
Run-time Fault Detection in Monitor Based Concurrent Programming

Jiannong Cao, Nick K.C. Cheung, Alvin T.S. Chan
Software Development and Management Lab.

Dept. of Computing, Hong Kong Polytechnic University, Hung Hom., Kowloon, Hong Kong

Abstract

The monitor concept provides a structured and
flexible high-level programming construct to control
concurrent accesses to shared resources. I t has been
widely used in a concurrent programming environment
for implicitly ensuring mutual exclusion and explicitly
achieving process synchronization. This paper proposes
an extension to the monitor construct for detecting run
time errors in monitor operations. Monitors are studied
and classified according to their functional
characteristics. A taxonomy of concurrency control
faults over a monitor is then defined. The concepts of a
monitor event sequence and a monitor state sequence
provide a uniform approach to history information
recording and fault detection. Rules for detecting
various types of faults are defined. Based on these rules,
fault detection algorithms are developed. A protorypical
implementation of the proposed monitor construct with
run-time fault detection mechanisms has been developed
in Java. We shall briefly report our experience with and
the evaluation of the robust monitor protoQpe.

1. Introduction
The monitor construct [6, 81 has been widely used as

a high level process synchronization mechanism in
modern operating systems, as well as in concurrent
programming languages as a language level construct [1 ,
5, 7, 10, 141. It is employed as a means to control the
flow of process interactions, which is one of the essential
sources of difficulty for both design and validation of
concurrent programs. As such, it is very important to
ensure correctness and reliability of monitor operations.
The original version of the monitor construct, however,
is specified as a device for defining shared abstract
objects and for scheduling accesses to them, without
provision for handling malfunction of monitor
procedures and run time errors that occur during a
monitor operation.

A number of methods [8, 9, 131 have been developed
for proving correctness of a monitor’s functional
operations. Most of these methods are based on Hoare’s
axiomatic system for proving data representation

0-7695-1101-5/01 $10.00 0 2001 IEEE

(because of the analogy between a monitor and a data
representation) and provide proof rules which emphasize
reasoning on the invariants relating values of the
permanent variables of the monitor. These axioms are
further developed and applied by Howard [9]. Howard
used history variables and axiomatization of the
properties of Wait and Signal operations to prove some
more interesting properties of monitors, not only of
functional but also scheduling properties. Verification of
specifications of monitor primitives to be implemented is
also studied. Saxena and Bredt verified a specification of
monitor primitives in terms of inputloutput assertions,
from both the procedure viewpoint and the process
viewpoint [131.

Verification is essentially a fault-prevention
technique. Correctness does not necessarily imply
reliability. Many factors can lead to run time errors even
for a program that is proved to be correct. Furthermore,
not all the properties of a monitor can be proved from the
monitor definition alone. For example, the external
consistency of a monitor, defined as the observation of a
sequential constraint upon the order of procedure
invocation that may be initiated by any individual user,
must be proved separately for each program that uses the
monitor. Run-time mechanisms, therefore, are needed to
handle exceptions of monitor operations and usage raised
during execution.

The fact that a monitor is an abstract data type
makes it relatively easy to add new functional
components and control capabilities to the monitor
construct to improve the reliability of concurrent
programs. In this paper, we propose an extension to the
monitor functionality by introducing an underlying fault-
detection mechanism, which can be applied to the
implementation and run-time execution of monitor
primitive operations. We describe the fault detection
model, the development of the fault detection algorithms,
and a prototypical implementation of the augmented
monitor construct using Java.

The rest of the paper is organized as follows. In
Section 2, functional characteristics of different kinds of
monitors are analyzed and taxonomy of monitor faults is
introduced. We present the fault detection model and a
classification of the abnormal behaviors of monitor

357

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

operations that may result in run-time concurrent control
errors. In Section 3, we define the concepts of a monitor
event sequence and a monitor state sequence, which will
be used for structuring and recording the monitor
execution history information. A set of rules governing
well-defined monitor sequences is proposed. Based on
these rules the fault detection algorithms are developed.
Section 4 discusses the implementation issues and
describes a prototypical implementation of the proposed
monitor construct in Java. Finally, Section 5 concludes
the paper.

2. A Taxonomy of monitor concurrency
control faults

Based on the concept of an abstract data type, the
monitor encapsulates both local data and operations on
the data, and provides an interface which is the only
means for user processes to request the operations. The
data represents the status of the shared resource being
controlled by the monitor while the local procedures
operate on the local data variables to change the status of
the shared resource. ‘Typically, the specification of a
protected resource must include the integrity
(consistency) constraints and the scheduling (timing
order of events) constraints. In a monitor, the scheduling
constraints are coded in its implementation and the
integrity constraints are coded in its procedures.
Essentially, at any one time, one and only one process is
allowed to be inside a monitor. In this way, concurrency
control is integrated into the monitor specification so that
it does not have to be considered in the use of the shared
data by the programmer.

Apart from automatically ensuring mutual exclusion
of contending processes, monitors could also manage the
conditional synchronization of processes sharing the
resources. Hoare proposed the concept of condition
variables [SI, which are local variables of a monitor
representing the synchronization status of the shared
resources. A condition variable is used to delay processes
executing in a monitor and is represented as a queue
initialized to be empty.

