
State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects�

P. Narasimhan, L. E. Moser and P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

priya@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Abstract
The Eternal system provides transparent fault tolerance for
CORBA applications, without requiring the modification of ei-
ther the application or the ORB. Eternal replicates the appli-
cation objects, and ensures strong replica consistency by em-
ploying reliable totally-ordered multicast messages for convey-
ing the IIOP messages of the application. To maintain replica
consistency even as replicas fail and are recovered, Eternal en-
sures the retrieval, assignment and transfer of the three kinds
of state – application-level, ORB/POA-level and infrastructure-
level state – that are associated with each replicated object.
Eternal’s mechanisms for recovery include the synchronization
of the state retrieval and the state assignment messages, as well
as the logging and replay of messages and checkpoints.

1 Introduction
Standards, such as the Object Management Group’s Common
Object Request Broker Architecture (CORBA) [13], aim to sim-
plify application development by freeing the application pro-
grammer from low-level system details. CORBA applications
consist of client objects and server objects, with client objects
invoking server objects that return responses to the client ob-
jects after performing the desired operations. CORBA’s Object
Request Broker (ORB) acts as an intermediary between a client
object and a server object, allowing them to interact, transcend-
ing differences in their programming languages and their physi-
cal locations. The Portable Object Adapter (POA), a server-side
entity that deals with the actual implementations of a CORBA
server object, allows application programmers to build imple-
mentations that are portable across different vendors’ ORBs.
CORBA’s General Internet Inter-ORB Protocol (GIOP) and its
TCP/IP-based mapping, the Internet Inter-ORB Protocol (IIOP),
allow client and server objects to communicate regardless of dif-
ferences in their operating systems, byte orders, hardware archi-
tectures, etc.

Enhancing CORBA with fault tolerance while maintaining
CORBA’s transparency and simplicity of application program-
ming is a challenge. The Eternal system [10] addresses this
challenge by providing fault tolerance for CORBA applications,
without requiring the application programmer to be concerned
with the difficult issues of fault tolerance. The value of Eter-
nal in developing fault-tolerant CORBA applications lies in the

�This research has been supported by the Defense Advanced Research
Projects Agency in conjunction with the Office of Naval Research and the Air
Force Research Laboratory, Rome, under Contracts N00174-95-K-0083 and
F3602-97-1-0248, respectively.

transparencyof its approach,i.e., neither the CORBA applica-
tion nor the ORB needs to be modified to benefit from the fault
tolerance that the Eternal system provides.

2 The Eternal System
The Eternal system provides fault tolerance for applications
running over commercial off-the-shelf implementations of
CORBA. The mechanisms implemented in the Eternal system
work together efficiently to providestrong replica consistency
with low overheads, and without requiring the modification of
either the application or the ORB.

In the Eternal system, the client and server objects of the
CORBA application are replicated, and the replicas are dis-
tributed across the system. Different replication styles – active,
cold passive and warm passive replication – of both client and
server objects are supported. To facilitate replica consistency,
the Eternal system conveys the IIOP messages of the CORBA
application using the reliable totally-ordered multicast messages
of the underlying Totem system [9].

The structure of the Eternal system is shown in Figure 1. The
Eternal Replication Manager replicates each application object,
according to user-specified fault tolerance properties (such as
the replication style, the checkpointing interval, the fault moni-
toring interval, the initial number of replicas, the minimum num-
ber of replicas,etc.) and distributes the replicas across the sys-
tem.

The Eternal Interceptor1 captures the IIOP messages (con-
taining the client’s requests and the server’s replies), which are
intended for TCP/IP, and diverts them instead to the Eternal
Replication Mechanisms for multicasting via Totem. The Eter-
nal Replication Mechanisms, together with the Eternal Recovery
Mechanisms, maintain strong consistency of the replicas, detect
and recover from faults, and sustain operation in all components
of a partitioned system, should a partition occur.

The Eternal Resource Manager monitors the system re-
sources, and maintains the initial and the minimum number of
replicas. The Eternal Evolution Manager exploits object repli-
cation to support upgrades to the CORBA application objects.
The Replication Manager, the Resource Manager and the Evo-
lution Manager are themselves implemented as collections of
CORBA objects and, thus, can benefit from Eternal’s fault tol-
erance. The Eternal system implements the new Fault Tolerant
CORBA standard [14].

1Unlike CORBA’s ORB-level portable interceptors, Eternal’s Interceptor is
an IIOP message interceptor that is not part of the ORB stack and is located
outside the ORB, at the ORB’s socket-level interface to the operating system.



IIOP Messages

Platform

Reliable
Multicast

Reliable
Multicast

Recovery
Mechanisms

Recovery
Mechanisms

Platform

Interceptor

CORBA ORB CORBA ORB

CORBA Application

Client
Replica

Server
Replica

Reliable 
Totally Ordered

Multicast Messages

Replication
Mechanisms

Replication
Mechanisms

Replication
Manager

Resource
Manager

Evolution
Manager

Log Log

Figure 1: The structure of the Eternal system.

2.1 Strong Replica Consistency

For ensuring strong replica consistency of the application, ap-
plication objects must bedeterministicin their behavior so that
if two replicas of an object start from the same initial state,
and have the same sequence of messages applied to them, in
the same order, the two replicas will reach the same final state.
Challenges in maintaining replica consistency include:

� Ordering of operations. All of the replicas of each repli-
cated object must perform the same sequence of operations
in the same order to achieve replica consistency. Eternal
achieves this by exploiting a reliable totally-ordered multi-
cast group communication system for conveying the IIOP
invocations (responses) to the replicas of a CORBA server
(client), thereby facilitating replica consistency under both
fault-free and recovery conditions.

