface, shown in Figure 3.
(in the order of their receipt) at the Recovery Mechanisms hOStThiS inherited IDL interface has two methodg;¢_state()

ing the recovering replica. Once the replica is recovered, theq o, c1q7e(), both of which are intended to be implemented
Recovery Mechanisms dlspa_ltch the (-_znqueued invocations %S}qhe application programmer. Tlet_state() method, when
responses to the now-operational replica. invoked on a CORBA object, returns the current application-

For passive replication, Eternal periodically captures the plével state of the object. The:t_state() method with specific
mary’s state in the form of checkpoints. Eternal logs each cheglate as its parameter, when invoked on a CORBA object, over-
point and the ordered messages that follow that checkpoint, uifittes the object’s current application-level state with the value
the next checkpoint (which overwrites the previous checkpoirgj this parameter.
occurs. If the primary replica fails, the recovery action dependsBecause it is not possible to anticipate, or standardize on, the
on the replication style — warm or cold passive replication. Fesrmat of the application-level state of every application object,
warm passive replication, the backup replicas’ states are alreggy application-level state is defined to be of the CORBA type,
initialized to the primary’s last CheCprint; Eternal delivers thsny . A variable of typeany can “hold” any primitiVE, struc-
messages (that have been logged since the last checkpoint)#8d and user-defined CORBA type.
the new primary replica before allowing it to become opera- For active replication, recovery of application-level state in-
tional. For cold passive replication, Eternal must first launGfplves the retrieval of the current consistent application-level
the new primary replica before providing it with the primary'state via aget_state() invocation on an existing active replica,
last checkpoint, and the logged messages, inthatorder. and a transfer of the retrieved state vias@_state() invo-

For active replication, there is no need to log any checkpoirtation on a new or recovering replica. For passive replica-
or messages until a replica is being recovered. At that poitign, application-level state is periodically retrieved through a
Eternal’s mechanisms for synchronizing state transfer handle gh#_state() invocation on the primary replica, with the returned
retrieval of checkpoints and the logging of messages, just as éhreckpoint either logged (cold passive replication), or trans-
passive replication. ferred to the backup replicas (warm passive replication). The

I Generic definition of application-level state active replica is synchronized with that of an operational active
typedef any State; replica, the two replicas (the existing replica and the recovering
])] o replica) will differ in their respective ORB/POA-level states, un-
inz%?igioﬂzsaf;céi\?;ﬁgtﬁt}h application-level state transfer Iess_ th_ese are also sy_nchroni_zed_. |
exception InvalidStaté }; Similarly, for passive replication, under recovery, consis-
tent replication cannot be ensured through the transfer of

/I'IDL Interface to be inherited by every replicated object application-level state (from the old primary replica’s logged

interface Checkpointable

{ application-level checkpoints to the new primary replica) alone;
I/ Returns application-level state unless they are also synchronized, the respective ORB/POA-
State getstate() raises(NoStateAvailable); level states of the old and the new primary replicas will differ.

/1 Assigns application-level state In this paper, we describe hqw Eternal handles thg recovery
void setstate(in State s) raises(InvalidState); of ORB/POA-level state, in particular, GIOP request identifiers

} and information negotiated between the client and the server.

Figure 3: TheCheckpointable IDL interface that must be
inherited by every CORBA object in the application to enab

the checkpointing and transfer of application-level state. CORBAs General Internet Inter-ORB Protocol (GIOP) incor-
porates the notion of a request identifier, a number that uniquely
identifies a request-reply pair exchanged between a client and

state transfer, and state assignment (usirtgstate()) — must 2 S€Ver overa connection. The client-side ORB generates this

also occur in the totally-ordered message sequence to en§§9¢l"§S:d é?ognha pder;c?nr:/eitlon tbasi:]s, ?nd |nstef:tsnl1ttlr?t0 Tihent
replica consistency. standa eader of every outgoing request fro e clie

to the server over the connection. On its part, the server-side
4.2 ORB/POA-Level State ORSB retrieves theequest _id , and inserts it into the GIOP