Several implementations of monitors have been
proposed, which depend on primitives at a lower level 12,
8, 7, 111. In the context of this paper, a monitor
implementation is specified at a higher level, and
consists of a set of four procedures, namely Enter, Wait,
Signal, and Exit. The enter primitive ensures mutually
exclusive access to the requested monitor while the exit
primitive releases the mutual exclusion of the monitor
being accessed by other requesting processes. The wait
primitive blocks the execution of the calling process and
releases the mutual exclusion of the monitor that is on
hold by other requesting processes. The signal primitive
activates one of the processes waiting in either the entry

queue or the condition queues of the specified monitor
and releases the control of the signaling process to the
awakened one. As the signaling processes have finished
using the resource and are no longer inside their critical
sections, they normally exit the monitor right after
issuing the signaling operation [8]. The signal and exit
primitives can thus be naturally combined into one,
named signal-exit, so as to reduce process-switching
overheads.

In this section, we present taxonomy of concurrency
control faults in the monitor mechanism. The
classification serves several purposes. First, it serves as a
guide for building the error detection algorithm. Second,
validation requires a system specification against which
the actual results of operations can be assessed. A fault
classification gives a systematic way to check which parts
of the specification are violated. Third, it provides
information about the frequency of each fault. For
example. if a particular kind of fault appear frequently
we could use a variety of methods to reduce the incidence
of it.

2.1 Classification of monitors
We first present a classification of monitors, which

provide us insight into the requirements and structures of
different types of monitors, and thus a guide for
identifying the faults to be detected.

Processes may interact in two ways: (a) Directly by
coniniunicating niessages via a conznion data area. This
often happens when a number of processes cooperate on
some common tasks, each of them is aware of the other’s
existence and function and depends directly on data or
signals produced by the others. (b) Indirectly by
coniperitig for the same resources. Each process may be
functionally independent so i t may not know the
existence of others. Therefore, concurrent control can be
divided into two main subcategories: resource control
and communication control. Accordingly, we can classify
monitors into three types, according to their functional
characteristics.

Conzrriunication Coordinator: Communication between
processes requires that they be synchronized during
data exchange. This type of monitor allows pairs of
processes to communicate via data exchanges that are
controlled by the monitors. All interprocess
communication is performed by calls to entries of
shared buffers known to each other and governed by
the implicit mutual exclusion of the monitor calls.
Each process simply calls the monitor procedures
“Send” and “Receive” in their respective programs.
Synchronization and resource operations are combined
together in the monitor, i.e., the monitor takes care of
both scheduling access to and operations on the buffer.
There is no requirement on the order of procedure
calls: either Send or Receive can be called before or

358

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

after each other. However, in order to ensure normal
operation of this type of monitors, there are several
integrity constraints, which need to be observed by the
monitors.
1) A process calling “Send” can be delayed if and

only if the buffer is full.
2) A process calling “Receive” can be delayed if and

only if the buffer is empty.
3) The number of successful monitor procedure calls

of “Receive” cannot exceed the number of
successful monitor procedure calls of “Send”.
The number of successful monitor procedure calls
of “Send” cannot exceed the sum of the
maximum buffer capacity and the number of
successful procedure calls of “Receive”.

Resource-Access-Right Allocator: When a number of
processes compete for the exclusive use of the same
resource they must exclude each other in time and
maintain invariants for shared resources. Furthermore,
when more than one resource are to be shared andor if
a user needs to access more than one resource,
deadlock prevention or avoidance in resource
allocation needs to be implemented. Usually there is an
allocator for each shared resource to guarantee
mutually exclusive accesses to the resource. A monitor
of the allocator type can be used for this purpose. A
process must declare its desire to use the resource to
the allocator by initiating a request. When it is granted
the right to access the resource from the monitor i t can
do predefined operations on the resource. After
finishing the use of the resource the process must
release the resource through the allocator. Note that
the resource access operation is separated from
resource allocation. The monitor only handles
“request” and “release”, it does not mediate the use of
the resource. One of the constraints to be observed by
this type of monitor is the partial ordering of
procedures. This partial ordering is declared in the
monitor specification explicitly. For example, a
procedure call to “Release” cannot precede a
procedure call to “Request” by the same process for
each use of the resource. A process must invoke the
procedure “Release” after it has completed its use of
the resource. Failure to observe this sequence clearly
represents possible misuse of the resource.
Resource Operation Manager: Synchronization can be
provided by a monitor either explicitly or implicitly. In
explicit synchronization, processes have to explicitly
request access to the resource, perform the operations
and finally release the resource. On the other hand, in
implicit synchronization, monitors and resources are
combined into shared modules; Processes only need to
issue the access operation to the module and the
monitor will handle all the operations including the
requesting and releasing operations. Monitors of the

4)

359

Resource-operation-manager type are just for providing
the processes with implicit synchronization. This
approach has the benefit of more modularity and
preventing user processes from possible misuses of the
resources.

