Model Checking Performability Properties*

Boudewijn Haverkort, Lucia Cloth

Department of Computer Science, RWTH
Aachen, D-52056 Aachen, Germany

Holger Hermanns, Joost-Pieter Katoen

Faculty of Computer Science, University of
Twente, 7500 AE Enschede, the Netherlands

Christel Baier

Department of Computer Science, University of Bonn, D-53117 Bonn, Germany

Abstract

Model checking has been introduced as an automated tech-
nique to verify whether functional properties, expressed in
a formal logic like computational tree logic (CTL), do hold
in a formally-specified system.

In recent years, we have extended CTL such that it
allows for the specification of properties over finite-state
continuous-time Markov chains (CTMCs). Computational
techniques for model checking have been developed and
successfully applied in the dependability context. Fur-
ther work in this area has recently led to the continuous
stochastic reward logic (CSRL), a logic to specify mea-
sures over CTMCs extended with a reward structure (so-
called Markov reward models). Well-known performability
measures, most notably also Meyer’s performability distri-
bution, can be easily defined with CSRL. However, using
CSRL it is possible to specify performability measures that
have not yet been addressed in the literature, hence, for
which no computational procedures have been developed
yet.

In this paper we present a number of computational
procedures to perform model checking of CSRL over finite
Markov reward models, thereby stressing their computa-
tional complexity (time and space) and applicability from
a practical point of view (accuracy, stability). A case study
in the area of ad hoc mobile computing under power con-
straints shows the merits of CSRL and the new computa-
tional procedures.

Keywords: dependability evaluation, performability
evaluation, measure specification, model checking, formal
verification, uniformisation, ad hoc mobile computing.

*This work is performed in the context of the VOSS project (“Val-
idation of Stochastic Systems”) which is financially supported in Ger-
many by the DFG (for the Universities of Bonn, Erlangen and the RWTH
Aachen) and in the Netherlands by NWO (Universities of Nijmegen and
Twente).

1. Introduction

Model checking is an automatic technique to verify
whether certain properties, expressed in a formal logic
like computational tree logic (CTL; see [7]), do hold in
a model, typically expressed as a transition system. Origi-
nally, model checking procedures have been devised to ver-
ify functional properties, for instance, to verify reachability
or to verify whether certain paths (state sequences) can oc-
cur in a given finite-state machine [7]. For an overview of
the techniques and benefits of model checking see e.g. [8].

Recently, instead of using a (timeless) finite-state tran-
sition system as model, the use of CTMCs as models has
been proposed [1, 2]. In combination with a logic that also
allows for the specification of timed-properties (the logic
CSL, for continuous stochastic logic), one can formally ex-
press steady-state and transient measures over CTMCs in
a very flexible way. Moreover, CSL allows one to spec-
ify probabilistic measures over paths through CTMCs. As
an example, it can be expressed what the probability is,
that starting from a particular state, within ¢ time units an-
other state is reached, thereby avoiding or deliberately vis-
iting particular intermediate states. This is a very powerful
feature in the context of dependability evaluation, as we
have demonstrated with a large case study [14]. The paper
[2] formally specifies the logic CSL (syntax and seman-
tics), whereas [3] presents efficient numerical procedures
for model checking CSL over CTMCs.

To further strengthen the applicability of the stochastic
model checking approach we recently considered Markov
models involving costs or rewards. We extended the
logic CSL to the continuous stochastic reward logic CSRL
in order to specify steady-state, transient and path-based
measures over CTMCs extended with a reward structure
(Markov reward models) [4]. We showed that well-known
performability measures, most notably also the performa-
bility distribution introduced by Meyer [18, 19, 20], can

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

be specified using CSRL. However, CSRL allows for the
specification of new measures that have not yet been ad-
dressed in the performability literature. For instance, when
rewards are interpreted as costs, we can express the prob-
ability that, given a starting state, a certain goal state is
reached within ¢ time units, thereby deliberately avoiding
or visiting certain immediate states, and with a total cost
(accumulated reward) below a certain threshold. Such a
measure has not been considered in the literature so far; [4]
did not address computational procedures for full CSRL.

The only other work we are aware of that allows for the
specification of path-based measures, has been reported by
Obal and Sanders [21, 22]. Roughly speaking, they allow
one to analyse more detailed path-based behaviour than we
do, because they employ automata of quite a general shape
to collect steady-state rewards. On the other hand, their
approach neither supports nesting of path- and state prop-
erties, nor time- or reward- interval bounds. In any case,
the type of measures that we aim at with the logic CSRL,
in which bounds on both time and accumulated reward are
taken into account independently, has not been addressed
in the literature before.

The aim of the current paper is to present a number
of computational procedures for the computation of new,
CSRL-specified performability measures. The paper is
further organised as follows. In Section 2, we introduce
Markov reward models and the logic CSRL. In Section 3
we present the model checking approach and discuss the
algorithmic problems when facing time as well as reward
bounds. In Section 4, a number of computational proce-
dures is presented. They are applied to a case study in Sec-
tion 5 . Section 6 concludes the paper.