� Duplicate operations. Replication, by its very nature,
may lead to duplicate operations. For example, when
every replica of a three-way replicated client object in-
vokes a method of a replicated server object, every server
replica will receive three copies of the same invocation,
one from each of the invoking client replicas. Eternal pro-
vides unique invocation (response) identifiers that enable
the Replication Mechanisms to ensure that such duplicate
invocations (responses) from a replicated client (server) are
never delivered to their target server (client) objects.

� Multithreading. Many commercial ORBs and CORBA
applications employ multithreading, a significant source of
non-deterministic behavior. Replicas of a multithreaded
object might become inconsistent if the threads, and the
operations that they execute, are not carefully controlled.
Eternal provides mechanisms [11] to ensure replica consis-
tency, regardless of the multithreading of the ORB or the
application.

� Recovery.Replicating an object allows it to continue pro-
viding useful services when one of its replicas fails. For

true fault tolerance, it must be possible to recover a failed
replica, and to reinstate it to be useful again. However,
beforea new or recovered replica issues an invocation, per-
forms an operation, or returns a response, its state must be
synchronized with that of the other operational replicas of
the object. The focus of this paper is on Eternal’s mecha-
nisms for providing state transfer and recovery for strongly
consistent replicated CORBA objects.

3 Supporting Replication Styles

The mechanisms required for the consistent recovery vary with
the replication style – active replication, warm passive replica-
tion, cold passive replication – of the replicated object. For ac-
tive replication, as shown in Figure 2(a), each server (client)
replica responds to (invokes) every operation. For passive repli-
cation, one of the replicas, designated the primary replica, re-
sponds to (invokes) every operation. With warm passive repli-
cation, as shown in Figure 2(b), the remaining passive replicas,
known as backups, are synchronized periodically with the pri-
mary replica’s state. With cold passive replication, a backup
replica is loaded into memory and its state initialized from a log
only if the existing primary replica fails.

3.1 Recovering an Active Replica

Masking the failure of an active replica is relatively simple. If an
active replica fails while performing an operation, the remaining
active replicas of the object continue to perform the operation
and return the result.

The failure of a single active replica is relatively easy to mask,
and is transparent to the other replicated objects involved in the
nested operation. Thus, active replication yields substantially
more rapid recovery from faults. When a failed active replica
is recovered, the state of the new or recovering replica must be
synchronized with the consistent state of an existing operational
replica of the object.



Actively Replicated
Client Object A

Actively Replicated
Server Object B

Eternal ORBEternal ORB

A1 A2 B2B1 B3

Duplicate invocation 
suppressed

Eternal Eternal Eternal Eternal Eternal

Duplicate responses
suppressed

Reliable multicast messages Reliable multicast messages

Passively Replicated
Client Object A

Passively Replicated
Server Object B

Eternal ORB

Replica 1
(Primary)

Replica 2
(Backup)

Eternal ORB

Replica 1
(Backup)

Replica 2
(Primary)

Replica 3
(Backup)

State Transfer

Eternal Eternal Eternal Eternal Eternal

(a) (b)

Figure 2: Replication styles supported by the Eternal system (a) active replication and (b) passive replication.

3.2 Recovering a Passive Replica

If a backup replica fails, it can be simply removed while the
operation continues to be performed by the primary replica. On
the other hand, if the primary replica fails, one of the backup
replicas must be promoted to be the new primary replica.

Before the new primary replica can become fully operational
(and start processing normal invocations and responses), its state
must be synchronized with the state that the old primary replica
had just before it failed. However, because the old primary
replica is no longer available once it has failed, an operational
primary’s state must be periodically captured and logged so that
it is available for reinstating a new primary replica.

3.3 Logging Checkpoints and Messages

Because the system continues to operate during the recovery of
a replica, a recovering replica may be the target of normal in-
vocations and responses from other objects in the system, even
as it is having its state restored. Eternal does not discard these
normal invocations and responses, but instead, enqueues them
(in the order of their receipt) at the Recovery Mechanisms host-
ing the recovering replica. Once the replica is recovered, the
Recovery Mechanisms dispatch the enqueued invocations and
responses to the now-operational replica.

For passive replication, Eternal periodically captures the pri-
mary’s state in the form of checkpoints. Eternal logs each check-
point and the ordered messages that follow that checkpoint, until
the next checkpoint (which overwrites the previous checkpoint)
occurs. If the primary replica fails, the recovery action depends
on the replication style – warm or cold passive replication. For
warm passive replication, the backup replicas’ states are already
initialized to the primary’s last checkpoint; Eternal delivers the
messages (that have been logged since the last checkpoint) to
the new primary replica before allowing it to become opera-
tional. For cold passive replication, Eternal must first launch
the new primary replica before providing it with the primary’s
last checkpoint, and the logged messages, in that order.

For active replication, there is no need to log any checkpoints
or messages until a replica is being recovered. At that point,
Eternal’s mechanisms for synchronizing state transfer handle the
retrieval of checkpoints and the logging of messages, just as for
passive replication.

4 Consistent State
Unfortunately, the state required to recover a failed CORBA
replica consistently is not located in a single place. For the
purposes of recovery, every replicated CORBA object can be
regarded as having three kinds of state:application-level state,
ORB/POA-level state, andinfrastructure-level state. Any fault-
tolerant CORBA system that aims to provide strong replica con-
sistency must maintain consistent application-level, ORB/POA-
level state and infrastructure-level state across all of the replicas
of every replicated CORBA object.