2.2 A taxonomy of faults
We first define what is meant by a “concurrency control

fault”. A monitor performing concurrency control over a
shared resource is considered to be operating correctly if and
only if the following conditions hold:
1) It guarantees mutual exclusion and enforces

synchronization on accesses to the shared resource.
2) It is free of deadlock and starvation in sharing the

resources by concurrent processes.
3) It maintains consistency of the states of the shared

resource.
4) It preserves the specified behavior of processes that

are using the shared resource, that is, the exact
execution sequence of the processes is observed and
is not influenced by the monitor.

Any event that causes one or more errors which
violate the above concurrency control properties of a
monitor is declared to be a concurrency control fault.
Faults could be software faults or hardware faults, design
faults or system faults. Attempting to catch all the faults
requires a complete specification of both monitor
functions (procedures) and monitor implementations.
Since monitor procedures are application dependent, i t is
impossible to know what the internal function of each
monitor procedure is. Therefore, in our classification, we
only consider the effects of monitor procedures, rather
than their internal logic.

Based on the taxonomy of monitors, we identify the
following events as concurrency control faults. They are
classified into three levels: the implementation level, the
monitor procedure level, and the user process level.
I. Implementation level faults

Four types of faults are identified at this level - the
Enter procedure fault, the Wait procedure faults, the
Signal-exit procedure faults, and finally the internal
process termination fault.
a) Enter procedure faults: arising in the following

situations
1 . Mutual exclusion is not guaranteed - two or more

processes have entered the monitor at the same
time.

2. The requesting process is lost - the process is
neither queued up for entering the monitor nor
will i t be allowed to enter the monitor.

3. The requesting process has not received a
response - the process is queued up indefinitely
for entering the monitor or the process is blocked

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

when there is no process currently running inside
the monitor.

4. Entry is not observed - the process that is running
inside the monitor has not invoked the Enter
primitive .

b) Wait procedure faults: arising in the following
situations
1 . Synchronization is not guaranteed - the calling

process is not blocked to queue up for condition
but continues to run inside the monitor.

2. The calling process is lost - the process is neither
queued up for condition nor continues to run
inside the monitor.

3. Entry waiting processes are not resumed - none
of the processes waiting on the entry queue are
resumed when the calling process is blocked.

4. Entry waiting process is starved - the process
waiting on the entry queue is never resumed but
wait indefinitely.

5. Mutual exclusion is not guaranteed - more than
one process waiting on the entry queue is
resumed to enter the monitor when the calling
process is blocked to queue up for condition.

6. Monitor is not released - the calling process is
blocked to queue up for condition but has failed
to release the monitor for other waiting processes
to access.

c) Signal-Exit procedure faults: arising in the
following situations
1. Waiting processes are not resumed - none of the

processes waiting on condition queues or on the
entry queue are resumed when the calling process
exits the monitor.

2. Monitor is not released - the calling process
exits the monitor but the monitor is not
released for other waiting processes to access.

3. Mutual exclusion is not guaranteed - more then
one process is resumed to access the monitor at
the same time when the calling process exits the
monitor.

4. Internal process termination fault. Process is
terminated inside the monitor - the process never
exits the monitor after entered it but terminated
inside the monitor.

11. Monitor procedure level faults
This type of faults refers to monitor procedure

operations, which result in inconsistent states. These
faults cause the states of the shared resources to be
inconsistent and thus violate the integrity constraints of
the communication coordinator type monitors described
in Section 2.1. Four kinds of faults are identified which
are simply violations of the integrity constraints.

a) A process calling the monitor procedure “Send” is
delayed when the buffer is not full, or the buffer is
full but the calling process is not delayed.

b) A process calling the monitor procedure “Receive” is
delayed when the buffer is not empty, or the buffer is
empty but the calling process is not delayed.

c) The number of successful calls of “Send’ is less than
the number of successful calls of “Receive”.

d) The number of successful calls of “Send” is larger
than the sum of’the maximum buffer capacity and
the number of successful calls of “Receive”.

Ill. User process level faults
This class of faults refers to logic design errors or run-

time errors in executing the monitor procedures. Three
kinds of faults are identified which are simply violations
of the partial-ordering constraint.
a) Ordering of monitor procedure calls is incorrect - a

process tries to release a resource without first
acquiring the resource.

b) Resource is not released - a process never releases a
resource after it acquires the resource.

c) Process is deadlocked - the process acquired a
resource and attempts to acquire the same resource
again without first releasing the resource.

In total, twenty-one concurrency control faults are
identified and classified into different types and levels.
Only the user process level faults (the last three) should
be detected during real time execution, as the execution
sequence of the monitor procedures of the resource-
access-right allocator type monitors must be kept correct.
Others can be checked against during a certain execution
time frame since they induce no immediate significant
errors or disaster.

3. A monitor construct augmented with An-
time fault detection

Extensions are made to the monitor construct in two
respects: the visible part and the invisible part. For the
visible part the users need to supply some information.
Here, we require the partial ordering of procedure calls
within a monitor be specified in the monitor declaration.
A convenient way to specify the partial order relation is
path-expression like notation [3]. The invisible part
refers to internal control operations that implement the
monitor construct. A database for collecting history
information needs to be defined and maintained and fault
d.etection procedures need to be incorporated into the
monitor implementation.
3.1. History information

For the purpose of detecting faults we need to
maintain his tory in formation about monitor scheduling
operations, against which the run-time behavior of a
monitor can be checked. The history information

-

360

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

includes which processes are invoking the monitor, at
which time an operation is executed, and the resource
and queue states. They can be classified into two
categories, which define the concepts of scheduling event
and scheduling state.