2. Markov reward models and CSRL

This section introduces Markov reward models
(MRMs), the continuous stochastic reward logic (CSRL)
and describes the features of this logic to specify
performability measures over MRMs.

2.1. Markov reward models

Since MRMs play a central role in our approach, we
briefly recapitulate their basic concepts and introduce some
notation. An MRM is a tuple M = (S, R, p) where S is a
finite set of states, R : S x S — IR is the rate matrix,
and p : § = Ry is a reward structure that assigns to
each state s a reward p(s), also called gain or bonus, or
dually, cost. The MRM has a fixed initial distribution «
satisfying) g as = 1, so the MRM starts in state s with
probability a.

Intuitively, R(s,s’) specifies that the probability of
moving from state s to s’ within ¢ time-units (for posi-
tive t) is 1 — e"R(:s)t The reward structure p imposes
state-based rewards to the model; if ¢ time-units are spent
in state s, a reward of p(s)-t is earned. For the sake
of simplicity, we do not consider impulse rewards here.
There is no technical objection against including the lat-
ter into the logic setting, but the algorithms we develop
in this paper are tailored to state-based rewards only. Let
E(s) = > . cs R(s,s’) be the total rate at which any tran-
sition emanating from state s is taken'. More precisely,
E(s) specifies that the probability of leaving s within ¢
time-units (for positive ¢) is 1 — e EG)t State s is called
absorbing if R(s, s') = 0 for any state .

2.2. Syntax of CSRL

CSRL is a specification formalism for performability
measures over MRMs. It contains operators that refer to
the stationary and transient behaviour of the system un-
der consideration. As this paper concentrates on model-
checking procedures for transient performability measures,
we omit the steady-state operator (see [2] for the model-
checking procedure). To specify performability measures
as logical formulas over MRMs, it is assumed that each
state is labelled with so-called atomic propositions, the
most elementary formulas stating properties over states.
Atomic propositions identify specific situations the system
may be in, such as “acknowledgement pending”, “buffer
empty”, or “variable X is positive”. As generic exam-
ple atomic propositions we use the properties “red” and
“green”’; note that in any state one, both or none of these
properties may hold. We use a to range over the set of
atomic propositions.

CSRL allows one to specify properties over states and
over paths. A path is an alternating sequence so to S1 t1 - - -
where s; is a state of the MRM and ¢; > 0 is the sojourn
time in state s;. The accumulated reward for a finite path
of length n is now simply Z?gol t;-p(). Let I and J be in-
tervals on the real line, p a probability and < a comparison
operator, such as > or <. The syntax of CSRL is defined
by the following grammar:

State-formulas: @ :=a ‘ - P | eV e ‘ Pap(p)
Path-formulas: ¢ == X4 ® ‘ UL D

'Note that R and E just form an alternative representation of the in-
finitesimal generator matrix Q; more precisely, Q = R — diag(E).

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

2.3. Semantics of CSRL

We briefly discuss the intuitive meaning of the different
types of formulae in CSRL; a formal definition of the se-
mantics is provided in [4]. Atomic proposition a holds in a
state if that state is labelled with a. The meaning of nega-
tion (—) and disjunction (V) is as usual; note that using
these operators, other boolean operators such as conjunc-
tion (A), implication (=) and so forth, can be defined. A
state-formula Py, (¢) is valid in state s if the probability
measure of the set of paths starting in s and satisfying path
formula ¢ meets the bound <p. The path-operators next
X and until U are equipped with two parameters. Inter-
val I can be considered as a timing constraint whereas J
represents a bound for the cumulative reward. A path sat-
isfies the formula X/ & if its first transition is made to a
®-state at time point ¢ € I such that the earned cumulative
reward r until time ¢ (in the current state) meets the bounds
specified by J, i.e., 7 € J. Thus, path sp2.5s14... sat-
isfies X[l red if s, is labelled red and 2.5-p(so) < 4. A
path satisfies ® 24 W if (i) ® holds at all states along the
path until a state for which ¥ holds is encountered, (ii) the
W-state is reached at time ¢ € I, and (iii) the earned cumu-
lative reward up to time ¢ lies in J. To ease notation, the
formula true § ¥ is abbreviated as <>§\I/.

We restrict ourselves in this paper to intervals that start
at 0, i.e., I and J are of the form [0, ¢] and [0,], respec-
tively. We will write X éi for X %g:?}, and do similarly
for the until-operator. Note that the restriction to exactly
these interval form eases the computational procedures;
the required computational procedures for arbitrary inter-
vals have yet to be found. In case of an unbounded inter-
val I = [0,00) or J = [0, 00) we omit the corresponding
bound; the corresponding constraint is vacuously fulfilled.