4.1 Application-Level State
Application-level state is represented by the values of the data
structures of the replicated object, and is completely determined
by the application programmer. Of the three kinds of state, the
application-level state is possibly the most visible, and the easi-
est to identify, retrieve and restore.

To enable application-specific state to be captured, in accor-
dance with the Fault-Tolerant CORBA standard, every repli-
cated CORBA object must inherit the OMG-IDLCheck-
pointable interface, shown in Figure 3.

This inherited IDL interface has two methods,get state()
andset state(), both of which are intended to be implemented
by the application programmer. Theget state() method, when
invoked on a CORBA object, returns the current application-
level state of the object. Theset state() method with specific
state as its parameter, when invoked on a CORBA object, over-
writes the object’s current application-level state with the value
of this parameter.

Because it is not possible to anticipate, or standardize on, the
format of the application-level state of every application object,
the application-level state is defined to be of the CORBA type,
any . A variable of typeany can “hold” any primitive, struc-
tured and user-defined CORBA type.

For active replication, recovery of application-level state in-
volves the retrieval of the current consistent application-level
state via aget state() invocation on an existing active replica,
and a transfer of the retrieved state via aset state() invo-
cation on a new or recovering replica. For passive replica-
tion, application-level state is periodically retrieved through a
get state() invocation on the primary replica, with the returned
checkpoint either logged (cold passive replication), or trans-
ferred to the backup replicas (warm passive replication). The



// Generic definition of application-level state
typedef any State;

// Exceptions associated with application-level state transfer
exception NoStateAvailablefg;
exception InvalidStatefg;

// IDL Interface to be inherited by every replicated object
interface Checkpointable
f

// Returns application-level state
State getstate() raises(NoStateAvailable);

// Assigns application-level state
void setstate(in State s) raises(InvalidState);

g;

Figure 3: TheCheckpointable IDL interface that must be
inherited by every CORBA object in the application to enable
the checkpointing and transfer of application-level state.

three phases of recovery – state retrieval (usingget state()),
state transfer, and state assignment (usingset state()) – must
also occur in the totally-ordered message sequence to ensure
replica consistency.

4.2 ORB/POA-Level State
Ideally, ORBs should be viewable as “black-boxes” that are
stateless. In reality, because the ORB and the Portable Object
Adapter (POA) handle all connection-level and transport-level
information on behalf of a CORBA object that they support,
the ORB and the POA necessarily maintain some information
for the object. The existence of ORB/POA-level state implies
that there really are no “stateless” objects from the viewpoint
of recovery – a replicated CORBA object with no application-
level state will nevertheless have ORB/POA-level state asso-
ciated with it. ORB/POA-level state is modified as the ORB
creates objects, establishes connections and processes incoming
messages.

The ORB/POA-level state for a CORBA object consists of
the values of various data structures (last-seen request identifier,
threading policy,etc.) stored by the ORB, at runtime, on behalf
of the object. Unfortunately, these “pieces” of ORB/POA-level
state are not visible at the level of the CORBA object. The in-
ternal ORB/POA-level state is not standardized, and thus, not
identical across ORBs from different vendors. Indeed, such
standardization would be contrary to the Object Management
Group’s philosophy of standardizing ORB interfaces, and not
their implementations.

The vendor-specific form of the ORB/POA-level state ren-
ders it a source of non-determinism if different replicas of the
same object are hosted on different vendors’ ORBs. Thus, for
all practical purposes and for the rest of this paper, a strongly
consistent replicated object has all of its replicas running over
an ORB from the same ORB vendor.

When a CORBA object is replicated, each replica has its own
ORB on a distinct processor. For active replication under nor-
mal operation, if the object and the ORB are deterministic, both
the application-level and the ORB/POA-level state will be auto-
matically consistent across all replicas at the end of every opera-
tion. However, under recovery, consistent state is more difficult
to achieve. Even if the application-level state of the recovering

active replica is synchronized with that of an operational active
replica, the two replicas (the existing replica and the recovering
replica) will differ in their respective ORB/POA-level states, un-
less these are also synchronized.

Similarly, for passive replication, under recovery, consis-
tent replication cannot be ensured through the transfer of
application-level state (from the old primary replica’s logged
application-level checkpoints to the new primary replica) alone;
unless they are also synchronized, the respective ORB/POA-
level states of the old and the new primary replicas will differ.

In this paper, we describe how Eternal handles the recovery
of ORB/POA-level state, in particular, GIOP request identifiers
and information negotiated between the client and the server.

4.2.1 GIOP Request Identifiers

CORBA’s General Internet Inter-ORB Protocol (GIOP) incor-
porates the notion of a request identifier, a number that uniquely
identifies a request-reply pair exchanged between a client and
a server over a connection. The client-side ORB generates this
request id on a per-connection basis, and inserts it into the
standard GIOP header of every outgoing request from the client
to the server over the connection. On its part, the server-side
ORB retrieves therequest id , and inserts it into the GIOP
header of the corresponding IIOP reply message from the server.
Typically, the client-side ORB increments the per-connection
request id as the number of requests sent by the client over
the connection increases. Therequest id allows the client-
side ORB to match a received IIOP reply with an outstanding
IIOP request. Replies whoserequest id s do not match are
discarded by the client-side ORB.

The example of Figure 4 demonstrates the replica inconsis-
tency that ensues if ORB/POA-level state, such as there-
quest id , is not synchronized during recovery.

Figure 4(a) shows an existing replica of an actively replicated
client2 objectA that issues an invocation (say, of methodX of
objectB). This request carries arequest id of 350, assigned
by the client-side ORB hosting this replica. Assume that this
replica receives the response to this 350th invocation, and that a
new replica of the same object,A, is now launched, and that its
application-level state (but not the ORB/POA-level state, such
as therequest id stored by the ORB) is synchronized with
that of the existing replica.