Ideally, ORBs should be viewable as “black-boxes” that a%sa_derofthe corresppnding ”O.P reply message from the SEIVer.
stateless. In reality, because the ORB and the Portable Obj (R'Ca"y’ Fhe client-side ORB increments the per—connectlon
Adapter (POA) handle all connection-level and transport-le\} quest "d_ as the number of request_s sent by the chgnt over
information on behalf of a CORBA object that they suppor[,_e connection increases. _Trmquest -d allpws the cllent-_
the ORB and the POA necessarily maintain some informati e ORB to match_ a received 1IOP rt_eply with an outstanding
for the object. The existence of ORB/POA-level state impli ﬂg P request, Rep!|es w_hosequest -id s do not match are
that there really are no “stateless” objects from the viewpoi 1[scarded by the cl|e_nt-3|de ORB. o)
of recovery — a replicated CORBA object with no application- The example of Elgure 4 demonstrates the replica inconsis-
level state will nevertheless have ORB/POA-level state asdgNCY that ensues if ORB/POA-level state, such asrére
ciated with it. ORB/POA-level state is modified as the OREUESt -id , is not synchronized during recovery.
creates objects, establishes connections and processes incomihigure 4(2) shows an existing replica of an actively replicated
messages. client objectA that issues an invocation (say, of meth&cbf

The ORB/POA-level state for a CORBA object consists diPiectB). This request carriesraquest _id of 350, assigned
the values of various data structures (last-seen request identiR¥rthe client-side ORB hosting this replica. Assume that this
threading policyetc) stored by the ORB, at runtime, on behalfeplica receives the response to _thls 350th invocation, and _that a
of the object. Unfortunately, these “pieces” of ORB/POA-levél€W replica of the same object, is now launched, and that its
state are not visible at the level of the CORBA object. The ifPplication-level state (but not the ORB/POA-level state, such
ternal ORB/POA-level state is not standardized, and thus, Asttherequest _id stored by the ORB) is synchronized with
identical across ORBs from different vendors. Indeed, sulfit of the existing replica.
standardization would be contrary to the Object ManagementThe last outgoing invocation from any existing replica of
Group’s philosophy of standardizing ORB interfaces, and ndt carried arequest _id of 350, which its client-side ORB
their implementations. “remembers.” Unfortunately, the new replica’'s ORB does not

The vendor-specific form of the ORB/POA-level state renknow” this current value of theequest _id counter held
ders it a source of non-determinism if different replicas of tH&Y an existing replica’s ORB. Thus, the new replica’s ORB as-
same object are hosted on different vendors’ ORBs. Thus, f&igns aninitial value, typically 0, to its equivaleetjuest _id
all practical purposes and for the rest of this paper, a stronggunter. If both replicas now dispatch their next invocation on
consistent replicated object has all of its replicas running oveplect B, as shown in Figure 4(c), the existing replica’s ORB
an ORB from the same ORB vendor. assigns the correcequest _id of 351 to its outgoing invo-

When a CORBA object is replicated, each replica has its ogtion, while the newly-recovered replica’s ORB assigns-a
ORB on a distinct processor. For active replication under néfuest -id of 0 to its outgoing invocation. Thus, although the
mal operation, if the object and the ORB are deterministic, bdif{0 invocations are identical in content, theequest _id s
the application-level and the ORB/POA-level state will be aut&lffer.
r_natwally consistent across all repllca}s atthe enq of every_operdiFor multi-tiered CORBA applications, the middle-tier plays the roles of
tion. However, under recovery, consistent state is more difficyliin client and server; replication of the middle-tier objects involves replicat-
to achieve. Even if the application-level state of the recoveriig both the client-side and the server-side code.

%2.1 GIOP Request Identifiers

three phases of recovery — state retrieval (usiagstate()),

Existing replica
of object A

Invocation of
method X
of object B

A4

ORB

Last-seen
outgoing
request_id

request_id

@)

< —>
GIOP Header

Eternal's Mechanism

5

Reliable multicast message
for invocation

Existing replica
of object A

- Application-level
* state retrieval
. (response tget_state()

A

Recovering replica

of object A

A

- Application-level
- state assignment
* (set_state()nvocation)

Last-seen
ORB outgoing
request_id

Newly
ORB @ initialized
request_id

Application-level

(b) - state retrieval

- (response tget_state()

v

"
A
- Application-level

* state assignment
- (set_state()nvocation)

Eternal’'s Mechanisms Eternal’'s Mechanisms
A
Reliable multicast message for :
application-level state transfer
Existing replica Recovering replica
of object A of object A
Invocation of Invocation of
method X method X
of object B of object B
Last-seen| Last-seen
ORB outgoing ORB E outgoing
request_id request_id
(C) request_id request_id
351 Request bod 0 Request bod
—>
,ﬁop Header GIOP Header
v