A scheduling event is the event of invoking one of the
three monitor primitives - Enter, Wait, and Signal-
Exit. The set of scheduling events, EVENTset, for a
monitor is defined as follows:
EVENTset = { Enter(Pid, Pname, t, flag),

Wait(Pid, Pname, Cond, t, flag),
Signal-Exit(Pid, Pname, Cond, t, flag)]

Each event identifies the time t at which the event
occurs, the process Pid that caused the event and the
procedure Pname involved. A flag is associated with the
events Enter and Wait to indicate whether the
corresponding monitor primitive has been successfully
completed (e.g., blocked or continued). With an
unsuccessful operation, the flag is set to 0 and later
changed to 1 when the invoking process is resumed; the
time t is set to the time at resumption. For Signal-
Exit the flag indicates whether a process waiting on the
condition queue has been resumed.

The runtime operation of a monitor can be modeled as
a finite sequence of scheduling events, L = I1l2...ln. A
scheduling state of a monitor is a 3-tuple <EQ, CQ[],
R h , where EQ denotes the external waiting queue, CQ[
] is the array of condition queues, and R# denotes the
number of currently available resources. Because each of
the above three events will cause a new scheduling state
to be generated, so for each scheduling event sequence L
= I l l 2 . . . I , there will be exactly one corresponding
scheduling state sequence S = sIs 2...s, such that s, is
generated by 1, and

I)
2)
3)

/, precedes 1, in L if and only if i < j ;
s, precedes s, in S if and only if i < j ;
I, <L 1, if and only ifs, cS s/

We will use the symbol <L and <s to denote “precede
i n L” and “precede in S”, respectively. In addition, we
define L,, to be a subsequence of L between I , and I,.

The dynamic scheduling behavior of a monitor then is
implied in its sequence of scheduling events and states.
Under correct monitor operations the sequences must be
consistent and correspond to the specified value.
3.2. Fault detection rules

Before we present the fault detection algorithm we
first show that every class of concurrency control faults
in the taxonomy can be detected. To do this, we first
define a set of rules in terms of the scheduling event
sequence and then prove that every fault in the taxonomy
is a violation of at least one of the rules. Based on the
proof, a detecting algorithm that checks a given
scheduling event sequence against these rules can be
developed.

Let Ti0 denote the timeout period for interpreting
deadlock or starvation, Q denote a queue (either EQ or
any condition queue) and IQ1 be the number of processes
waiting on Q. Then according to the definition of correct
concurrency control, a valid scheduling sequence is a
scheduling sequence L = l I ... l , , S = so ... s, satisfying
the following rules:
FD-Rule 1 : Mutually exclusive access to the monitor
a) 1, = Enter(P,Pr,t,,I) 4

Vj<r (I, = Enter(P’,Pr’,t,I) + 3k(s<k<r A

(l k = Signal-Exit(P’,Pr’,cond,tk,o/l) v
11, = Wait(P’,Pr’,Cond,tk,O))))

This rule requires that a process be allowed to enter the
monitor only if no process currently uses the monitor.

b) 1; = Wait(P,Pr,Cond,t,O/I) v
1; = Signal-Exit(P, Pr, Cond, ti, 0) 4

(Is,./. Eel # 0 + (Is;. Eel = Is,.,. EQl - 1 A

3j < i (1, = Enter(P’,Pr’,t;, I))))
c) 1; =Signal-Exit(P, Pr, Cond,t;, I) -+

(Is;.,.CQ[Cond]l # 0 + (Is;.CQ[Cond]I =
Is,.,.CQ[Cond]I - 1 A

3j c i (l, = Wait(P’,Pr’,Cond,t;,l))))
FD-Rules 1.b) and 1.c) requires that, if the waiting
queue Q is not empty the proper Signal-Exit or
Wait will activate exactly one of the processes awaiting
on Q.
I , = Wait(P, Pr, Cotid, t,, O / I) v d)

l i = Signal-Exit(P, Pr, Cond,ti,O/I) +
3j<i (1, = Enter(P, Pr,t,, I)

This rule requires that every process operating inside
a monitor must have called Enter.

FD-Rule 2 : Nontermination inside a monitor
l i = Enter(P,Pr,t,, 1) 4

3 j x (t, - t, 5 Tmax A

l j = Signal-Exit(P,Pr,Cond,t,,O/l))
FD-Rule 3 : Fair response

1, = Eriter(P,Pr,t;,O) -+
3j<i (1, = Enter(P’,Pr’,t,,I) A - d k (j<k<i A

(1 k = Signal-Exit(P’,Pr’,Cond,thO/l) v
lk = Wait(P’, Pr’, Cond,tk.O))))

Rule 3 requires that a requesting process can be
delayed only when the monitor is in use already.