The last outgoing invocation from any existing replica of
A carried arequest id of 350, which its client-side ORB
“remembers.” Unfortunately, the new replica’s ORB does not
“know” this current value of therequest id counter held
by an existing replica’s ORB. Thus, the new replica’s ORB as-
signs an initial value, typically 0, to its equivalentrequest id
counter. If both replicas now dispatch their next invocation on
objectB, as shown in Figure 4(c), the existing replica’s ORB
assigns the correctrequest id of 351 to its outgoing invo-
cation, while the newly-recovered replica’s ORB assigns are-
quest id of 0 to its outgoing invocation. Thus, although the
two invocations are identical in content, theirrequest id s
differ.

2For multi-tiered CORBA applications, the middle-tier plays the roles of
both client and server; replication of the middle-tier objects involves replicat-
ing both the client-side and the server-side code.



(b)

Last-seen
outgoing

request_id

Application-level
state retrieval
(response to get_state())

Reliable multicast message for
application-level state transfer

Application-level
state retrieval
(response to get_state())

Application-level
state assignment
(set_state()invocation)

Application-level
state assignment
(set_state()invocation)

Existing replica
of object A

ORB

Eternal’s Mechanisms

350

Recovering replica
of object A

ORB

Eternal’s Mechanisms

0
Newly

initialized
request_id

Existing replica
of object A

(a)

ORB

Eternal’s Mechanisms

350
Last-seen
outgoing

request_id

Invocation of 
method X
of object B

GIOP Header

request_id

Request body350

Reliable multicast message 
for invocation

(c)

Invocation of 
method X
of object B

Invocation of 
method X
of object B

request_id

Request body351

Reliable multicast message 
for invocation

GIOP HeaderGIOP Header

request_id

Request body0

Reliable multicast message 
for invocation

Last-seen
outgoing

request_id

Existing replica
of object A

ORB

Eternal’s Mechanisms

351

Recovering replica
of object A

ORB

Eternal’s Mechanisms

0
Last-seen
outgoing

request_id

Figure 4: Replica inconsistency due to different GIOPre-
quest id s assigned by client-side ORBs hosting an existing
and a recovering replica. In this example, only application-level
state is being synchronized.

The first of the two invocations to reachB will be delivered,
and the other will be discarded as a duplicate. If the invocation
delivered toB has arequest id of 0, B’s server-side ORB
will insert a request id of 0 in its outgoing IIOP reply. Un-
fortunately, when this reply reaches the ORBs hosting the two
replicas ofA, only the ORB that assigned therequest id of
0 (which, in this case, is the newly-recovered replica’s ORB)
will deliver the response to its replica. The ORB that hosts the
existing replica (and that assigned arequest id of 351) will
detect a mismatch between its expectedrequest id (351) and
the receivedrequest id (0). Thus, this ORB will not deliver
the otherwise correct reply to its replica, which will now wait
forever for a reply from the server.

To avoid this, a new replica’s ORB must hold the same value
for request id counter as that held by ORBs hosting oper-
ational replicas of the same object. Otherwise, the mismatch
between the returnedrequest id (from the server) and the
transmittedrequest id (from the client) will cause one or the
other of the client-side ORBs to discard a perfectly valid reply
from the server.

This request id information is buried within the client-
side ORB, and there are no “hooks” in today’s ORBs to retrieve
this information. Fortunately, therequest id information is
visible from outside the ORB, in the IIOP request and response
messages that are sent by the ORB.

By parsing every outgoing IIOP request message sent by a
client-side ORB, Eternal can discover, and store, the ORB’s cur-
rent setting for therequest id for each of the ORB’s connec-
tions. Furthermore, by transferring this stored value for there-
quest id , at the point of recovery, from the Recovery Mech-
anisms hosting an existing replica to the Recovery Mechanisms
hosting a new replica, Eternal system ensures that the GIOP
headers of all outgoing IIOP request messages from both new
and existing replicas are consistent.

4.2.2 Client-Server Handshake

CORBA allows client-side and server-side ORBs to exchange
vendor-specific information with each other. This does not de-
tract from CORBA’s interoperability because vendor X’s ORB
will not understand vendor Y’s ORB-specific information, and
can ignore it.

CORBA’s GIOP allows vendor-specific information to propa-
gate from the client to the server through theServiceCon-
text field of IIOP request messages. The server-side ORB
can examine, modify, and return thisServiceContext in its
replies to the client.ServiceContext s can be encapsulated
into every client and server message, but are particularly used in
the initial “handshake” between the client and the server.

� Vendor-specific shortcuts. The ServiceContext in-
formation may enable the client-side ORB and the server-
side ORB to “recognize” that they are from the same ven-
dor, and to use this awareness for more efficiency using
vendor-specific shortcuts. For example, client-side and
server-side VisiBroker 4.0 ORBs can initially negotiate a
shorter object key for use, instead of the complete object
key, in subsequent IIOP requests from the client.

� Code set negotiation.A transmission code set is the com-
monly agreed-upon encoding used for character and wide-



character data transfer between the client’s and server’s
ORBs. The client-side ORB can determine a server’s code
sets from the code set component that the server-side ORB
inserts into its server’s published IOR.3 The client-side
ORB uses this information to choose character and wide-
character transmission code sets for its subsequent com-
munication with the server. Codeset negotiation is not per-
formed on a per-request basis, but only when a client ini-
tially connects to a server.