2.4. Some example properties

To illustrate the expressive power of the until-operator
we exemplify its use by means of the following properties:

P0. Property P~ ,(green U red) holds in every state s if
the probability measure of the set of paths (starting
from s) that reach some red state while passing only
through green states exceeds p. Note that both the
time and reward constraint are ignored here, i.e., [=
J =0, 0).

P1. Property P-,,(green US! red) refines property P0. It
holds in every state s if the probability measure of the
set of paths (starting from s) that reach some red state
before time t while passing only through green states
exceeds p. The reward constraint is ignored in this
case.

P2. Dually, Psp(green Ug, red) holds in every state s if
the probability measure of the set of paths (starting
from s) that reach some red state before accumulat-
ing reward r while passing only through green states
exceeds p. In this case the time constraint is ignored.

P3. Combining time and reward bounds,
Psp(green US: red) holds in every state s if
the probability\measure of the set of paths (starting
from s) that reach some red state before time ¢ and
before accumulating reward r while passing only
through green states exceeds p.

Note that the syntax of CSRL allows nesting of state- and
path formulas, as in P, (green Ug (P>q(<>§i, red))).

3. The model checking procedure

Once we have formally specified the measure-of-
interest by the CSRL-formula ®, and have obtained a
model, i.e., an MRM M, of the system under consider-
ation, the crucial model checking step is addressing the
question which states in S satisfy formula ®. The basic al-
gorithmic strategy is as for CSL and CTL. In order to check
property @, the set Sat(®) of states that satisfy ® is com-
puted recursively, followed by a check whether the state of
interest belongs to this set. The recursive procedure is in
fact a bottom-up traversal of the parse tree of the formula
® under consideration. For atomic propositions (the leaves
in the parse tree) this set is directly obtained from the la-
belling of the states; Sat(® A ¥) is obtained by comput-
ing Sat(®) and Sat(¥) recursively, and then intersecting
these sets; Sat(—~®) is obtained by taking the complement
of the entire state space with respect to Sat(®). The algo-
rithm for the temporal operators is more complicated and
involves several numerical computations. For instance, for
Sat(P<p(X @)) we first compute the set Sat(®), then com-
pute for each state the probability to move to one of these
states (in one step), and compare this probability with p
according to <.

Model-checking until-formulas is even more involved.
We discuss this procedure on the basis of the example
properties presented before. Properties of the form P0
are checked on the basis of the procedure in [13], which
amounts to recursively computing the sets Sat(®) and
Sat(¥) followed by solving a linear system of equations
(with ® = {green} and ¥ = {red}). The number of equa-
tions equals the number of states of the MRM. An effi-
cient scheme for model-checking P1-properties has been
proposed in [3]. First, the sets Sat(®) and Sat(¥)are com-
puted. All states in Sat(¥) and all states that are neither in
Sat(®) nor Sat(¥) are made absorbing. A transient analy-
sis (for time instant ¢) on the resulting Markov chain then

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

suffices to decide the validity of the formula: the proba-
bility bound p is compared with the probability mass ac-
cumulated in Sat(?) at time ¢. Properties a la P2 need
some additional preprocessing. By swapping the reward
bound into a time bound inside ® (turning each U, into
UST), we can resort to the procedure for P1, provided that
the MRM M under consideration is a priori transformed
into MRM M. Intuitively, a residence of r time-units in
state s of M corresponds to earning a reward 7 in state s
of M (and vice versa). Details of this transformation can
be found in [4, Theorem 1], together with a general duality
result on which the transformation is based.

Unfortunately, the above transformation does not help
for properties of type P3. The reason is that the role
of time and rewards in M and M are truly dual, and
hence the transformation does not provide us with a
simpler — or better studied — algorithmic problem if both
time and rewards are measured. As a consequence, a
computational procedure for properties of the form P3 has
not been devised so far. In the next section we discuss
three different approaches to verify P3-type properties,
all of which address a more specific problem, namely
reward-bounded instant-of-time reachability, expressed by
path operator Q[i’:]. The following observation states that
this is enough to decide properties of the form P3.

Theorem 1

Given the CSRL state formulas ® and ¥, and MRM
M, let M’ be the MRM obtained from M by making all
W-states and all — (® \W)-states absorbing and assigning
reward O to these absorbing states. Then, state s in M
satisfies P<,(® Uéi) if and only if s in M’ satisfies

Pap(0L).

The intuitive justification for the above theorem is as fol-
lows. Once a path reaches a — (® A ¥)-state, there is no
way in which it can satisfy a ® ¢/ U-formula. We can thus
safely make these states absorbing, as the rest of the path
is not of interest anymore. Moreover, once a path reaches
a U-state at time ¢’ < ¢, while not having accumulated
more than r reward, it suffices to be trapped in that state
until time ¢ provided no reward will be earned anymore,
ie., p(s) = 0 for -state s. Note that we can amalgamate
all states satisfying ¥ and all states satisfying — (® A),
thereby making the MRM considerably smaller.

