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Abstract

Languagerun-timesystemsareroutinelyusedto hostpo-
tentially buggy or maliciouscodelets— software modules,
agents,applets,etc. — in a secure environment. A num-
ber of techniquesexist for managing accesscontrol to sys-
temservicesandevenfor terminatingcodeletsoncethey’ve
beendeterminedto be misbehaving. However, because
codeletscan be terminatedanywhere in their execution,a
codelet’s internal statemightbecomeinconsistent;restart-
ing the codeletcould result in unexpectedbehavior. Any
statethe codeletshares with other codeletsmay likewise
becomeinconsistent,destabilizingthosecodeletsas well.
To addresstheseproblems,wehavedesigneda mechanism,
strictly usingcode-to-codetransformations,which provides
transactionalrollback supportfor codelets.Each instance
of a codeletis run in its own transaction,and standard
(ACID) transactionalsemanticsapply. All changesmade
by thecodeletare automaticallyrolled back whenthecor-
respondingtransactionaborts. We discussa transactional
rollback implementationfor Java, and presentits perfor-
mance.

1. Intr oduction

Languagerun-time systemsare routinely usedto host
potentiallybuggy or maliciouscodelets1 in a secureenvi-
ronment. Maintaining such secureenvironment requires
somecontrol over the executionof thesecodelets. At its
mostbasiclevel, this meanstheability to mediatebetween
a codeletandthe potentiallydangerousprimitivesit is al-
lowedto call, aswell astheability to stopandstartcodelets
atwill.

A numberof mechanismsexist for accesscontrolandfor
safeterminationof codelets.However, languagerun-time
systemssuffer the dual problem of restartingterminated

1The term “codelet” is also usedin artificial intelligence,numerical
processing,XML tagprocessing,andPDA software,all with slightly dif-
ferent meanings. When we say “codelet,” we refer to a small program
meantto beexecutedin conjunctionwith or asaninternalcomponentof a
largerprogram.

codelets.Languagerun-timesystemsallow andencourage
unrestricteddatasharingamongcodelets;theseshareddata
structurescouldbein aninconsistentstatewhenthecodelet
is terminated. Theseinconsistenciescandestabilizeother
runningcodeletsaswell asmake it complicatedto restarta
terminatedcodelet.

Oneapproachto addressingthisproblemis equivalentto
an approachtaken for codetermination: if datasharingis
the problem,simply disallow datasharing. If all the state
a codeletever touchesis destroyed with the codelet,there
is no restartproblem. However, this severely restrictsthe
capabilitiesof thelanguages.It alsomeansprogramswrit-
ten for the original languagesystem,which could depend
on datasharing,might needto berewritten to work in this
new environment.

We proposea language-basedsolution to addressthis
problem. We observe that many codeletsystems,suchas
component-basedweb servers (e.g. a Java Servlet web
server), executein a transactionalstyle, spawning codelet
instancesto independentlyservicerequestsas they arrive.
We track the changesthe codeletsmake to any state;if a
codeletis terminated,we roll back all of its changes. If
the codeletis later restarted,the systemis not in somein-
termediatestatethat might causeinstability. Becauseof
the natureof the rollback operation,codeletsmustbe run
astransactionsin order to maintainthe consistency of the
state. Note, however, that we arenot saving the codelet’s
call stackor executionstate— that is, we arenot saving a
continuation.Whenthecodeletis resumed,this stateis ini-
tialized from scratch.Only the codelet’s persistentstateis
saved. Similarly, transactionalrollbackonly dealswith op-
erationson memory, anddoesn’t addressnetwork- or file-
basedstate. From the perspective of writing codelets,our
designonly requiresthe addition of transactionstart and
commitinstructionsto the systemthat hostscodelets.We
expectthesetransactionalinstructionswould be integrated
in the event dispatchingmechanismusedin suchsystems
asWebserverplug-ins.No otherchangeswouldneedto be
visible to thecodeletprogrammer.

In this paper, we presentthe designand implementa-
tion of a reusableframework for introducingtransactional



rollback to programsat the languagelevel. Section2 dis-
cussesour designgoalsandpresentsand justifiesour de-
sign. In Section3, we discussa Java-basedimplementation
of our transactionalrollbackdesign,andaddressa number
of implementation-specificissues.Section4 presentsper-
formanceresults.