Regardless of the purpose that the initial client-server hand-
shake serves, both the client-side and server-side ORBs store
the results of their initial negotiation, on a per-connection ba-
sis. This constitutes ORB/POA-level state that must be appro-
priately handled during recovery.

Consider a clientA communicating with a replicated server
B with a replicaB1. Assume thatA andB1 have already com-
pleted their initial handshake, and thatA’s ORB now stores the
negotiated information, and encapsulates it (e.g., in the Ser-
viceContext field) in every request that it sends toB. When
a new replicaB2 of objectB is launched, the clientA does
not (and indeed, should not, in the interests of replication trans-
parency) detect the addition of a new server replica and, thus,
will not reenact this negotiation withB2.

Unfortunately,B2’s server-side ORB, having missed the ini-
tial client-server handshake, is unable to interpret the already-
negotiated information inA’s requests. Thus,A’s requests,
when delivered toB2’s ORB, will be discarded. Thus, although
B2’s application-level state might be recovered, its ORB/POA-
level state is not sufficiently restored as to allow it to processA’s
requests and function normally, as the existing replicaB1 does.

Eternal restores the negotiated ORB/POA-level state to the
ORB of a new server replica by storing the client’s handshake
message (that initiated the client-server negotiation), and by de-
livering this message to the new server replica’s ORBahead of
any other IIOP request from the client. This artificial injection
of the client’s handshake message into the new server replica’s
ORB causes the server-side ORB to initialize its ORB/POA-
level state (in terms of the client-server negotiated informa-
tion) with that of the ORBs hosting operational replicas of the
same server object. The new server replica’s response to this
artificially-injected handshake confirms, to Eternal’s Recovery
Mechanisms, the correct synchronization of ORB/POA-level
state for the new server replica, and can be safely discarded.

4.3 Infrastructure-Level State
Infrastructure-level state.4 is completely independent of, and
invisible to, the replicated object as well as to the ORB and the
POA, and involves only information that Eternal needs for main-
taining consistent replication. The infrastructure-level state con-
tains information essential for duplicate detection and garbage
collection of the log.

For every operational replica that it hosts, Eternal’s Recovery
Mechanisms (running on the same processor as the replica) store
information locally regarding:

3A server’s Interoperable Object Reference (IOR) is a stringified representa-
tion of the server’s host name, port number, object key,etc.

4Infrastructure-level state is not unique to the Eternal system. In fact, any
system that provides fault tolerance must maintainsomestate on behalf of the
replicated objects that it hosts.

� The invocations that the replica has issued, and for which
the replica is awaiting responses,

� The invocations and responses that have been enqueued
(while the replica is not quiescent) for delivery to the
replica when it becomes quiescent,

� The replication style of the replica, including whether it
is an active, warm passive primary, warm passive backup,
cold passive primary or cold passive backup replica,

� The Eternal-generated operation identifiers that enable the
Recovery Mechanisms to filter duplicate invocations and
responses intended for the replica.

During recovery, the Recovery Mechanisms hosting an ex-
isting replica “piggyback” the infrastructure-level state for the
replica onto the application-level state and the ORB/POA-level
state that they transfer to the Recovery Mechanisms hosting the
new replica.

The Recovery Mechanisms that receive the three kinds of
state assign the application-level state first, the ORB/POA-level
state next, and finally, the infrastructure-level statebeforeallow-
ing the new replica to become fully operational, and to receive
or process any normal incoming invocations or responses. The
retrieval, as well as the assignment, of the three different kinds
of state appears as a single atomic action so that the state trans-
fer of the three kinds of state occurs at a single logical point in
time.

5 State Transfer
The frequency of state retrieval or checkpointing is determined
on a per-replicated-object basis, by the user, at the time of de-
ploying the application, when all other fault tolerance properties
(replication style, number of replicas, location of replicas, etc)
for the replicated object are also determined.

By no means does the checkpointing frequency guarantee
that the replicated object will perform the state retrieval (via a
get state() operation) immediately. The replicated object may
be in the middle of another operation, or may be blocked wait-
ing for a response,etc. To decide on the appropriate time to
deliver theget state() invocation, the Eternal system must de-
termine the moment that the object is quiescent,i.e., when it is
“safe”, from the viewpoint of replica consistency, to deliver a
new invocation to the object. Determining whether an object is
quiescent is a non-trivial exercise – it involves examining the
status of current invocations on the object, the threads that are
currently executing within the process containing the object, and
data that the object may share with other in-process collocated
objects. The use ofoneway s, CORBA-supported invocations
that do not return responses, introduces additional complications
for quiescence. Eternal provides mechanisms to ascertain the
quiescence of a CORBA object prior to delivering an invocation
to it – these mechanisms are outside the scope of this paper.

5.1 Synchronization of State Transfer Messages
During recovery, the current application-level state must first be
retrieved from an existing replica or a log before it can be as-
signed to a new replica. In the transfer of state from an exist-
ing replica to a new or recovering replica, it is important that
the retrieval of state from the existing replica and the assign-



get_state()

get_state() triggers
enqueueing of messages

Eternal’s
Mechanisms

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Existing 
Replica A1

(of object A)

New 
Replica A2

(of object A)

Totally ordered sequence of multicast messages

Eternal’s
Mechanisms

get_state() delivered to
the existing replica

get_state()being
processed by replica

get_state()Invocation X

Invocation X

Invocations enqueued till
get_state() returns

Eternal’s
Mechanisms

Eternal’s
Mechanisms

set_state()
invocation

get_state()Invocation X

Invocation X

Invocation Y

Invocation Y

Eternal’s
Mechanisms

Eternal’s
Mechanisms

IIOP Message
Engine

get_state()returns the
application-level state

get_state()

set_state()

set_state()

set_state()