Eternal's Mechanisms

Eternal’s Mechanisms

Reliable multicast message
for invocation

Reliable multicast message
for invocation

The first of the two invocations to readhwill be delivered,
and the other will be discarded as a duplicate. If the invocation
delivered toB has arequest _id of 0, B’s server-side ORB
will insert arequest _id of 0 in its outgoing IIOP reply. Un-
fortunately, when this reply reaches the ORBs hosting the two
replicas ofA, only the ORB that assigned thequest _id of
0 (which, in this case, is the newly-recovered replica’s ORB)
will deliver the response to its replica. The ORB that hosts the
existing replica (and that assignedemjuest _id of 351) will
detect a mismatch between its expectgliest _id (351)and
the receivedequest _id (0). Thus, this ORB will not deliver
the otherwise correct reply to its replica, which will now wait
forever for a reply from the server.

To avoid this, a new replica’s ORB must hold the same value
for request _id counter as that held by ORBs hosting oper-
ational replicas of the same object. Otherwise, the mismatch
between the returnectquest _id (from the server) and the
transmittedequest _id (from the client) will cause one or the
other of the client-side ORBs to discard a perfectly valid reply
from the server.

This request _id information is buried within the client-
side ORB, and there are no “hooks” in today’s ORBs to retrieve
this information. Fortunately, theequest _id information is
visible from outside the ORB, in the IIOP request and response
messages that are sent by the ORB.

By parsing every outgoing IIOP request message sent by a
client-side ORB, Eternal can discover, and store, the ORB’s cur-
rent setting for theequest _id for each of the ORB’s connec-
tions. Furthermore, by transferring this stored value forthe
quest _id , at the point of recovery, from the Recovery Mech-
anisms hosting an existing replica to the Recovery Mechanisms
hosting a new replica, Eternal system ensures that the GIOP
headers of all outgoing IIOP request messages from both new
and existing replicas are consistent.

4.2.2 Client-Server Handshake

CORBA allows client-side and server-side ORBs to exchange
vendor-specific information with each other. This does not de-
tract from CORBA's interoperability because vendor X’s ORB
will not understand vendor Y’s ORB-specific information, and
can ignore it.

CORBA's GIOP allows vendor-specific information to propa-
gate from the client to the server through tBerviceCon-
text field of IIOP request messages. The server-side ORB
can examine, modify, and return ttf8erviceContext inits
replies to the clientServiceContext s can be encapsulated
into every client and server message, but are particularly used in
the initial “handshake” between the client and the server.

e Vendor-specific shortcuts. The ServiceContext in-
formation may enable the client-side ORB and the server-
side ORB to “recognize” that they are from the same ven-
dor, and to use this awareness for more efficiency using
vendor-specific shortcuts. For example, client-side and
server-side VisiBroker 4.0 ORBs can initially negotiate a
shorter object key for use, instead of the complete object

Figure 4: Replica inconsistency due to different GI@R

quest _id s assigned by client-side ORBs hosting an existing
and a recovering replica. In this example, only application-level *
state is being synchronized.

key, in subsequent IIOP requests from the client.

Code set negotiationA transmission code set is the com-
monly agreed-upon encoding used for character and wide-

character data transfer between the client’s and server's The invocations that the replica has issued, and for which
ORBs. The client-side ORB can determine a server’s code the replica is awaiting responses,
sets from the code set component that the server-side ORB . .
; . : , . . X e The invocations and responses that have been enqueued
inserts into its server's published IORThe client-side : S ; .

S . . (while the replica is not quiescent) for delivery to the
ORB uses this information to choose character and wide- . ; .

o ; replica when it becomes quiescent,

character transmission code sets for its subsequent com-
munication with the server. Codeset negotiation is not per-e The replication style of the replica, including whether it
formed on a per-request basis, but only when a client ini- is an active, warm passive primary, warm passive backup,
tially connects to a server. cold passive primary or cold passive backup replica,

The Eternal-generated operation identifiers that enable the
Recovery Mechanisms to filter duplicate invocations and
responses intended for the replica.