1; = Enter(P,Pr,t;,O) v 1, = Wait(P,Pr,Cond,t,,O) -+
FD-Rule 4 : Free of starvation and losing process

n - i < Ti0 A Isi,Ql = Is,.[.Ql + 1
FD-Rule 5 : Correct synchronization
a) 1; = Wait(P,Pr,Cond,t,,I) +

i # r A 1, = Signal-Exit(P,Pr,Cond,t,,I)
A process waiting on a condition queue can only be
resumed by a process calling Signal on the
condition.
1; = Enter(P, Pr,t,, I) -+ b)

I , = Wait(P ’, Pr I , Cond, t k , O/I) v
I, = Signal-Exit(P’,Pr’, Cond,t,,O)

361

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

A process waiting on the entry queue can only be
resumed by a process calling W a i t or non-Signal
Exit.

FD-Rule 6 : Consistency of resource states
a) Let r and s denote the number of successful calls of

Receive and Send, respectively. Let Rnzax denote
the maximum number of resources. For a
communication coordinator monitor, the following
invariant holds:

1, = Wait(P,Send.Cond.full,t,,O/l) + s,.R# = 0
0 I r < s I r + Rmax

b)
C) I , = Wair(P,Receive,Cond.empty,t,,O/I) +

FD-Rule 7 : Correct ordering of procedure calls
a) 1, = Enter(P,AcQuire,r,,O/l) +

s,.R# = Rmax

3j>i (1, = Enter(P,Release,t,,O/I) A

- J k (i<k<j A f k = Enter(P,AcQuire,tk,O/I)))
b) 1, = Entei-(P,Release,t,,l) +

3j<i (1, = Enter(P,AccrLlire,t,,I) A

4 k (i<k<j A lk = Enter(P,Release,tk, I)))
It can be shown that, having the history information

database, every level of concurrency control faults in the
taxonomy can always be detected. This is because each
fault at the implementation level will lead to a violation
of at least one of the FD-Rules 1 - 5, and each fault at the
user process level will lead to a violation of at least one
of the FD-Rules 6.a), 6.b) and 6.c).

3.3. Fault detection algorithms
Fault detection is achieved by detecting routing

invoked periodically or when trouble is suspected. This
approach leaves the main program logic largely unaltered
by the detection logic and modifications to the detection
routine should have little effect on the main program
system. Our fault detection strategy includes two phases:
real-time checking of calling orders of monitor
procedures, which is applied only to Resource-access-
right-allocator type monitors for correct orders of using
shared resources, and periodical checking of other errors.
Let Tmax and Tmin denote the maximum and minimum
number of times any process can be inside a monitor,
respectively. The frequency of periodical invocation of
the detection routine is determined by a unit of time T,
where Tmax < T. Therefore, whenever T is reached the
detection routine is automatically invoked.

For the sake of efficiency in both time and memory
space, we use a fault-detection the following strategy.
First, we find out the correct changes of monitor states
and event relations guaranteed by the above rules. Then,
indirectly, we detect faults by checking the given event
sequence to see whether it maintains such consistent
changes. In this way, events can be viewed as functions
mapping one consistent monitor state into another
consistent state. Only the states at the last checking time
and the current checking time are recorded for checking

the mapping; the state sequence in between is not
needed. Furthermore only a small amount of information
needs to be kept (in the last checking state) for later
detection; most of the information can be removed after
being used.

We collect the information about the monitor events
and states between the last checking time and the current
checking time:

At the last checking time p :
SI, = (EQ,,, CQICondl,,. R#,)

. L = l,, ... lr (recorded event information)

At the current checking time t , :
Sr = (EQ/, CQlCondl,, R#,)

With the above information, faults causing run-time
ccincurrency control errors can then be detected by
checking the information against the rules. The checking
is based on state transformations - derive s, from s,, and L
according to the state transition rules; If every step in the
derivation gives a consistent state and finally s, can be
derived, then we say that no fault has occurred. On the
other hand, any inconsistency in monitor states notifies
that concurrency control faults have occurred during the
execution of monitor operations between the checking
time frames. If one step in the derivation gives an error
there must be an error in the event sequence, e.g., 1, =
Wuit(P), l,,, = Signal-Exit(P), i.e., P resumes execution
without being signaled. Notice, however, that even if
every step of the derivation is correct, this does not imply
a fault-free situation.

Although this post-checking is less accurate due to the
fact that the monitor states between the checking points
are not recorded, i t can still detect most concurrency
control faults identified in the previous section, except
the ones at the user process level which need to be
checked against in real-time. By properly defining the
checking frequency T, the checking can be made more
accurate. When T = 1, the checking becomes real-time.
3.3.1. Data structures
In keeping with the above strategy, we need to modify the
way of recording the scheduling events as follows. Since
we want to avoid tracing back the previous events,
whenever a blocked process (on either EQ or CQ) is
rcsumed, its time and flag will not be changed. Actually,
we even do not have to use the flag for Wait, as well as
the time for all events. Therefore, the EVENTset
becomes:

EVENTset = { Enter(Pid, Pname, flag),
Wait (Pid, Pname, Cond),
Signal-Exit(Pid, Pname, Cond, flag) }

In addition to the monitoring state, we also record the
active process in the monitor at checking time and denote

362

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

it as Running. The scheduling event sequence recorded
will be used to construct the following checking lists at
each checking time.
1) Enter-0-List: This list records the in and out of

processes awaiting on the EQ; it is a list of elements
of the form Pid(Pr), where Pid denotes the calling
process and Pr the calling monitor procedure.
Initially, Enter-0-List is set to EQ. During the
execution, its value is updated as follows:

Whenever 1k =Enter(Pid, Pr, 0) is encountered,
Pid(Pr) is appended to Enter-0-list;
Whenever 1k = Wait or I & = Signal-Exit is
encountered, the first element (at the head of the
list) of Enter-0-List is deleted.