Invocation Y Invocation X

Eternal’s
Mechanisms

Eternal’s
Mechanisms

Invocation X dequeued and
delivered to the existing replica

Invocation Y Invocation X

Invocation Y

Eternal’s
Mechanisms

Eternal’s
Mechanisms

Invocation X dequeued and
delivered to the existing replica

set_stateoverwrites get_state
at the head of the queue and

is delivered to the new replica

Invocation X

Invocation Y

Eternal’s
Mechanisms

Eternal’s
Mechanisms

Invocation Y
dequeued when 
Invocation X 

completes

Invocation X delivered
when set_state()completes

set_state()
returns

successfully

(i)

(iii)

(v)

(ii)

(iv)

(vi)

Invocation Y

set_state()

set_state()

set_state()set_state() 
discarded

Figure 5: Synchronization of state retrieval and state assignment messages for consistent replication.



ment of the retrieved state at the new or recovering replica be
seen to occur at the samelogical point in time. Otherwise, the
state retrieved by theget state() invocation will not be the state
assigned by theset state() invocation. The tricky issues of
synchronizing the transfer of state are handled by the Recovery
Mechanisms.

Theget state() invocation must be delivered only to the ex-
isting replicas that have the current consistent state of the repli-
cated object; theset state() invocation must be delivered only
to the new replica. Both invocations are received, in the se-
quence of multicast messages, by the Mechanisms hosting both
the new and the existing replicas of the object. However, the
receipt of the invocations results in different actions, depending
on whether the receiving Recovery Mechanisms host either an
existing or a new replica.

Figure 5 shows two replicas of a replicated objectA, where
A1 is an existing replica, andA2 is a new replica, and the se-
quence of steps in synchronizing the state transfer of the repli-
cated objectA.

Step (i): At the existing replicaA1, Eternal delivers the
get state() invocation as shown in Figure 5(i). However, be-
cause the new or recovering replicaA2 has not yet been initial-
ized with the correct consistent state of the replicated object, the
get state() operation is not delivered to the new replica. In-
stead, the receipt of theget state() invocation triggers Eternal
to start the enqueueing of normal incoming IIOP messages at
the new or recovering replica.

Step (ii): While the existing replicaA1 is performing the
get state() operation, regular invocations (such as Invocation
X shown in Figure 5(ii)) might arrive for the replicated object
A. BecauseA1 is in the middle of an operation, these incom-
ing invocations are not immediately delivered toA1. Because
A2 has not yet been recovered with the correct state, these in-
vocations are not delivered toA2, either. Eternal enqueues such
regular incoming messages, at both replicas, for later delivery.

Step (iii): The get state() invocation completes, as shown in
Figure 5(iii). Eternal extracts the return value of the invoca-
tion, and uses it as the parameter of aset state() invocation
that it fabricates. Eternal “piggybacks” the relevant pieces of
ORB/POA-level state and infrastructure-level state to the fabri-
catedset state() invocation.

Step (iv): The set state() invocation is multicast, along with
the piggybacked ORB/POA-level state and the infrastructure-
level state associated with the existing replicaA1. ReplicaA1

is once again free to process invocations; Eternal delivers toA1

the ordered messages (such as InvocationsX andY ) that ar-
rived forA1 while A1 was processing theget state() invoca-
tion. Figure 5(iv) shows the first such enqueued invocationX

being dequeued and delivered to the existing replicaA1.

Step (v): When theset state() invocation is received by
Eternal at the new or recovering replica, as shown in Fig-
ure 5(v), this invocation overwrites the message at the head
of the message queue (a position previously occupied by
the get state() invocation). The piggybacked ORB/POA-
level state and infrastructure-level state are extracted and as-
signed to their respective counterparts for replicaA2, while the
set state() invocation containing the application-level state is

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

15

20

25

30

35

40

45

50

55

60

65

Size of application−level state for a replica (bytes)

T
im

e 
to

 r
ec

ov
er

 th
e 

re
pl

ic
a 

(m
s)

Recovery Time for a Server Replica

Figure 6: Variation of the recovery time for a server replica with
the size of the replica’s application-level state.

delivered toA2. At the existing replicaA1, theset state() in-
vocation is enqueued in the order of its arrival.

Step (vi): The set state() invocation on the new or recover-
ing replica returns a response (without throwing an exception),
and the new replicaA2 is now recovered and ready to process
normal invocations and responses. The enqueued messages are
delivered, in order, to the new or recovering replica, as shown
in Figure 5(vi). Theset state() invocation, when it reaches the
head of the message queue at the existing replicaA1, will simply
be discarded becauseA1 is already recovered.

Thus, the loggedget state() invocation at the new or recover-
ing replica is used to represent thestate synchronization point, in
the totally ordered message sequence, at which the state assign-
ment must occur through its counterpartset state() invocation.
This careful synchronization of the positions of theget state()
andset state() messages in the incoming invocation sequence
at the new and existing replicas is essential to consistent recov-
ery of every replicated object.

6 Implementation and Performance
The Eternal system provides support for the replication of
unmodified CORBA objects running over unmodified com-
mercial ORBs, including Inprise’s VisiBroker, Iona Technolo-
gies’ Orbix, Xerox PARC’s ILU, Washington University, St.
Louis’ TAO, Vertel’s e*ORB, Expersoft’s CORBAplus, Object-
Oriented Concepts’ ORBacus and AT & T Laboratories’ om-
niORB2. The overheads, under normal fault-free operation, of
the interception, multicast and replica consistency mechanisms
of our prototype Eternal system are reasonable, within the range
of 10-15% of the response time for fault-tolerant CORBA test
applications, over their unreplicated counterparts.