Regardless of the purpose that the initial client-server hand-*
shake serves, both the client-side and server-side ORBs store
the results of their initial negotiation, on a per-connection ba-

sis. This constitutes ORB/POA-level state that must be appro—During recovery, the Recovery Mechanisms hosting an ex-
priately handled during recovery. X

:) N)) isting replica “piggyback” the infrastructure-level state for the
C(_)nS|der a client communicating with a replicated SerVerreplica onto the application-level state and the ORB/POA-level
B with a “?P"?"?‘Bl- Assume thai and B, have already com- state that they transfer to the Recovery Mechanisms hosting the

pleted their initial handshake, and th&s ORB now stores the new replica.
nggotlated mformaﬂo_n, and encapsulategg(in the Ser- The Recovery Mechanisms that receive the three kinds of
viceContext field) in every request that it sendsB When

. . . . state assign the application-level state first, the ORB/POA-level
a new replicaB; of object B is launched, the client does state next, and finally, the infrastructure-level stadéoreallow-

not (and indeed, should _n_ot, in the interests of rep!ication trar?ls‘- the new replica to become fully operational, and to receive
parency) detect the addition of a new server replica and, thH ‘process any normal incoming invocations or responses. The

will not reenact this negotiation with. retrieval, as well as the assignment, of the three different kinds

Unfortunately,B,’s server-side ORB, having missed the iniy¢ state appears as a single atomic action so that the state trans-

tial clignt-sgrver handshake, is unable to interpret the alreaglyr ¢ the three kinds of state occurs at a single logical point in
negotiated information iM’s requests. ThusA’s requests, 4.

when delivered taB,'s ORB, will be discarded. Thus, although
B>’s application-level state might be recovered, its ORB/PO
level state is not sufficiently restored as to allow it to procé&'ss % State Transfer
requests and function normally, as the existing repligaloes. The frequency of state retrieval or checkpointing is determined
Eternal restores the negotiated ORB/POA-level state to the a per-replicated-object basis, by the user, at the time of de-
ORB of a new server replica by storing the client's handshakéoying the application, when all other fault tolerance properties
message (that initiated the client-server negotiation), and by @esplication style, number of replicas, location of replicas, etc)
livering this message to the new server replica’s Qitigad of for the replicated object are also determined.
any other IIOP request from the client. This artificial injection By no means does the checkpointing frequency guarantee
of the client’'s handshake message into the new server repliadat the replicated object will perform the state retrieval (via a
ORB causes the server-side ORB to initialize its ORB/POAyet_state() operation) immediately. The replicated object may
level state (in terms of the client-server negotiated informbe in the middle of another operation, or may be blocked wait-
tion) with that of the ORBs hosting operational replicas of thiag for a responsegtc To decide on the appropriate time to
same server object. The new server replica’s response to thetiver theget_state() invocation, the Eternal system must de-
artificially-injected handshake confirms, to Eternal’s Recovetgrmine the moment that the object is quiesceat, when it is
Mechanisms, the correct synchronization of ORB/POA-levésafe”, from the viewpoint of replica consistency, to deliver a
state for the new server replica, and can be safely discarded.new invocation to the object. Determining whether an object is
guiescent is a non-trivial exercise — it involves examining the
4.3 Infrastructure-Level State status of current invocations on the object, the threads that are

Infrastructure-level staté. is completely independent of, andcurrently executing within the process containing the object, and
invisible to, the replicated object as well as to the ORB and tfi@ta that the object may share with other in-process collocated
POA, and involves only information that Eternal needs for maibjects. The use afneway s, CORBA-supported invocations
taining consistent replication. The infrastructure-level state cdfat do not return responses, introduces additional complications
tains information essential for duplicate detection and garba§é quiescence. Eternal provides mechanisms to ascertain the
collection of the log. quiescence of a CORBA object prior to delivering an invocation
For every operational replica that it hosts, Eternal’s Recovefit — these mechanisms are outside the scope of this paper.
Mechanisms (running on the same processor as the replica) sg

: ; . 't Synchronization of State Transfer Messages
information locally regarding:

During recovery, the current application-level state must first be
3A server’s Interoperable Object Reference (IOR) is a stringified representatrieved from an existing replica or a log before it can be as-

tion of the server's host name, port number, object ke, signed to a new replica. In the transfer of state from an exist-
Infrastructure-level state is not unique to the Eternal system. In fact, an

system that provides fault tolerance must maintmestate on behalf of the N9 repl_ica to a new or reCOVerin_g replica, _it is important that
replicated objects that it hosts. the retrieval of state from the existing replica and the assign-

Existing
Replica
(of object A)

New
Replica

(of object A)

get_state(ylelivered to

the existing replica

Eternal's
Mechanisms

get_state(Jriggers
engueueing of messages

get_state(|

Eternal’s
Mechanisms

Totally ordered sequence of multicast messages

(iif)

Existing
Replica A
(of object A)

get_state(yeturns the
application-level state

New
Replica A
(of object A)