Theorem 1 allows us to restrict our attention to the
computation of reward-bounded instant-of-time reachabil-
ity when designing algorithms for model-checking time-
and reward-bounded until-formulas. The computational
procedures in the next section are based on this observa-
tion.

4. Computational procedures
4.1. Problem characterisation

According to Theorem 1, the solution of the CSRL
model checking problem for property P3 can proceed via
the computation of the reward-bounded instant-of-time
reachability probability. We argue that the latter, in turn,
can be computed via the transient accumulated reward dis-
tribution. To justify this, we consider a two-dimensional
stochastic process ((X¢, Y;),t > 0) on S x R>o, as illus-
trated in Figure 1. Informally speaking, this stochastic pro-
cess has a discrete component that describes the transition
behaviour in the original CTMC (underlying the MRM)
combined with a continuous component that describes the
accumulated reward gained over time. For £ = 0 we have
Y; = 0, and for ¢ > 0 the value of Y; increases con-
tinuously with rate p(X;). Hence, the discrete states of
the original CTMC become “columns” of which the height
models the accumulated reward. To take into account the
reward bound (< r), we introduce an absorbing barrier in
the process whenever Y; reaches the level r. Actually, we
are interested in

Pr{Y; <r X; € 5},

i.e., the probability of being in a certain subset S of states
at time ¢, having accumulated a reward smaller than r. For
our purposes, S’ shall be chosen to be the set Sat(¥) of
states satisfying U and we start the process in state s under
consideration.

Theorem 2
Given CSRL state formula W, let MRM M’ be defined
as in Theorem 1, with as, = 1 for some state sq in

M. Then sy satisfies ng(oz;ﬂ U) if and only if
Pr{Y; < r, X; € Sat(¥)} < p.

Together with Theorem 1 the above theorem allows us
to decide the satisfaction of time- and reward-bounded
until formulas via numerical recipes for calculating
Pr{Y; <r,X; € S’} on the two dimensional stochastic
process (X¢,Y:). It is worth to remark that similar pro-
cesses (with mixed discrete-continuous state spaces) also
emerge in the analysis of non-Markovian stochastic Petri
nets (when using the supplementary variable approach,
cf. [10]), Markov-regenerative stochastic Petri nets [5],
and in fluid-stochastic Petri nets [16]. We do not ad-
dress the algorithms presented in these papers here, since
they are either not directly applicable, or suffer from yet-
unresolved numerical problems (e.g., related to Laplace
back-transformations). In future work, we will investigate
them in more detail.

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

absorbing barrier

”accumulated reward dimension”

"CTMC dimension"

red .7
L
I
I
I

1
green norired

Figure 1. Two-dimensional stochastic process ((X;, Y;),t > 0) for model checking CSRL property P3.

4.2. A pseudo-Erlang approximation

Our first approach to compute Pr{Y; < r, X; € S’} is
to approximate the fixed reward bound r by a reward bound
that is Erlang-k distributed with mean r. One may view
this as some kind of discretisation of the continuous re-
ward dimension into k steps. The main advantage of this
approach is that the resulting model is both discrete-space
and completely Markovian, and hence, standard techniques
and tools developed for P2-like properties can be used
to approximate the probabilities required by Theorem 2;
reaching the reward bound in the original model corre-
sponds to reaching a particular set of states in the approxi-
mated model. As a disadvantage we mention that an appro-
priate value for k£ — the number of phases in the Erlangian
approximation — is not known a priori. Furthermore, when
CSRL expressions are nested, it is yet unclear how the error
in the approximation propagates. Furthermore, the result-
ing CTMC becomes substantially larger, especially if k is
large. On the other hand, the resulting CTMC can be de-
scribed in terms of a special tensor structure which can be
exploited in the solution procedure (as far as the storage of
the generator matrix is concerned).

Further considerations concern the effectiveness of the
Erlangian approximation. Since the computation of P2-
type property-bounds requires the transient analysis of the
CTMC under study, one typically employs uniformisation,

a generic method to analyse CTMCs via an underlying
discrete-time Markov chain [12, 17]. As is well-known,
the speed of uniformisation depends on the largest diag-
onal entry in the generator matrix (in absolute sense). In
the context of the suggested Erlang-k approximation where
the reward upper bound is r, the maximum diagonal en-
try is increased (additively) with % p, with p the largest re-
ward rate assigned to any state. This might considerably
slow down the uniformisation procedure. For a given error
bound € > 0 one can determine the number of steps N,
in the uniformised Markov chain needed to reach the given
accuracy (see also the discussion in Section 4.4). The the-
oretical time complexity then becomes O(N - (S| - k)?).
Due to sparseness of the generator matrix the algorithm ac-
tually takes less time.

4.3. Discretisation

Recently, Tijms and Veldman [24] proposed a discreti-
sation method for computing the transient distribution of
the accumulated reward in an MRM. Their algorithm is
a generalisation of an earlier algorithm by Goyal and
Tantawi [11] for MRMs with only 0- and 1-rewards. The
basic idea is to discretise both the time and the accumu-
lated reward as multiples of the same step size d, where d
is chosen such that the probability of more than one tran-
sition in the MRM in an interval of length d is negligible.