2. Systemdesign

Theability to terminatecodelets,assumedto beexecut-
ing transientlyin an otherwiselong-runningsystem,is a
necessarypropertyof this long-runningsystem. We have
addressedthis problemwith soft termination[31]. How-
ever, asa resultof a codelet’s untimelytermination,shared
statemightbecomeinconsistent.To addressthis,weneeda
mechanismto returnthesystemto aknown-consistentstate.

A numberof possibledesignsexist for rolling backstate
in alanguagerun-timesystem.Webegin by explaininghow
transactionsareanappropriatemechanismfor rollback.We
thenexploretherangeof possibledesigns,andexplainhow
we choseto approachtheproblem.We alsoaddressissues
in thedesignof rollback.

2.1. Rollback and transactions

The most straightforward solution for designing
language-basedrollback is to simply keep a record of
changesmadeby a codelet,and roll the changesback if
the codeletis terminated.However, dueto the concurrent
natureof multi-threadedlanguagesystems,wheremultiple
codeletsmay read and write to shareddata in parallel,
terminationcould still result in inconsistentstate. Two
general types of data conflicts complicate our design,
read-after-write conflictsandwrite-after-write conflicts.

Write-after-write conflicts occur when two codelets
write to the samevariable. If oneof the codeletsis termi-
nated,it becomesunclearhow to roll backthattransaction’s
writesto thevariable.Read-after-writeconflictsoccurwhen
onecodeletreadsa variableanothercodelethaspreviously
written to. If the writing codeletis terminated,the value
readby thereadingcodeletbecomesinvalid, andtheread-
ing codeletmustnow beterminated,or at leastrestarted,as
well.

Write-after-write andread-after-write conflictsarewell
known in thedomainof databases.They aregenerallyad-
dressedby ensuringthatall stateis operatedon strictly by
ACID (atomic, consistent,isolated,durable)transactions.
In particular, wecanpreventtheseconflictsby constraining
theorderof operationswithin transactionsto preventtheof-
fendingcases.Theresultingorderis saidto have theprop-
ertiesof serializabilityandstrictness. Conveniently, a well
known locking protocol,strict two-phaselocking, guaran-
teestheseproperties.Any textbook on databases,suchas

Silbershatzet al. [33], providesa more in-depthcoverage
of thismaterial.

For oursystem,then,eachcodeletrunswithin a transac-
tion, utilizing thesystemmemoryasa database.In therest
of this section,we show how this canbe integratedinto a
languagesystem.We alsodiscusssomeissuesthatarisein
addingdatabasefunctionalityto alanguagerun-timesystem
for supportingtransactionalrollback.

2.2. Ar chitectureof transactional rollback

Transactionalrollbackhasanumberof similaritiesin de-
sign to languagepersistence.Persistenceis thenotion that
the stateof a programis maintainedeven in casesas ex-
tremeas the computerrebooting. To accomplishthis, the
systemmustkeeptrackof which dataa programaccesses.
At prescribedpointsin the code,the systemmustsave the
stateto disk, making it persistent. It must also dealwith
systemfailuresbefore the datahasbeenwritten to disk.
Similarly, transactionalrollback mustkeeptrack of which
statea codelethasmodified. If the codeletis terminated,
the changesthe codelethasmademust be rolled back to
stored,stablevalues.Thesystemmighttrackthismeta-state
at many differentlevels.

Likewise,therearenumerousparallelsbetweentransac-
tional rollbackandlanguagesecurity. In languagesecurity,
thebasicgoal is to protectsystem-level invariants,suchas
codeletseparationandresourcelimitations. Transactional
rollbackis concernedwith protectingunspecifiedinvariants
at theuserlevel.

Like languagepersistenceandlanguagesecurity, wecan
designtransactionalrollbackto runbelow thelanguagerun-
time system,insidethe run-timesystem,or above therun-
timesystem.

2.2.1.Below the run-time system. At the lowest level,
transactionalrollbackcanbedesignedto operatebelow the
languagerun-timesystem,generallyasa serviceof theop-
erating system. Since operatingsystemmechanismsare
simpleandwell-understood,greaterassurancecanbe pro-
videdby addingtransactionalbehavior at this level. How-
ever, the operatingsystemonly seespagesand words in
memory, anddoesnot understandthesemanticsof thedata
it is operatingon. As a result it cannottake advantageof
thesesemanticsto preventunnecessarycontentionfor sys-
temresources.