1IOP Message
Engine

Invocation X|

set_state()

s ! Invocation Y
invocation

Eternal’s
Mechanism

Eternal's

Mechanisms

Totally ordered sequence of multicast messages

Existing
Replica

(of object A)

Invocation X dequeued and
delivered to the existing replica

New
Replica
(of object A)

set_stateverwritesget_state
at the head of the queue and
is delivered to the new replica

Invocation Y

dequeued when

Invocation X
completes

Invocation Y

set_state(

Eternal’s
Mechanism

Invocation X

Invocation Y

Eternal's
Mechanisms

Totally ordered sequence of multicast message

(i

(iv)

set_state(

(Vi)

Invocation X dequeued and
delivered to the existing replica

Existing New
Replica Replica
(of object A) (of object A)
get_state(peing
processed by replica
Invocations enqueued til
get_state(yeturns
Invocation X get_state(
Invocation X|
Eternal’s Etemal’'s
Mechanism Mechanisms
Totally ordered sequence of multicast messages
Existing New
Replica Replica
(of object A)

(of object A)

Invocation Y/

set_state(

Eternal’s
Mechanism

get_state

Invocation X

Invocation Y

set_state(

Eternal’'s

Mechanisms

Totally ordered sequence of multicast messages

Existing
Replica
(of object A)

New

Replica A
(of object A)

set_séne ()

retumns
successfully

4
Invocation X delivered
whenset_state(fompletes
%eiéeg'%l:é) set_state(Invocation X
Invocation Y
Eternal’s Eternal's
Mechanism Mechanisms

TotaIIy ordered SequcrcCe O1 ulutast Hiessayt

Figure 5: Synchronization of state retrieval and state assignment messages for consistent replication.

ment of the retrieved state at the new or recovering replica Recovery Time for a Server Replica
seen to occur at the santagical point in time. Otherwise, the 1
state retrieved by theet_state() invocation will not be the state 7
assigned by theet_state() invocation. The tricky issues of | * |
synchronizing the transfer of state are handled by the Recow M *

Mechanisms.

Theget_state() invocation must be delivered only to the ex-
isting replicas that have the current consistent state of the rej;
cated object; theet_state() invocation must be delivered only 5 *°f]
to the new replica. Both invocations are received, in the s§357
guence of multicast messages, by the Mechanisms hosting b *
the new and the existing replicas of the object. However, t" -]
receipt of the invocations results in different actions, dependit | ¥
on whether the receiving Recovery Mechanisms host either -
existing or a new replica. 20]

Figure 5 shows two replicas of a replicated objd¢twhere ¢+ ‘ ‘ ‘ ‘ ‘
A; is an existing replica, and, is a new replica, and the se- ° 08 Sine of applicationlevel state for replica (o) 8 Xmi“‘"
guence of steps in synchronizing the state transfer of the repli-

cated object. Figure 6: Variation of the recovery time for a server replica with

Step (i): At the existing replicad,, Eternal delivers the the size of the replica’s application-level state.
get_state() invocation as shown in Figure 5(i). However, be-
cause _the NEw or recovering replidg has not ye_t been |n|_t|al— %elivered toA,. At the existing replicad,, the set_state() in-
ized with the correct consistent state of the replicated object, the . " . . .

o) . vocation is enqueued in the order of its arrival.
get_state() operation is not delivered to the new replica. In-
stead, the receipt of thget_state() invocation triggers Eternal Step (vi): The set_state() invocation on the new or recover-
to start the enqueueing of normal incoming 1IOP messagesired replica returns a response (without throwing an exception),
the new or recovering replica. and the new replical, is now recovered and ready to process
. . - . . . normal invocations and responses. The enqueued messages are
Step (ii): While the existing replicad, is performing the delivered, in order, to the new or recovering replica, as shown

get-state() operation, regular invocations (such as Invocatiog Figure 5(vi). Theset_state() invocation, when it reaches the

X shown in Figure 5(ii)) might arrive for the replicated objec’;] fth h o icavill Simol
A. Becaused; is in the middle of an operation, these incom—ead of the message queue atthe existing replicavill simply

ing invocations are not immediately delivered4g. Because be discarded becausf s already recovered.

As has not yet been recovered with the correct state, these inThus, the loggegdet_state() invocation at the new or recover-

vocations are not delivered t;, either. Eternal enqueues suchng replica is used to represent tate synchronization poirin

regular incoming messages, at both replicas, for later deliveryhe totally ordered message sequence, at which the state assign-
)) . ment must occur through its counterpsgt_state() invocation.