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

The algorithm allows only natural number rewards, but this
is no severe restriction since rational rewards can be scaled
to yield natural numbers.

Let F"(s, k) be the function that discretises the joint
probability density of being in state s at time n-d while
having earned an accumulated reward k-d. According
to [24], we have:

Pr{V; <rX: €S} =

SN FT(s,k)d

s€S' k=1

t
where R = 2 and T = 7

Note that R and 7" are integers, as r and ¢ are both multiples
of d. Matrix FT'(s, k) is computed in an iterative manner
where

1 _]-/da if (S,k) = (so,p(so))
F(s, k) = { 0, otherwise

(recall that s is the initial state of the MRM). For the sub-
sequent iterations, the following recursive scheme? is used:

P (k) = (s k p(s)-(L B(s)d) +
Z Fi(s', k—p(s))-R(s', 5)-d,
s'es

where k—p(s) is set to 0 if p(s) > k. This expression can
be explained as follows. At the (j+1)-st time instant, ei-
ther the MRM was in state s at the j-th time instant and re-
mained there for d time-units (the first summand), or it has
moved from a state s’ to state s during that period (the sec-
ond summand). Given that the accumulated (discretised)
reward is k, the accumulated reward at the j-th instant is
approximated by k—p(s) and k—p(s’), respectively.

In total, ¢/d iterations are needed to obtain the de-
sired result. Due to the state-dependent displacements, i.e.,
k—p(s), both matrices F7 and F7*! need to be stored,
thus occupying 2-|S|-R floating point numbers. The time
complexity of this method is O(|S|-¢:|(t—r)|-d~2). As the
computational effort is proportional to d~2, the computa-
tion time grows rapidly when a higher accuracy is required.

4.4. Occupation time distributions

In 2000, Sericola [23] derived a result for the computa-
tion of weighted sums of occupation times in CTMCs. The
approach is based on uniformisation. Assume the MRM
has m+ 1 different rewards pg < p1 < *+* < Pm—1 < Pm-
Reward py needs to be 0, which in our case is ensured

2This recursive scheme exhibits quite some similarities with the uni-
formisation approach, but evaluation takes place in non-uniformised time
steps.

(since the rewards of the absorbing states are set to 0). De-
fine H; ;(t,r) to be the probability that at time ¢ the MRM
is in state j and has accumulated a reward higher than r,
having started in state 2:

H; j(t,r) =Pr{Y; >r, X, =j| Xo = i}.

In [23, Theorem 5.6], Sericola states the following ex-
pression for the matrix H(¢,7) which contains entries
H; ;(t,r) (for all i,j € S), for r € [pn_1t, pnt) with
1<h<<m:

H(t,r) =
Z e—At (A’rf') Z <Z> 1;’;2(]_ — l’h)n_kc(ha n, k)a

ey
where n corresponds to the number of steps in the uni-
formised discrete-time Markov chain. The value z; =
% € [0, 1) represents the normalisation of r to the
interval [p,_1t, ppt). C(h,n, k) is a square matrix defined
recursively in terms of h, n and k, thereby using the uni-
formised matrix P = I — Q/\, with X the uniformisation
rate for the original CTMC.
The complementary probabilities we need, can then be

computed as:

Pr{Y; <rXi=j| Xo=1i} =
Pr{X;=j|Xp =14} — Pr{¥; > 7, X; = j | Xo =i}
= Pr{X, =j |Xo =i} — Hy;(t,7),

that is, we additionally need the transient probabilities at
time ¢ > 0. These can be computed simultaneously with
H i, (t, 'I‘) .

To obtain what is needed according to Theorem 2, we
use that s is the unique initial state, and hence

Pr{V; <r,X;=j} = Pr{Vi <r,X; =7 | Xo = s0}.

Sericola proves [23, Corollary 5.8] that the matrices
C(h,n, k) are non-negative and smaller than the matrix
P". Using this fact and recognising that the inner sum
in (1) represents a binomial distribution, allows us to con-
clude that the inner sum is always smaller than one, hence
we can use the Poisson probabilities to determine an a pri-
ori bound NN, the number of steps needed to reach an error
bound ¢ > 0:

N. n
Z e_’\t% >1-—c¢.
n=0
N, increases with time ¢ and the uniformisation constant
A
The computational and storage requirements of the ap-
proach are considerable. In the n-th step of the outer sum,

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

we must compute the elements of ((m + 1) - n-n) matrices
of dimension | S| x |S]. Since m = O(|S]), the complexity
of computing the n-th step is O(n?|S|3). If we truncate
after the IV.-th step, we get an overall time complexity of
O(N2|S|?) and an overall space complexity of O(N2|S|).