Numerouspersistentobject systemsoperateat the op-
erating systemlevel. The operatingsystemcan use the
pageaccesspatternsof runningcodeletsto determinewhich
pagesof memoryneedto be madepersistent.This is the
approachtaken by such persistentsystemsas Grasshop-
per[12], KeyKOS[15], andothers.Similar approachesare
takenby softwaredistributedsharedmemorysystems[30]
to propagatechanges. Finally, Howell [19] describesan



implementationof Java persistencewhich operatesabove
the operatingsystembut below the languageruntime. A
more complete discussionof operating system support
for persistenceand transactionalsystemsis provided by
DearleandHulse[11].

The operatingsystemcanalso be usedto enforcelan-
guagesecurity invariants. For languagesecurity, the op-
eratingsystemalreadyhas built-in protectionsfor cross-
domain accessof state. However, the operatingsystem
usesprocessesto separateprotectiondomains,so individ-
ual codeletshave to be run in separateJVM processes.At
amoreextremelevel, onecantakeadvantageof thesepara-
tion affordedby runningthecodeletsondifferentmachines
entirely. Severalsystemsusethesemechanismsto provide
languagesecurity[24, 34].

2.2.2. Inside the run-time system. We can also imple-
ment transactionalrollback asa customizationto the lan-
guagerun-time system. With the languagerun-time sys-
tem’s semanticunderstandingof the language’s datastruc-
tures,we can provide transactionalrollback at the granu-
larity of thesedatastructures.The languagerun-timesys-
temimplementationitself doesnot necessarilysuffer from
theperformanceor designconstraintsimposedon codelets
runningabovethelanguagerun-timesystem.However, this
approachsuffersfrom alackof portability; to providetrans-
actionalrollback in different implementationsof the same
programminglanguage,thedesignmustbere-implemented
for eachlanguagerun-timesystem.

Languagepersistenceis alsocommonlyintegratedinto
the languagerun-time. The languagerun-timesystemun-
derstandsthe datastructuresa programis using, and can
thus save and restoredata at the granularity of objects,
ratherthan individual memorywordsor large datapages.
This moreprecisegranularitycanresult in fewer casesof
falsesharingcontention(that is, caseswheretwo codelets
areaccessingmemorythatis within thesamememorypage,
but is actually used for separateand unrelatedobjects).
Most persistentlanguage-basedsystemstrack changesat
the granularityof objects. This granularityhasalso been
shown to reducecontentionin distributedsharedmemory
systems[20].

This approachis the earliestin persistentsystems.Per-
sistentsystemsgrew up aroundsuchearly persistentpro-
gramminglanguagesasPS-Algol [2] andElle [1], aswell
asthelaterNapier88[10], in which persistencesupportex-
istedasa necessarypart of the languagerun-timesystem.
TheearliestpersistentobjectsystemwasPOMS[7]; more
recentexamplesincludeThor [23] andMneme[26]. Java
hasbeenaspecifictargetof modificationsto supportpersis-
tence,with suchsystemsasPJama[29].

Finally, the languagerun-time systemcan provide en-
forcementof languagesecurity. Thelanguagerun-timesys-

temunderstandsthedatastructuresa programis using,and
canusethis informationto providemorepreciseprotection.
In fact,many systemsenforcinglanguagesecurityexist as
partof thelanguagerun-timesystemsbecausetheseaspects
of languagesecurityareactuallyintegratedinto thedesign
of the language.A numberof Java resourcemanagement
systemsalsorely oncustomizationsto theJVM [3, 4,5,35].
Some,suchasPERC[27], evengo so far asto modify the
languageto provide certainresourceguarantees.Vino [32]
directly tracksthe resourcesusedby its codelets,allowing
for a limited form of transactionalrollback.