2) Wait-Cond-List: One for each condition, the list
records the in and out of processes awaiting on
CQ[Cond]. It is a list of elements of the form
Pid(Pr), where Pid denotes the calling process and
Pr the calling monitor procedure. Initially, Wait-
Cond-list is set to CQ[Cond]; During the execution,
its value is updated as follow:

Whenever l k = Wait(P, Pr, Cond) is encountered,

Wheneve l k = Signal-Exit(Pid, Pr, Cond, I) , the

3) Running-List: This list records the processes
currently inside the monitor without waiting on any
condition queue. It is a list of elements of the form
Pid. Initially, the list is set to s, Running; during
execution, its value is updated as follows.

Whenever l k = Enter(Pid, Pr, I) is encountered,
Pid is appended to Running-List;
Whenever an element is deleted from Enter-0-List,
the element is appended into Running-List;
Whenever an element is deleted from Wait-Cond-
List, the element is appended into Running-List;
Whenever l k = Wait(Pid, Pr, Cond) is encountered,
the first element with Pid in Running-List is
deleted;
When l k = Signal-Exit(Pid, Pr, Cond, O / l) , the
first element with Pid in Running-List is deleted.

4) Resource-No: This number indicates the changes of
the resource status of the communication coordinator
type monitors. Its value is the number of the
available resources. Initially, Resource-No is set to
s,.R#; during execution, the value changes as
follows:

Whenever lk = Signal-Exit(Pid, Send, empty, O/I)
is encountered, Resource-No is decreased by one;
Whenever l k = Signal-Exit(Pid, Receive, full, O / l)
is encountered, Resource-No is increased b y one.

Request-List: This list records the calling sequence
of the monitor procedures Request and Release
of the Resource-Access-Right-Allocator type

Pid(Pr) is appended to Wait-Cond-List;

first element of Wait-Cond-List is deleted.

5)

monitors. It is a list of elements of the form Pid.
Initially, it is set to empty and, during execution, its
value is updated as follows:

When 1, = Enter(Pid, Acquire, o/l), Pid is

When 1, = Signal-Exit(Pid, Release, o/l), the first
appended to Acquire-List;

element with Pid is deleted from Request-List.
3.3.2. Fault detection algorithms
The design of the fault detection algorithms is based on a
set of state transition rules. Let si, and s, be the monitor
states at the last checking time t,, and the current
checking time t , respectively; L = l l . . . l , be the given
scheduling event sequence generated during the time
period between ti, and t . The following state transition
rules must hold.
ST-Rule 1 : Up to I,, s,. EQ = Enter-0-List.
ST-Rule 2 : Up to I,, s,. CQ[Cond] = Wait-Cond-List.
ST-Rule 3 : At any time only one process can be inside a
monitor:

a) At any time, IRunning-List1 51.
b) If 1k = Wait(Pid) or lL = Signal-Exit(Pid), then upto

1k.1, Running-List = { Pid).
c) If l k = EntetfPid, Pr, I), then upto lL, Running-List

= {Pid) .
d) If l k = Enter(O), then upto I & , IRunning-List1 = 1

ST-Rule 4 : For any event I,, up to l,.,, Pid cannot be in
either Enter-0-List or any of the Wait-Cond-
Lists.

V Pid E (Wait-Cond-Lists v Running-
List), Timer(Pid) 5 Tmax.
V Pid E Enter-0-List, Timer(Pid) 5 Tio.
This rule concerns the data integrity of
the Communication-Coordinator type
monitors. Four sub-rules are induced:

ST-Rule 5 :

ST-Rule 6 :
ST-Rule 7 :

a) 0 5 r 5 s 5 (r + R m a x)
b) Is,.R#l = Is,,.R#l + r - s
c) If l k = Wait(Pid, Send, Cond, fu l l) then Resource-

No = 0.
d) If 1k = Wait(Pid, Receive, Cond, empQ) then

Resource-No = Rmux.
ST-Rule 8 : This rule concerns the calling orders of the

monitor procedures “Request” and
“Release” of the Resource-Access-Ri ght-
Allocator type monitors.

a)
b)

c)
It can be proved that any violation of the FD-Rules 1 -

7 defined in Section 3.2 will lead to a violation of the ST-
Rules. The FD-Rules and the ST-Rules are defined in
terms of different history information. Actually, the
checking lists are pseudo-historical since they are
generated at checking points. If the actual intermediate

No Pid is identical to another Pid in Request-List.
If 1, = Enter(Pid, Release, O/l), then Pid must be
in Request-List.
No Pid can be in Request-List forever.

363

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

monitor states are recorded and in each derivation step
the checking lists are checked against these states then
any violation of FD-Rules will iead to a violation of the
correct state transitions. In this way, the FD-Rules are
equivalent to the state transition rules.