5. Case study: performability of ad hoc net-
works under power constraints

This section illustrates the usefulness of CSRL to reason
about complex dependability and performability measures.
The example is taken from the area of battery powered
mobile ad hoc networks, such as IEEE 802.11 or Hiper-
lan [25]. After describing the case study and the CSRL
properties of interest, we report on initial implementations
of the computational procedures discussed in the previous
section.

5.1. Battery powered ad hoc networks

The distinguishing feature of an ad hoc network lies in
its ability to establish a wireless connection between re-
mote stations by allowing data to travel through interme-
diate neighbouring stations that are in mutual reach. From
the point of view of a single station, the support for the
ad hoc mode has the flavour of altruism, because the sta-
tion does itself not benefit from offering its transmission
capabilities for data transfer between third parties. This al-
truism adds of course to the out-reach of the local station,
since it can use the transmission capabilities of the other
members of the network.

On the other hand, battery powered mobile stations
work under stringent power constraints, and therefore there
is an interesting tradeoff when comparing the power con-
sumption due to ad hoc traffic with the power requirements
needed to fulfil the prime needs of the mobile station un-
der study. An increased use of battery-powered devices is
envisaged in the near future. Hence, techniques to reason
about the dependability and performance of such systems
under power constraints will become increasingly impor-
tant.

5.2. The model

We consider a single battery powered mobile station and
model a simplified behaviour of the station due to ad hoc
traffic, and due to ordinary traffic, i.e., due to calls that
are originating from (or are directed to) the station con-
sidered. The model is inspired by the state transition di-
agram described in [25, p. 508]. We model the station as
a stochastic reward net (SRN) [6], which allows us to di-
rectly represent the concurrent handling of both types of

transition | mean time | rate (per hour)
accept 20 sec 180
connect 10 sec 360
disconnect 4 min 15
doze 5 min 12
give up 1 min 60
interrupt I min 60
launch 80 min 0.75
reconfirm 4 min 15
request 10 min 6
ring 80 min 0.75
wake up 16 min 3.75
place reward
Ad hoc Active | 150 mA
Ad hoc Idle 50 mA
Call Active | 200 mA
CallIdle | 50 mA
Call Incoming | 150 mA
Call Initiated | 150 mA
Doze 20 mA

Table 1. Transition rates and rewards for the
SRN in Figure 2.

traffic. Rate rewards are used to model the different de-
grees of power consumption in the various situations. As
in the IEEE 802.11 standard, the station provides the pos-
sibility to turn into doze mode, where it is neither able to
receive nor to transmit, and where its power consumption
is very low [25, p. 705].

The SRN depicted in Fig. 2 describes the behaviour of
the station. Whenever the station is not in Doze mode, it
can handle ad hoc traffic and ordinary calls concurrently.
Ad hoc traffic is handled upon a request issued from some
neighbouring station. After having processed the call, the
stations reconfirm each other about successful transmis-
sion, before the station turns back to Ad hoc idle mode.
Outgoing calls from the station under study can either get
connected after being launched by the user, or they can
get interrupted by the user (give up) while being processed.
Once connected, voice or data transfer continues until the
call is disconnected. Incoming calls are indicated through
a ringing bell. If the call is accepted, connection is estab-
lished, otherwise the pending incoming call can be inter-
rupted by the remote station. If both threads of control are
idle, the station can decide to doze, until a wake up occurs.

The transition rates of the SRN are chosen as listed in
Table 1, for instance the mean time until a disconnect oc-
curs is assumed to be 4 minutes. This corresponds to a

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

Call Initiated

g
$
&

Call Actice < |_|
2 &

!

o
. Sy
Call Incoming

>
Q§'§ :|—;\ Call Idle
N

~

§
s g
¢ |

Ad hoc Active

() ZO) O

Doze Ad hoc Idle
k7
S
ooc
L

Figure 2. SRN description of a battery powered mobile station in an ad hoc network

mean length of a call of four minutes. Rewards are as-
signed to the system as follows: in Doze mode very low
power is consumed (20 mA). In all other states we assume
the power consumption to be additive for the two concur-
rent tasks carried out, that is, in all states the overall reward
is the sum of the rewards of the non-empty places, accord-
ing to the assignment in Table 1. We assume high power
consumption for active calls (200 mA), and less power con-
sumption for active ad hoc traffic and the call handling
phases (150 mA). In idle phases, the station consumes low
power (50 mA per task).

We emphasise that the rewards and rates used in the
above model are debatable, because they are not resulting
from any kind of measurement or analytical activities, they
are instead results of educated guesses based on the power
consumption of mobile phones.

5.3. Properties of the model

Performability properties of interest to be studied for
this model are, for instance:

Q1. Is the probability larger than 0.5 to receive an incom-
ing call before having consumed at most 80% of the
power?

Q2. Is the probability larger than 0.5 to receive an incom-
ing call within 24 hours?

Q3. Is the probability larger than 0.5 to launch an out-
bound call before having consumed at most 80% of
the power within 24 hours, without using the phone
except for ad hoc transfer beforehand?