2.2.3. Above the run-time system. Designingtransac-
tional rollback to run on top of the languagerun-timesys-
tem solvesthe issueof portability. Sincethe transactional
rollbacksystemis designedin termsof the languageitself,
any implementationof the languagerun-time systemcan
usethe transactionalrollback systemunmodified. What’s
more,code-to-codetransformationsarewell-understoodin
languagetheory, and a high-level designbasedon code-
to-codetransformationscould be more easily adaptedto
work with many differentprogramminglanguages.How-
ever, thesecode-to-codetransformationsystemssuffer per-
formanceandflexibility penaltiesbecausethey areunableto
modify all aspectsof theunderlyinglanguagerun-timesys-
tem. In our previouswork on soft termination[31], facing
thesesametradeoffs, we choseto implementour systemas
a code-to-codetransformation,andtheperformancepenal-
ties were still quite reasonable(worst casebenchmarks,
doing numericalprocessing,experiencedan 18-25%over-
head,where other benchmarksexperiencedonly a 3-6%
overhead).

This approachhasbeenusedin designinglanguageper-
sistence.In suchsystems,thecodeletis transformedat run-
time to provide the persistentsystem,also running in the
languagerun-timesystem,with accessinformationfor that
codelet.Marquezetal. [25] describeapersistentsystemim-
plementedin Java entirely usingbytecodetransformations
at classloadtime.

Someaspectsof languagesecuritycanalsobeenforced
on top of the languagerun-timesystem.In thesesystems,
the codeletis transformedas it is loadedby the run-time
systemto makerun-timechecksenforcinglanguageinvari-
ants. Theserun-time checkslikewise run entirely on top
of the languagerun-timesystem. Suchcheckshave been
usedin the past for accesscontrol [14, 28, 36], resource
management[6, 8, 16, 22], andto allow for programtermi-
nation[31].

2.3. Designdiscussion

Becausewe wanta portablesystem,we have chosento
implementtransactionalrollback above the languagerun-
time systemusing code-to-codetransformations,as de-



scribedin section2.2.3 above. We begin my describing
thetransactionalrollbacktransformation.We alsodescribe
somecomplicationsinherentin designingtransactionalroll-
back.

2.3.1.The transactional rollback transformation. The
code-to-codetransformationfor transactionalrollback is
relatively straightforward. First, eachsubroutineof the
codeletis duplicated,andaparameteris addedto thedupli-
catesubroutines.This parameteris an objectrepresenting
the currenttransaction,and is usedto identify the current
codelet.In addition,all subroutineapplicationsfrom dupli-
catesubroutinesarerewritten to insteadcall theduplicate-
equivalentsubroutines,passingthe currenttransactionpa-
rameteralong. This effectively duplicatesthe call graph
of the entire system,forming a transactionaland a non-
transactionalcontext for eachcodelet.

Each object instanceis mappedone-to-oneto a lock.
The duplicatesubroutinesarerewritten suchthat beforea
codeletcan accessa datastructure,the transactionwhich
correspondsto thecodeletmustfirst acquirethelock corre-
spondingto thedatastructure.As mentionedin Section2.1
above, lock acquisitionfollows the strict two-phaselock-
ing protocolto ensurethesystem’s consistency. If a dead-
lock is detected,thecodeletis terminated,andits modifica-
tionsrolled back.Theoriginal subroutinesremainunmodi-
fied,allowing for minimaloverheadin theeventthatanon-
transactionalcontext is desired;thecostof thisflexibility is
a
���

overheadin thecodesizeof theprogram.

When a write lock is granted,the correspondingdata
structuremust additionally be backed up. A referenceis
thus maintainedfrom every data structureto its shadow
backup. If the currenttransactionis aborted,any modifi-
cationswill be rolled back,thusadditionallyrequiringthe
maintenanceof referencesfrom the backupsto their orig-
inal locations. When the write lock is granted,a shallow
copy of the datastructureis madeinto the backup. Deep
copiesareunnecessary, asany datastructuresreferredto by
the currentdatastructureare themselvesbacked up when
write-locked. Note that a datastructureis only backed up
oncepertransaction,thefirst timethewrite lock is acquired.
Figures1–3illustrateatransactionreadingfrom andwriting
to anobject.