Step (iii): The get_state() invocation completes, as Shown inpyig careful synchronization of the positions of ge_state()

Figure 5(iii). Eternal extracts the return value of the 'nvocadndset_state() messages in the incoming invocation sequence

tion, _and uses it as the pare_lmeter ofed_state() invocgtion at the new and existing replicas is essential to consistent recov-
that it fabricates. Eternal “piggybacks” the relevant pieces ny of every replicated object

ORB/POA-level state and infrastructure-level state to the fabri-
catedset_state() invocation. 6

a1
=}
T
I

eplica (ms)
S
&
T
*
*
I

Implementation and Performance

Step (iv): The set_state() invocation is multicast, along with The Eternal svstem provides support for the replication of
the piggybacked ORB/POA-level state and the infrastructure- y P bp P

level state associated with the existing replita ReplicaA4; unmodified CORBA objects running over unmodified com-

is once again free to process invocations; Eternal delivess to ”?e“:ia' O.RBS’ including Inprise’s VisiB_roker, Ion_a Te(_:hnolo—
the ordered messages (such as Invocatisnand Y) that ar- gies’ Orbix, Xerox PARC’s ILU, Washington University, St.

rived for A, while A; was processing theget_state() invoca- (L:)O.U'S Tg\% Vertels,ec*)(;FéB, Experg?;crs C(?IT_Bﬁplus, ij,e ct-
tion. Figure 5(iv) shows the first such enqueued invocafion 'rlente oncepts acus an & a oratorles' om-
being dequeued and delivered to the existing replica mORBZ. Thg overheads, under nqrmal fau_lt—free operatloq, of
the interception, multicast and replica consistency mechanisms
Step (v): When the set_state() invocation is received by of our prototype Eternal system are reasonable, within the range
Eternal at the new or recovering replica, as shown in Figf 10-15% of the response time for fault-tolerant CORBA test
ure 5(v), this invocation overwrites the message at the heagblications, over their unreplicated counterparts.
of the message queue (a position previously occupied byThe performance of the Eternal system during the recovery
the get_state() invocation). The piggybacked ORB/POA-of a new or failed replica of an object is shown in Figure 6.
level state and infrastructure-level state are extracted and &Be graph shows the time to recover a server replica in a test
signed to their respective counterparts for repiga while the application developed with Inprise’s VisiBroker 4.0 C++ ORB.
set_state() invocation containing the application-level state i¥he measurements were taken over a network of dual-processor

167 MHz UltraSPARC workstations, running Solaris 2.7, angplication. Strategies similar to checkpointing are used for dis-
connected by a 100 Mbps Ethernet. seminating state updates in passive replication.

The client object of the test application acts as a packet driver,The FRIENDS [6] system aims to provide mechanisms for
sending a constant stream of two-way invocations to the dalding fault-tolerant applications in a flexible way through the
tively replicated server object. During the experiments, one ase of libraries of metaobjects. Separate metaobjects can be
the other of the server replicas was killed and then re-launchpthvided for fault tolerance, security and group communication.
The time to recover such a failed replica was measured as FHRIENDS is composed of a number of subsystems, including a
time interval between the re-launch of the failed replica and tfault tolerance subsystem that provides support for object repli-
replica’s reinstatement to normal operation. The graph showaation and detection of faults. A number of interfaces similar
the recovery times obtained with this test application for varyirig ourCheckpointable interface are provided for capturing
sizes (from 10 bytes to 350,000 bytes) of the application-levble state of an object to stable storage, and for transmitting the
state that is transferred across the network to recover a faifgtnary replica’s state to the backup replicas in the case of pas-
server replica. The ORB/POA-level state and the infrastructudve replication.
level state are independent of, and therefore do not vary with,Other systems have been developed that address issues related
the size of the application-level state. to consistent object replication and fault tolerance in the con-