We assume a battery to have 750 mAh capacity when fully
charged and set the basic time unit to 1 hour and the ba-
sic reward unit to 1 mA. Atomic propositions are given
by the place names in the SRN model, that is, in a state

those atomic propositions hold, for which the correspond-
ing place contains a token. Then, the above properties are
translated into CSRL as follows:

QL. P-o.5(0<600 Call_Incoming)
Q2. P-o5(0S?** Call Incoming)

Q3. P-o.5((Callddle V Doze) U3y, Callnitiated)
5.4. Model-checking power consumption

Since the model-checking procedures of properties
of type Q1 and Q2 are well investigated, we only
study property Q3. More precisely, we compute the
probability of satisfying the path formula (Call_Idle V
Doze) U§g§0 Call _Initiated. The MRM M underly-
ing the given SRN has nine recurrent states. Applying our
Theorem to property Q3, we obtain a reduced MRM M’
with three transient and two absorbing states which will be
the input for the three numerical methods.

All reported times are user CPU times on a PC with
an Intel Pentium IIT 1GHz processor running under Linux.
The pseudo-Erlang approximation has been modelled us-
ing the stochastic reward net tool SPNP (version 6) [6]
while the other two algorithms have been implemented in
C/C++.

Occupation time distributions. Table 2 lists the proba-
bilities of satisfying the path formula as well as the compu-
tation time using the approach of Sericola for different er-
ror bounds ¢. The convergence of the computation is rather
good, and time consumption is moderate. Since this algo-
rithm gives us the most exact result, we compute the error
for the outputs of the other two algorithms relatively to this
one.

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

€ N | numerical value time
10—t | 496 0.44831203 76.27 sec
10~2 | 519 0.49068833 83.00 sec
1073 | 536 0.49492396 89.51 sec
10~4 | 551 0.49536172 94.76 sec
107° | 563 0.49539940 99.19 sec
1076 | 574 0.49540351 103.09 sec
10-7 | 585 0.49540395 107.11 sec
10~8 | 594 0.49540399 110.78 sec

d | numerical value | relative error time

% 0.49566676 0.05% 26.71 sec
51 0.49553603 0.03% 107.62 sec
1%_8 0.49547017 0.01% 431.93 sec
556 0.49543712 < 0.01% 1712.00 sec

Table 4. Results obtained by the discretisa-
tion algorithm.

Table 2. Results obtained by the occupation
time distribution algorithm.

General observations.
experiments, we can report the following observations:

k numerical value | relative error time
1 0.41067310 17.10% < 0.01 sec
2 0.45466923 8.22% < 0.01 sec
4 0.47730297 3.65% < 0.01 sec
8 0.48742851 1.61% < 0.01 sec
16 0.49177955 0.73% 0.01 sec
32 0.49369656 0.34% 0.02 sec
64 0.49457832 0.17% 0.05 sec
128 0.49499840 0.08% 0.15 sec
256 0.49520304 0.04% 0.50 sec
512 0.49530398 0.02% 2.02 sec
1024 0.49535410 0.01% 21.34 sec

Table 3. Results obtained by the pseudo-
Erlang approximation.

Pseudo-Erlang approximation. Table 3 lists the prob-
abilities of satisfying the path formula using the pseudo-
Erlang approach, the relative error and time consumption,
for varying numbers k of phases. As expected, an increase
in the number of phases increases the time consumption,
but decreases the relative error. Notice that k should be
considerable to obtain a good approximation. Also note
that all probabilities are smaller than the ones computed
with the previous technique. Whether this is always the
case needs to be investigated further.

Discretisation. Table 4 lists the probabilities of satisfy-
ing the path formula using the approach of Tijms-Veldman,
where the step size of the discretisation d is varied. Again,
also the time consumption and the relative error are shown.
We observe that the convergence of the computation is
rather good, but time consumption is considerable.

From these initial computational

e The three computational procedures converge to the
same value, however, only for the occupation time
distribution approach an a priori error bound (and
hence a stopping criterion) is available.

e The method based on occupation time distributions is
fast and accurate. In the current case study (which is
small) we did not run into storage problems, however,
the cubic storage requirements will limit this method
to relatively small case studies.

e The discretisation method is slow when a fine-grain
discretisation is used. Unfortunately, we have no
method available (yet) to get a hold on the required
step size to achieve a certain accuracy.

e The pseudo-Erlang approach is fast (where we did
not exploit the special tensor structure in the gener-
ator matrix; we simply used SPNP), but also here, we
have to guess a reasonable number of phases for the
approximation.

e In the pseudo-Erlang approximation around 250
phases are required to obtain a three-digit accuracy.

e The discretisation method suffers particularly from
large time-bounds and large state spaces, as these
make the number of matrices to be computed larger.

e The method based on occupation time distributions
becomes less attractive when the time bound is large
in comparison to the uniformisation rate. We are cur-
rently investigating the convergence of the matrices
C(h,n, k) to see whether some kind of steady-state
detection can be employed to shorten the series.