If a transactioncommits,any backupsbeingmaintained
for that transaction’s write locks are thrown away. If the
transactionaborts,its backupsare restored. Aborts occur
wheneverthecorrespondingcodeletabnormallyterminates,
either becauseof a bug, in responseto a terminationre-
questby thesystem,or to breaka deadlock.Locksarere-
leasedwhenthe transactionfinishes,eitherby committing
or aborting.

lock

backup

c1=yellow

c2=green

c3=red

readers={}

writers={}

Object Lock state

Figure 1. Before a transaction has begun op-
erating on the object, its backup is empty and
it points to an empty loc k. The original object
consisted onl y of the fields c1, c2, and c3. The
backupand lockfields were added in transf orm-
ing the object for transactional rollbac k.

id=1

modified
objects

Transaction

lock

backup

c1=yellow

c2=green

c3=red

readers={1}

writers={}

Object Lock state

Figure 2. Transaction 1 has read from the ob-
ject. It has a read loc k on the object, but the
object has not been written to, so no backup
has been created. Grayed-out fields are those
whic h are not modified in the operation.
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Figure 3. Transaction 1 has written to the ob-
ject. It has a write loc k on the object, and the
backup has been allocated and filled with the
old values of each field. Grayed-out fields are
those whic h are not modified in the operation.



2.3.2. Deadlocks. Introducing transactionsto a lan-
guage,asin transactionalrollback,cancausea previously
deadlock-freeprogramto deadlock.Thesedeadlocksmust
be dealtwith, eitherby preventingthembeforehandor by
detectingthem after the fact. Deadlockprevention algo-
rithms involve acquiringlocks beforethey areneededand
in awell-definedorder. Unfortunately, codeletsarenotwrit-
tento useany particularlock accessdiscipline(andarenot,
in general,designedaroundthe thoughtthat they might be
runningin a transactionalenvironment),andattemptingto
statically add sucha discipline to a codeletwould be in-
feasiblewithout grosslyoverestimatingthelock usageof a
codelet. This makes it unreasonableto attemptan imple-
mentationof deadlockprevention.

Deadlockdetectionsimply involves maintaininga di-
rectedgraphof lock dependencies.If this graphever de-
velopsa cycle, thereis a deadlock.This canbedetermined
by performinga simplegraphtraversalwhena lock is re-
quested.If acycle is detected,thenewesttransactionin the
cycle is terminated.This guaranteesthatat leastonetrans-
action in the system(the oldest)will never be terminated
dueto deadlock,andthereforethatdeadlockwill neverpre-
ventthesystemfrom makingforwardprogress.Thesecon-
ceptsarewell-known in thefield of databases[33].

Note that locks availableto a languagearenot directly
used in transactionalrollback, although such language-
basedlocks,if available,maybeusedshort-termwithin crit-
ical sectionsof thelock manager. As aresult,ourdeadlock-
detectionschemedoesnotaddressdeadlockswhicharepre-
existing in thecodelet.This alsointroducesthepossibility
that codeletsmay deadlockon a mix of normal language-
basedlocksandtransactionalrollbacklocks.

If thelock-stateof language-basedlocksis accessibleto
our deadlock-detectionalgorithm,we can incorporatethis
informationto detectsuch“mixed” deadlocks.Otherwise,
we could implementa timeout for transactionalrollback
locks. When someapplication-specificheuristic function
determinesthat no forward progressis occurring(for in-
stance,by detectingthat no lock activity hasoccurredfor
oneminute), we can begin abortingtransactionsuntil the
systemresumesmakingforwardprogress.

3. Implementation

We choseto implement transactionalrollback for the
Java programminglanguage,giving us experiencethat di-
rectlyappliesto apopularlanguageandwhichcanbeeasily
appliedto otherobject-orientedlanguages.Wealsofavored
Javafor thepresenceof preexistingtoolsto helpimplement
anddebug thecode-to-codetransformations.

In thissection,wediscusshow to transformJavacodeto
supporttransactionalrollback.Wethendiscussanumberof
implementationissuesandhow we addressedthem. Some

areJava-specific,andwould not posea problemfor other
languagesystems,while othersareuniversal.

Our implementationof transactionalrollback utilizes
Java bytecoderewriting; we useIBM’ s JikesBT2 bytecode
toolkit.

3.1. Locking codeinsertion

The systemswe have in mind in our designof trans-
actionalrollback arethosewhich run potentiallyuntrusted
code.As a result,we make no assumptionsaboutthecode
as it is input into the system,and the systemitself must
ensurethatthecodehasbeentransformedto supporttrans-
actional rollback. We can ensurethis by performingthe
transactionalrollbacktransformationsin theclassloader, as
theclassis beingloadedinto theJVM.