Regardless of the size of the application-level state, the entiggt of CORBA. The Object Group Service (OGS) [7] provides
application-level state is encapsulated in a single IOP messagglication for CORBA applications through a set of CORBA
by the ORB. However, at the transport layer of the reliable mulservices. Replica consistency is ensured through group commu-
cast system, the Ethernet medium necessitates the fragmentatioation based on a consensus algorithm implemented through
of any IIOP message that is larger than the maximum EtherG8DRBA service objects. OGS provides interfaces for detecting
frame size (1518 bytes). This implies that large {518 bytes) the liveness of objects, and mechanisms for duplicate detection
IIOP messages will be transmitted over the Ethernet by Eténd suppression, and for the transfer of application-level state.
nal using multiple multicast messages. Thus, for any replicatedDeveloped at the University of Newcastle, Newtop is a group
object, the number of multicast messages needed to transfec@gmmunication toolkit that is exploited to provide fault toler-
state, and therefore the time to recover a new or failed repliaace to CORBA using the service approach. While the funda-
of the object, increases with the size of the object’s applicatiomental ideas are similar to OGS, the Newtop-based object group
level state, as seen in the graph. service [8] has some key differences. Of particular interest is the

Thus, in addition to the resource usage of an object, the siay this service handles failures due to partitioning — support is
of the object’s application-level state, and the constraints pladgei@vided for a group of replicas to be partitioned into multiple
on the object’s recovery time, also influence the choice of tisgb-groups, with each sub-group being connected within itself.
object's replication style — active replication (more resourcé&lo mechanisms are provided, however, to ensure consistent re-
intensive, fewer state transfers, faster recovesypassive repli- merging of the sub-groups once communication is reestablished
cation (less resource-intensive, more frequent state transfégiween them.

slower recovery). The Maestro toolkit [17] includes an IIOP-conformant ORB
with an open architecture that supports multiple execution styles
7 Related Work and request processing policies. The replicated updates exe-

cution style can be used to add reliability and high availabil-

Much of the early work on systematic message loggirity properties to client/server CORBA applications in settings
[5] in distributed systems was undertaken by Elnozahy amhere it is not feasible to make modifications at the client side,
Zwaenepoel in their Manetho system [4]. They devised algas is the case for unreplicated clients wishing to contact repli-
rithms for sound uncoordinated logging that avoid cascaded rajated objects.
backs during recovery, at the expense of rather complex recovThe AQUA architecture [3] is a dependability framework that
ery algorithms. Interesting recent work on logging and recovepyovides object replication and fault tolerance for CORBA ap-
has been undertaken by Alvisi and Marzullo. In [1] they investplications. AQUA exploits the group communication facili-
gated conditions under which no process s left in an inconsisteigls and the ordering guarantees of the underlying Ensemble
state, while in [2] they addressed the piggybacking of nondetand Maestro toolkits to ensure the consistency of the repli-
ministic operations onto messages in the message log to engiaed CORBA objects. AQUA supports both active and passive
deterministic replay. replication, with state transfers to synchronize the states of the

The Delta-4 system [16] was aimed at providing fault tolebackup replicas with the state of the primary replica in the case
ance in a distributed Unix environment, through the use of af passive replication.
atomic multicast protocol to ensure tolerate crash faults at theThe Distributed Object-Oriented Reliable Service (DOORS)
process level. Delta-4 included support for active replicatiofi,2] provides fault tolerance through a service approach, with
passive replication, as well as hybrid semi-active replication GORBA objects that detect, and recover from, replica and pro-
software components on distinct processors. Backward ereessor faults. The system provides support for resource manage-
recovery is achieved by integrating checkpointing with intement based on the needs of the CORBA application. DOORS
process communication. employs libraries for the transparent checkpointing [18] of ap-

The Arjuna system [15] uses object replication togethelications; however, duplicate detection and suppression are not
with an atomic transaction strategy to provide fault tolerancaddressed.
The types of replication supported include active replication, OGS, AQuUA, Maestro and DOORS deal with the consis-
coordinator-cohort passive replication and single-copy passteacy of application-level state by having application objects

inherit from an IDL interface with state retrieval and assign-[6] J. C. Fabre and T. Perennou. A metaobject architecture
ment methods similar to those of oGheckpointable IDL for fault-tolerant distributed systems: The FRIENDS ap-
interface. To the best of our knowledge, however, none of proach. IEEE Transactions on Computerdg7(1):78-95,
these fault-tolerant CORBA systems has addressed the issues of 1998.

ORB/POA-level state and infrastructure-level state that are ej7

sential in ensuring strongly consistent replication and recovery.] P Felber, R. Guerrapw, and A. Sch|per. The implementa-
tion of a CORBA object group servic&heory and Prac-

tice of Object System4(2):93—-105, 1998.