Based on the state transformation rules stated in the
previous section, three fault-detection algorithms have
been developed, respectively, for checking (a) general
monitor concurrency control operations, (b) the
consistency of resource states that should be preserved by
monitor procedures, and (c) the partial ordering of
monitor procedure calls. See Algorithm- 1, Algorithm-2,
and Algorithm-3. Input to these algorithms are event
sequences generated up to the checking time. Also, the
monitor name and type are used as parameters to the
algorithms.

The checking lists are initialized once to empty before
any invocation of the detection algorithms.

Algorithm-1: General Concurrency-Control Checking
Input : Monitor state s,) at the last checking time t,, ;

Monitor state s, at the current checking time t;
Scheduling event sequence L=ll...ln generated
from tu to t ;

Begin (
Step 1:

Initialize the checking lists;
For each l I in L Do
If Pid in I , is in Enter-0-List or any Wait-0-list
Then report an error;
If 1, = Wait(Pid) or Signal-Exit(Pid) Then

Adjust Enter-0-list accordingly;
Adjust Wait-Cond-lists accordingly;
Adjust Running-list accordingly;
If IRunning-List1 > 1 Then report an error;
If I , = Enter(Pid, Pr, I) Then

If (Pid} # Running-list Then report an error;

If Running-List # { Pid} Then report an error;
If 1, = Enter(0) Then If IRunning-List1 # 1 Then
report an error;

Step 2:
If I , is encountered Then
If Enter-0-list # s,.EQ Then report an error;
If Running-List # s,,Running, Then report an error;
For all Cond Do

If Wait-Cond-list=s,. CQ[Condl Then
report an error;

For all Pid in Running-List and Wait-Cond-Lists DO

For all Pid in Enter-0-List Do
If Timer(Pid) 2 Tmax Then report an error;

If Timer(Pid) 2 Ti0 Then report an error;
} End.

Algorithm-2:Consistency-Of-Resource-States Checking
Input : Monitor state s,> at the last checking time tn ;

Monitor state s, at the current checking time t ;
Scheduling event sequence L=ll.. ,1, generated
from t,, to t;

Begin (
Step 1:

Initialize the checking lists;
For each 1, in L Do

Adjust r, s accordingly;
Adjust resource-No accordingly;
If 0 5 r I s I r + Rmax does not hold Then

If 1, = Wait(Pid, Receive, Cond.ful1) Then

If 1, = Wait(Pid, Receive, Cond,empty) Then

report an error;

If Resource-No # 0 Then report an error;

If Resource-No # Rmax Then report an error;
Step 2:

If Is,.R#l # Is,.R#l I+ r - s Then report an error;
1 Ehd.

-
Algorithm-3: Calling Orders Checking
Input : Monitor state s, at the last checking time tD ;

Monitor state s, at the current checking time t ;
Scheduling event sequence L=l, ... l,, generated
from tn to t ;

Begin (
Step 1:

Initialize Resource-No;
For each 1, in L Do

Adjust Request-list accordingly;
I f lI = Entert(Pid, Release, O/l) Then

I f Pid is not in Request-list up to that time
Then report an error;

If there exists identical Pids in Request-list
Then report an error;

Step 2:
For each Pid in Request-list Do

If Timer(Pid) 2 Tlimit Then report an error
1 IEnd.

4.. A prototype implementation in Java
The monitor construct is now augmented with the

specification of the information necessary for run-time
h u l t detection. The information includes procedure-
calling orders, monitor types, etc. The general form of
the monitor specification is shown as follows.
MonitorName: Monitor (type) ;

Declarations of local variables;
Declarations of condition variables;
Specification of procedure call orders;
Declarations of monitor procedures;
Declarations of local procedures;
Initialization section;

End MonitorName.

364

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

Enler(ProcesslD, ProcedureName. Flag) 1 +
Monitor

Monitor Procedures

b Wait(Process1D ProcedureName, Condit ion)

*

Shared Variables, - Condit ion Queues

t
Information

for Monitor Events
and States

- Database

3.0 second

To facilitate fault detection, the system maintains a
history information database, which consists of the
scheduling event sequence recorded during monitor
operation and the checking lists generated at the
checking points. Coupled with this database the system
would also allow for control of accesses to the database.
Therefore, two types of routines are needed: data
gathering routines which collect the information and
record them into the database, and checking routines
which operate on the data structures and report on their
error states. The data gathering routines run in real-time
and are invoked by the three monitor implementation

Ratio for Ratio for Ratio for
overheads 4.490 overheads 4.49 1 overheads 4.639

30.168 7.491 30.823 7.371 31.41 7.57
Ratio for Ratio for

overheads 4.027 overheads 4.182 overheads 4.150
Ratio for

procedures Enter, W a i t , and Signal-Exit. The
checking routines, which actually implement the fault
detecting algorithms, are invoked periodically. Upon
detection, all other running processes are suspended and
are resumed only after the checking has finished.

The overall structure of the augmented monitor
construct is shown in Figure 1 . It consists of four main
functional units: the monitor, the shared resources, the
data gathering routine, and the fault detection routine.
The data gathering routine collects historical
information on monitor usage and states while the fault
detection routine uses this collected information to

365

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

analyze any violations of concurrency control rules. The
two routines can be implemented outside the monitors
so that any changes to the routines will not affect the
monitors and vice versa.