6. Conclusions

In this paper we have investigated the use of three com-
putational procedures for the computation of time- and

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

reward-bounded until-expressions of the logic CSRL over
Markov reward models. This type of measure has not been
considered in the literature before. In particular, it extends
the scope of the performability measures as proposed by
Meyer, and hence enriches the performability evaluation
framework in a non-trivial way. With a small case study
in the area of ad hoc mobile networking under power con-
straints we have shown the feasibility and the usefulness
of our approach; due to increased mobility more and more
systems are expected to perform well (in terms of perfor-
mance and/or dependability) under power constraints. Us-
ing the logic CSRL we are able to express such system
properties precisely.

In the near future, we will investigate whether algo-
rithms proposed in the area of non-Markovian and fluid
stochastic Petri nets can be used for our purpose. We will
furthermore extend our algorithms to cases in which the
time- and reward intervals are of a more general nature,
i.e., not just starting at 0, and will extend the approach to
impulse rewards.

References

[1] A. Aziz, K. Sanwal, V.Singhal, R. Brayton. Verifying con-
tinuous time Markov chains. Lecture Notes in Computer
Science, 1102: 269-276, 1996.

[2] C.Baier,J.-P. Katoen, and H. Hermanns. Approximate sym-
bolic model checking of continuous-time Markov chains.
Lecture Notes in Computer Science, 1664: 146-161, 1999.

[3] C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns.
Model checking continuous-time Markov chains by tran-
sient analysis. Lecture Notes in Computer Science, 1855:
358-372, 2000.

[4] C. Baier, B.R. Haverkort, J.-P. Katoen, and H. Hermanns.
On the logical specification of performability properties.
Lecture Notes in Computer Science, 1853: 780-792, 2000.

[5] A. Bobbio, M. Telek. Markov regenerative SPN with non-
overlapping activity cycles. Proc. Int’l IEEE Performance
and Dependability Symposium: 124-133, 1995.

[6] G. Ciardo,J. Muppala, K. S. Trivedi. SPNP: Stochastic Petri
Net Package. Proc. 3rd Int’l Workshop on Petri Nets and
Performance Models: 142—151, 1989.

[71 E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Trans. Program. Lang. Syst.,
8(2): 244-263, 1986.

[8] E.M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT
Press, 1999.

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

L. Donatiello and B.R. Iyer. Analysis of a composite
performance reliability measure for fault-tolerant systems.
J. ACM, 34(1): 179-199, 1987.

R. German. Performance Analysis of Communication Sys-
tems: Modeling with Non-Markovian Stochastic Petri Nets.
John Wiley & Sons, 2000.

A. Goyal and A.N. Tantawi. A measure of guaranteed avail-
ability and its numerical evaluation. /[EEE Trans. Comput.,
37:25-32, 1988.

D. Gross and D.R. Miller. The randomization technique as a
modeling tool and solution procedure for transient Markov
chains. Oper. Res., 32(2): 343-361, 1984.

H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6(5):
512-535, 1994.

B.R. Haverkort, H. Hermanns, J.-P. Katoen. On the use
of model checking techniques for dependability evaluation.
Proc. 19th IEEE Symposium on Reliable Distributed Sys-
tems: 228-237, 2000.

B.R. Haverkort, R. Marie, G. Rubino, K.S. Trivedi (editors).
Performability Modelling: Techniques and Tools. John Wi-
ley & Sons, 2001.

G. Horton, V. Kulkarni, D. Nicol, K. Trivedi. Fluid stochas-
tic Petri nets: Theory, application and solution techniques.
Eur. J. Oper. Res., 105(1): 184-201,1998.

A. Jensen. Markov chains as an aid in the study of Markov
processes. Skand. Aktuarietidskrift, 3: 87-91, 1953.

J.E. Meyer. On evaluating the performability of degradable
computer systems. [EEE Trans. Comput., 29(8), 720-731,
1980.

J.E. Meyer. Closed-form solutions of performability, /[EEE
Trans. Comput., 31(7): 648-657, 1982.

J.E. Meyer. Performability: a retrospective and some point-
ers to the future. Performance Evaluation, 14(3&4): 139-
156, 1992.

W.D. Obal, W.H. Sanders. State-space support for path-
based reward variables. Performance Evaluation, 35: 233—
251, 1999.

W.D. Obal, WH. Sanders. Measure-Adaptive State-Space
Construction. Performance Evaluation, 44: 237-258, 2000.

B. Sericola. Occupation times in Markov processes.
Stochastic Models, 16(5): 339-351, 2000.

H.C. Tijms, R. Veldman. A fast algorithm for the tran-
sient reward distribution in continuous-time Markov chains,
Oper. Res. Lett., 26: 155-158, 2000.

B. Walke. Mobile Radio Networks. John Wiley & Sons,
1999.

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN'02) COMPUTER

0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 07,2021 at 10:42:03 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