The performance of the Eternal system during the recovery
of a new or failed replica of an object is shown in Figure 6.
The graph shows the time to recover a server replica in a test
application developed with Inprise’s VisiBroker 4.0 C++ ORB.
The measurements were taken over a network of dual-processor



167 MHz UltraSPARC workstations, running Solaris 2.7, and
connected by a 100 Mbps Ethernet.

The client object of the test application acts as a packet driver,
sending a constant stream of two-way invocations to the ac-
tively replicated server object. During the experiments, one or
the other of the server replicas was killed and then re-launched.
The time to recover such a failed replica was measured as the
time interval between the re-launch of the failed replica and the
replica’s reinstatement to normal operation. The graph shows
the recovery times obtained with this test application for varying
sizes (from 10 bytes to 350,000 bytes) of the application-level
state that is transferred across the network to recover a failed
server replica. The ORB/POA-level state and the infrastructure-
level state are independent of, and therefore do not vary with,
the size of the application-level state.

Regardless of the size of the application-level state, the entire
application-level state is encapsulated in a single IIOP message
by the ORB. However, at the transport layer of the reliable multi-
cast system, the Ethernet medium necessitates the fragmentation
of any IIOP message that is larger than the maximum Ethernet
frame size (1518 bytes). This implies that large (> 1518 bytes)
IIOP messages will be transmitted over the Ethernet by Eter-
nal using multiple multicast messages. Thus, for any replicated
object, the number of multicast messages needed to transfer its
state, and therefore the time to recover a new or failed replica
of the object, increases with the size of the object’s application-
level state, as seen in the graph.

Thus, in addition to the resource usage of an object, the size
of the object’s application-level state, and the constraints placed
on the object’s recovery time, also influence the choice of the
object’s replication style – active replication (more resource-
intensive, fewer state transfers, faster recovery)vs.passive repli-
cation (less resource-intensive, more frequent state transfers,
slower recovery).

7 Related Work
Much of the early work on systematic message logging
[5] in distributed systems was undertaken by Elnozahy and
Zwaenepoel in their Manetho system [4]. They devised algo-
rithms for sound uncoordinated logging that avoid cascaded roll-
backs during recovery, at the expense of rather complex recov-
ery algorithms. Interesting recent work on logging and recovery
has been undertaken by Alvisi and Marzullo. In [1] they investi-
gated conditions under which no process is left in an inconsistent
state, while in [2] they addressed the piggybacking of nondeter-
ministic operations onto messages in the message log to ensure
deterministic replay.

The Delta-4 system [16] was aimed at providing fault toler-
ance in a distributed Unix environment, through the use of an
atomic multicast protocol to ensure tolerate crash faults at the
process level. Delta-4 included support for active replication,
passive replication, as well as hybrid semi-active replication of
software components on distinct processors. Backward error
recovery is achieved by integrating checkpointing with inter-
process communication.

The Arjuna system [15] uses object replication together
with an atomic transaction strategy to provide fault tolerance.
The types of replication supported include active replication,
coordinator-cohort passive replication and single-copy passive

replication. Strategies similar to checkpointing are used for dis-
seminating state updates in passive replication.

The FRIENDS [6] system aims to provide mechanisms for
building fault-tolerant applications in a flexible way through the
use of libraries of metaobjects. Separate metaobjects can be
provided for fault tolerance, security and group communication.
FRIENDS is composed of a number of subsystems, including a
fault tolerance subsystem that provides support for object repli-
cation and detection of faults. A number of interfaces similar
to ourCheckpointable interface are provided for capturing
the state of an object to stable storage, and for transmitting the
primary replica’s state to the backup replicas in the case of pas-
sive replication.

Other systems have been developed that address issues related
to consistent object replication and fault tolerance in the con-
text of CORBA. The Object Group Service (OGS) [7] provides
replication for CORBA applications through a set of CORBA
services. Replica consistency is ensured through group commu-
nication based on a consensus algorithm implemented through
CORBA service objects. OGS provides interfaces for detecting
the liveness of objects, and mechanisms for duplicate detection
and suppression, and for the transfer of application-level state.

Developed at the University of Newcastle, Newtop is a group
communication toolkit that is exploited to provide fault toler-
ance to CORBA using the service approach. While the funda-
mental ideas are similar to OGS, the Newtop-based object group
service [8] has some key differences. Of particular interest is the
way this service handles failures due to partitioning – support is
provided for a group of replicas to be partitioned into multiple
sub-groups, with each sub-group being connected within itself.
No mechanisms are provided, however, to ensure consistent re-
merging of the sub-groups once communication is reestablished
between them.

The Maestro toolkit [17] includes an IIOP-conformant ORB
with an open architecture that supports multiple execution styles
and request processing policies. The replicated updates exe-
cution style can be used to add reliability and high availabil-
ity properties to client/server CORBA applications in settings
where it is not feasible to make modifications at the client side,
as is the case for unreplicated clients wishing to contact repli-
cated objects.

The AQuA architecture [3] is a dependability framework that
provides object replication and fault tolerance for CORBA ap-
plications. AQuA exploits the group communication facili-
ties and the ordering guarantees of the underlying Ensemble
and Maestro toolkits to ensure the consistency of the repli-
cated CORBA objects. AQuA supports both active and passive
replication, with state transfers to synchronize the states of the
backup replicas with the state of the primary replica in the case
of passive replication.