To evaluate the proposed robust monitor construct,
we have developed a software prototype in Java [4]. Two
measures are used for the evaluation: robustness and
performance. The former is concerned with whether the
proposed extension is effective in detecting run-time
faults, while the latter measures the overhead incurred
by the extension. Faults of different kinds as classified
in Section 3.2 are injected randomly for evaluating the
coverage of the fault detection algorithms. The results
show that all injected faults are detected.

To evaluate the overhead imposed by history
information recording and fault detection, statistics of
elapsed times spent on recordings of history information
and on checking of concurrency control faults are
collected with different checking time intervals. Table 1
shows the overhead calculated as the average ratio
between the time spent on executing monitor operations
with the extension and that without the extension. The
results show that, as expected, when the checking time
interval increases, the overhead decreases. The
performance of the fault detection model can also be
determined. For example, when the time interval for
invoking the fault detection routine of the
communication coordinator type monitors is set to 0.5
second, the performance of the augmented monitor
construct is decreased by nearly seven times of that
without fault detection. Therefore, in order to keep
checking of concurrency control faults without
scarifying too m u c h performance, t h e checking t i m e
interval must be carefully decided.

5. Conclusions and Future Work
In this paper, we have introduced a framework for

detecting concurrency control faults in a
multiprogramming system based on the monitor
construct. We proposed an augmented monitor construct
with run time assertion checking and underlying fault
detection, which allows the integrated detection of
concurrency control faults inside the monitor
mechanism. A software prototype of the proposed robust
monitor construct has been developed in Java.

Extensions can be made to allow predefined and
user-supplied assertions to be specified as part of
monitor declarations and used for checking the
functional operations and external use of the monitors.
The validity of this checking is based upon the
assumption that the implementation of the monitor
primitives is correct. The underlying fault detection,
applied to run time execution of the monitor primitives,
facilitates the dynamic verification of the behavior of the
implemented monitor mechanism. Improvements in

these two aspects provide a more reliable monitor
construct.

The proposed extensions to the monitor constructs
only enable the monitors to detect faults. A fault tolerant
system detects errors created as the effect of a fault and
in addition, applies error recovery techniques to restore
and continue the normal operations. Therefore, in order
to make the monitor construct to be fault-tolerant, error
recovery mechanisms should be incorporated into the
model to handle the faults detected by recovering the
errors.

Acknowledgement
Nick K.C. Cheung is partially supported by Hong

Kong Polytechnic University Postgraduate Scholarship
under Grant G-V598. The authors wish to thank Prof.
l’haram S. Dillon for reading and editing the
manuscript and providing valuable comments.

References
[I] G.R. Andrews and F.B. Schneider, “Concepts and
Notations for Concurrent Programming”, ACM Cornpitting
Surveys, Vol. 15, No. I , Mar 1983. pp.3-43.
[2] P.A. Buhr and M. Fortier, “Monitor Classification”, ACM
Cornliuting Surveys, Vol, 27, No. I , Mar 1995. pp.63-107.
[3] R.H. Campbell and R.B. Kolstd, “A Practical
Implementation of Path Expressions”, Tech Report CS-R-80-
1008, Dept. of Cornputer Sci, UIUC, June 1980.
[4] J. Cao, Nick. Cheung, Alvin. Chan, “Implementing a
Robust Monitor Construct in Java”, submitted for publication.
[5] Thomas W. Doeppner Jr. AND Alan J. Gebele, “C++ on a
Parallel MachineLTech. Report, CS-87-26, Dept of Computer
Sci, Brown Univ., Nov. 17, 1987
[6] P.B. Hansen, Operaring Systems Principles Prentice Hall,
1973.
171 P.B. Hansen, “The Programming Language Concurrent
Pascal”, IEEE Trans. Software Engineering, SE-] (2) 1975.

[8] C.A.R. Hoare, “Monitors: An Operating System
!;tructuring Concept”, CACM, Vol. 17 No IO, Oct 1974, pp
549-557
191 John H. Howard, “PROVING MONITORS”, The
lJniversity of Texa at Austin, May 1976.
1101 Butler W. Lampson AND David D. Redell, “Experiences
with Processes and Monitors in Mesa”, CACM, Vol. 23, No 2,
February 1980, pp 105-1 17
(111 A.M. Lister and K.J. Mayland, “An implementation of
IMonitors”, Software - Practice and Experience, Vol. 6, 1976.

[:I 21 Susan Owicki, “Verifying Concurrent Programs with
:Shared Data Classes” Digital Systems Laboratory, Stanford
University
(131 Ashok R. Saxena and Thomas H. Bredt, “Verification of
A Monitor Specification” University of Colorado, Hewlett-
Packard Company, Stanford University
[I41 P.D. Terry, “A Modula-2 Kernel for Supporting
Monitors“, Software - Practice and Experience,Vol. 16(5),
May 1986, pp.457-472

[)p.199-206.

pp. 375-385.

366

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 3, 2009 at 23:10 from IEEE Xplore. Restrictions apply.