8 Conclusion [8] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little.
Design and implementation of a CORBA fault-tolerant ob-
ject group service. IProceedings of the Second IFIP WG
6.1 International Working Conference on Distributed Ap-

The Eternal system provides support for the consistent replica-
tion and recovery of unmodified CORBA client and server ob-
jects running over unmodified CORBA-compliant off-the-shelf T R
ORBs. Eternal's Recovery Mechanisms include support for the plications and Interoperable Systedelsinki, Finland,
logging of messages and the logging of checkpoints, as well as June 1999.
for the retrieval, transfer and assignment of state. [9] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
For every replicated CORBA object that it supports, Eter- Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
nal maintains the consistency of the three kinds of state — tolerant multicast group communication systeGoemmu-
application-level state, ORB/POA-level state and infrastructure- nications of the ACM39(4):54—63, April 1996.
level state — that are inevitably present in a fault—tolerag%] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Con-
CORBA s_ystem. Eternal ensures that. the threg Kinds of state ar sistent object replication in the Eternal systérheory and
synchronlzed across all of t_he (?perat_longl replicas of a CORBA Practice of Object Systené(2):81-92, 1998.
object, regardless of the object’s replication style, and in a man-
ner that is transparent to the ORB and to the CORBA applidd-l] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. En-
tion. Eternal’s enqueueing and dispatching of the messages for forcing determinism for the consistent replication of multi-
retrieving and assigning the three kinds of state ensures that the threaded CORBA applications. Rroceedings of the IEEE
recovery of failed replicas is concurrent with the normal opera- 18th Symposium on Reliable Distributed Systepages
tion of existing replicas; thus, Eternal allows the system to con- 263-273, Lausanne, Switzerland, Oct. 1999.
tinue operating i.n.the presence of faults, and during recovery, 12] B. Natarajan, A. Gokhale, S. Yajnik, and D. C.
True to the spirit of the new Fault-Tolerant CORBA standard ~ gchmidt. DOORS: Towards high-performance fault-

that it implements, Eternal maintains strong replica consistency, igjerant CORBA. IrProceedings of the International Sym-

as replicas process invocations and responses, as faults occur, posium on Distributed Objects and ApplicatipAsitwerp
causing replicas to fail, and as it recovers replicas after a fault. Belgium, September 2000.

[13] Object Management Group. The Common Object Re-
References quest Broker: Architecture and specification, 2.3 edition.

. , o OMG Technical Committee Document formal/98-12-01,
[1] L. Alvisi and K. Marzullo. Message logging: Pessimistic, June 1999.

optimistic, causal, and optimallEEE Transactions on

Software Engineering®4(2):149-159, February 1998. [14] Object Management Group. Fault tolerant CORBA

21 K. Bhatia. K. M I 4L ANisi. Th lati (adopted specification). OMG Technical Committee Doc-
[2] K. Bhatia, K. Marzullo, and L. Alvisi. The relative over- ment orbos/2000-04-04, March 2000.

head of piggybacking in causal message logging protocols.

In Proceedings of the 17th IEEE Symposium on Reliati#5] G. Parrington, S. Shrivastava, S. Wheater, and M. Little.
Distributed Systemspages 348-353, West Lafayette, IN, ~ The design and implementation of AfjundSENIX Com-
October 1998. puting Systems Journa(3):255-308, Summer 1995.

[3] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakkel},6] D. Powell. Delta-4: A Generic Architecture for Depend-
M. E. Berman, D. A. Karr, and R. Schantz. AQUA: An able Distributed ComputingSpringer-Verlag, 1991.
adaptive architecture that provides dependable distributﬁe}] A. Vaysburd and K. Birman.

objects. InProceedings of the IEEE 17th Symposium 4, pjiiding reliable interoperable distributed applications
on Reliable Distributed Systempages 245-253, West ith multiple execution stylesTheory and Practice of Ob-

Lafayette, IN, October 1998. ject Systems(2):73-80, 1998.

[4] E. N. ElInozahy and W. Zwaenepoel. Manetho: TranspaﬁS] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. M. R.
ent roll back-recovery with low overhead, limited rollback, Kintala. Checkpointing and its applications. Proceed-

and fast output commitEEE Transactions on Computers ings of the 25th IEEE International Symposium on Fault-

41(5):526-531, May 1992. Tolerant Computing pages 22-31, Pasadena, CA, June
[5] E. N. Elnozahy and W. Zwaenepoel. On the use and imple- 1995.

mentation of message logging. Rroceedings of the 24th

IEEE Fault-Tolerant Computing Symposiupages 298—

307, Austin, TX, June 1994.

The Maestro approach