A compiled Java program is representedas a set of
.class files, eachof which containsthe bytecodefor a
single Java class. Theseclassesare loaded,typically on-
demand,by aclassloader. Classloadersarebuilt into most
JVMs andcanbe extendedto supportother functionality,
suchasrewriting codeasit is loaded.By performingcode
transformationsin theclassloader, thepoint throughwhich
all codeis loadedinto thesystem,we canguaranteethatall
codein thesystemwill beconsistentlytransformed.

Thetransformerimplementsthedesigndescribedin Sec-
tion 2.3 for transactionalrollback. All methodsaredupli-
cated,anda Transaction parameteris addedto theend
of theparameterlist of theduplicatemethods.All method
calls within theseduplicatemethodsare then rewritten to
call theduplicatesof theoriginal targets,passingalongthe
Transaction argumentfrom thecallerto thecallee.Fi-
nally, all stateaccessesin theseduplicatemethodsarepre-
cededby callsto thelock manager.

A numberof instancefields needto be addedto every
class.First, every instancemusthave a referenceto a lock
object.Sinceweemploy lock statesharing(seeSection3.2,
below), any statespecificto theobject(suchasothertrans-
actionswaiting for theobjectto becomefree)needalsobe
storedin theobject.Finally, we needa way to storebackup
datafor when a codeletmust be rolled back. To address
this, two new Java classesarecreated.The instancebackup
classstoresbackupsfor instancesvariables;it is instanti-
atedon demandby the backuproutine. The static backup
classstoresbackupsfor staticclassvariables;it is instanti-
atedwhentheclassis initialized.

The backupoperation,whencalledon an object,saves
the fields of that object into the respective backupobject,
instantiatingthebackupobjectif necessary. Thefieldsare
copiedusing Java’s assignmentoperator. If the field is a
primitive, thenrollback will restorethe appropriatevalue.
If thefield is anobject,thenany modificationsof thatobject

2http://www.alphaworks.ibm.com/tech/jikesbt



requirewrite locksonthatobject.If thebackupoperationis
working on anarray, asopposedto anobject,similar back-
upsaremade,but somespecialhandlingis necessary. See
Section3.3 for details.

The staticbackupclassservicesan additionalpurpose.
Whenaclasshasbeenrewritten,it is alsodeclaredto imple-
ment the TransObject interface. This interfaceallows
the transactionalsystemto operateon transaction-enabled
objectsin a uniform manner. As static classescannotbe
passedas parametersand cannotbe operatedon through
an interface,we insteadusethe static backupclass. It is
createdasanimplementationof TransObject , wrapping
thestaticclassfor thetransactionsystem.

3.2. Lock statesharing

We implementtwo-phaselocking at the granularityof
object instancesto guaranteeconsistency. We usedobject
instancegranularityasa matterof convenience.In partic-
ular, it allows us to useJava interfacesas the primary in-
terfacebetweenthe lock managerandtheunitsof locking.
Wecanalsostoresomelock statein objects,eliminatingthe
overheadof separatelyallocatingadditionalobjects.

Note that thelock managermustmaintainlock statefor
eachobjectin thesystem.Therewill tendto bemany more
objectsin a systemthan active transactionsoperatingon
theseobjects,and multiple objectswill tend to have the
samelock state. Traditionally, a lock object would need
to beallocatedandinstantiatedfor eachobjectthatwascre-
ated.To take advantageof this pattern,we useNLSS[9], a
form of lock statesharing. In sucha system,objectswith
the samelock state(that is, objectslocked by the same
transactionsand in the samemodes)will have references
to the samelock object. NLSS additionallyeliminatesthe
needto maintainmappingsfrom eachtransactionto theob-
jects that the transactionhaslocked for reading. We still
mustmaintaina mappingfrom eachtransactionto the ob-
jects it haswrite-locked, for the purposeof rollback. We
expectthis setto bemuchsmaller, however.

3.3. Arrays

Arrays are treatedspeciallyin Java. On the onehand,
they are instancesof java.lang.Object ; they cannot
be treatedas primitives,becausethey are compositedata
structures.In addition,two separateobjectscouldmaintain
referencesto thesamearray;it is necessaryto maintainlock
statefor eacharrayindependently. On theotherhand,it is
notpossibleto addor changemethodsor fieldsof arrays,so
they cannotbetreatedlikeotherobjects.