The Distributed Object-Oriented Reliable Service (DOORS)
[12] provides fault tolerance through a service approach, with
CORBA objects that detect, and recover from, replica and pro-
cessor faults. The system provides support for resource manage-
ment based on the needs of the CORBA application. DOORS
employs libraries for the transparent checkpointing [18] of ap-
plications; however, duplicate detection and suppression are not
addressed.

OGS, AQuA, Maestro and DOORS deal with the consis-
tency of application-level state by having application objects



inherit from an IDL interface with state retrieval and assign-
ment methods similar to those of ourCheckpointable IDL
interface. To the best of our knowledge, however, none of
these fault-tolerant CORBA systems has addressed the issues of
ORB/POA-level state and infrastructure-level state that are es-
sential in ensuring strongly consistent replication and recovery.

8 Conclusion
The Eternal system provides support for the consistent replica-
tion and recovery of unmodified CORBA client and server ob-
jects running over unmodified CORBA-compliant off-the-shelf
ORBs. Eternal’s Recovery Mechanisms include support for the
logging of messages and the logging of checkpoints, as well as
for the retrieval, transfer and assignment of state.

For every replicated CORBA object that it supports, Eter-
nal maintains the consistency of the three kinds of state –
application-level state, ORB/POA-level state and infrastructure-
level state – that are inevitably present in a fault-tolerant
CORBA system. Eternal ensures that the three kinds of state are
synchronized across all of the operational replicas of a CORBA
object, regardless of the object’s replication style, and in a man-
ner that is transparent to the ORB and to the CORBA applica-
tion. Eternal’s enqueueing and dispatching of the messages for
retrieving and assigning the three kinds of state ensures that the
recovery of failed replicas is concurrent with the normal opera-
tion of existing replicas; thus, Eternal allows the system to con-
tinue operating in the presence of faults, and during recovery.

True to the spirit of the new Fault-Tolerant CORBA standard
that it implements, Eternal maintains strong replica consistency,
as replicas process invocations and responses, as faults occur,
causing replicas to fail, and as it recovers replicas after a fault.

References
[1] L. Alvisi and K. Marzullo. Message logging: Pessimistic,

optimistic, causal, and optimal.IEEE Transactions on
Software Engineering, 24(2):149–159, February 1998.

[2] K. Bhatia, K. Marzullo, and L. Alvisi. The relative over-
head of piggybacking in causal message logging protocols.
In Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems, pages 348–353, West Lafayette, IN,
October 1998.

[3] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken,
M. E. Berman, D. A. Karr, and R. Schantz. AQuA: An
adaptive architecture that provides dependable distributed
objects. InProceedings of the IEEE 17th Symposium
on Reliable Distributed Systems, pages 245–253, West
Lafayette, IN, October 1998.

[4] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transpar-
ent roll back-recovery with low overhead, limited rollback,
and fast output commit.IEEE Transactions on Computers,
41(5):526–531, May 1992.

[5] E. N. Elnozahy and W. Zwaenepoel. On the use and imple-
mentation of message logging. InProceedings of the 24th
IEEE Fault-Tolerant Computing Symposium, pages 298–
307, Austin, TX, June 1994.

[6] J. C. Fabre and T. Perennou. A metaobject architecture
for fault-tolerant distributed systems: The FRIENDS ap-
proach. IEEE Transactions on Computers, 47(1):78–95,
1998.

[7] P. Felber, R. Guerraoui, and A. Schiper. The implementa-
tion of a CORBA object group service.Theory and Prac-
tice of Object Systems, 4(2):93–105, 1998.

[8] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little.
Design and implementation of a CORBA fault-tolerant ob-
ject group service. InProceedings of the Second IFIP WG
6.1 International Working Conference on Distributed Ap-
plications and Interoperable Systems, Helsinki, Finland,
June 1999.

[9] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system.Commu-
nications of the ACM, 39(4):54–63, April 1996.

[10] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Con-
sistent object replication in the Eternal system.Theory and
Practice of Object Systems, 4(2):81–92, 1998.

[11] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. En-
forcing determinism for the consistent replication of multi-
threaded CORBA applications. InProceedings of the IEEE
18th Symposium on Reliable Distributed Systems, pages
263–273, Lausanne, Switzerland, Oct. 1999.

[12] B. Natarajan, A. Gokhale, S. Yajnik, and D. C.
Schmidt. DOORS: Towards high-performance fault-
tolerant CORBA. InProceedings of the International Sym-
posium on Distributed Objects and Applications, Antwerp,
Belgium, September 2000.

[13] Object Management Group. The Common Object Re-
quest Broker: Architecture and specification, 2.3 edition.
OMG Technical Committee Document formal/98-12-01,
June 1999.

[14] Object Management Group. Fault tolerant CORBA
(adopted specification). OMG Technical Committee Doc-
ument orbos/2000-04-04, March 2000.

[15] G. Parrington, S. Shrivastava, S. Wheater, and M. Little.
The design and implementation of Arjuna.USENIX Com-
puting Systems Journal, 8(3):255–308, Summer 1995.

[16] D. Powell. Delta-4: A Generic Architecture for Depend-
able Distributed Computing. Springer-Verlag, 1991.

[17] A. Vaysburd and K. Birman. The Maestro approach
to building reliable interoperable distributed applications
with multiple execution styles.Theory and Practice of Ob-
ject Systems, 4(2):73–80, 1998.

[18] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. M. R.
Kintala. Checkpointing and its applications. InProceed-
ings of the 25th IEEE International Symposium on Fault-
Tolerant Computing, pages 22–31, Pasadena, CA, June
1995.