Sincewe mustmaintainthe lock statefor eachindivid-
ual arrayandwe cannotmodify the arrayimplementation,
we mustmaintainanexternalmappingfrom arraysto their
lock state. A hashtableis usedto storethis mapping. To

lower thecostof hashtableaccesses,we memoizehashta-
ble queries. In the commoncase,whenthe lock statewe
are looking for is in the memotable, the additionalwork
performedwhenlocking anarrayversusa regularobjectis
amethodcall to getthearray’shashCode() andamethod
call to retrieve the lock from the memotable. In practice,
codeletswhich rely heavily on arraymanipulationwill ex-
periencesignificantslowdowns in our system.Fixing this
would requireaccessto theJava implementationfor arrays
to directly adda referenceto the array’s lock in the array
object’sheader.

3.4. Constructors

Constructormethodsalsoneedto bedealtwith specially
in Java. Arbitrary work canbedonein constructors,sothey
mustberewrittenjust likeany otherJavamethod.Javacon-
structorsarealsoresponsiblefor initializing variablesto ap-
propriatedefaultvalues.This includesthenew fieldswhich
areintroducedaspartof thetransactionalrollback(e.g., the
lock field, thebackupfields).

We observe an opportunity for optimization here, as
notedin DayǹesandCzajkowski [9]. Whena codeletrun-
ning insidea transactioninstantiatesanew object,it is only
visible to thatcodeletuntil eitherthetransactionaborts,and
the object becomesunreachable;or the transactioncom-
mits. Additionally, the very act of instantiationwrites to
theobject.

Therefore,whenan object is instantiated,we initialize
the lock pointerof the objectto the singlewrite ownerfor
the transaction.The singlewrite owner is a lock structure
whichidentifiesthetransactionashaving anexclusivewrite
lock. Sincelockstatesareshared,weonly needto createthe
singlewrite owneroncefor eachtransaction.Thisoptimiza-
tion eliminatestheneedfor newly instantiatedobjectsto be
explicitly (andinevitably) locked, reducingoverhead,par-
ticularly if we implementa fast-path,asdiscussedin Sec-
tion 3.7below.

3.5. Nativemethods

Java programscaninvoke nativemethods(methodsnot
written in Java), which cannotbe transformed;that is, we
cannotpassTransaction objectsto thenativemethods.
This is particularly problematicbecausethe native code
might thencall backto Java code,andneedssomeway of
gettingthe currenttransaction.To solve this problem,we
rewrite Java classesto storethecurrenttransactionwith the
currentthreadbeforecallinganativemethod.Whencontrol
returnsfrom a native method,we can restorethe current
transaction.Our currentsystemonly addsthe transaction
restorationlogic atup-callpointsthatweknow occurin our
benchmarktests.Doing this moregenerallywould require
similar analysisand transformationsto that performedin



SAFKASI [36]. SAFKASI showed performanceoverheads
of 15-30%for passingits securitycontext argumentto all
methodsin thesystem.Wewouldexpectasimilaroverhead
here.

3.6. Openfiles

As notedby Howell [19] andothers,openfiles andnet-
work connectionsposea problembecausethey canbeused
to storestatewherethe transactionalsystemcannotroll it
back.They alsothemselvesrepresentstate(suchasfile off-
sets)thatis managednatively by thelanguagerun-timesys-
temor operatingsystem.Shouldthecodeletterminatepre-
maturely, thereis nowayfor thetransactionalsystemto roll
backany writes to files or onto the network, or otherwise
restorethestateof theobject.

Weobserve,however, thatmultipleinstancesof acodelet
will not tendto sharethe sameopenfile descriptoror net-
work socket. As a result, if a codeletterminatesprema-
turely, all of its openfile descriptorsandnetwork sockets,
which werecreatedwhile thecodeletwasrunning,become
inaccessible. If multiple instancesof a codeletsharean
openfile in an environmentwherecodeletscan fail asyn-
chronously, thesystemis equallyatrisk of inconsistentdata
in fileswith or without transactionalrollback;wedonotex-
acerbatetheproblem.

3.7. Optimizations

Weimplementedanumberof optimizationsonthecode,
andcanforeseeanumberof othersthatmayspeedthecode
upconsiderably. Theoptimizationswedid implementwere
inspiredby theresultsof profiling runsof thecode.This is
discussedin Section4.3. Thesimplestoptimizationwe use
is a fastpath.As partof thethreadlocking transformation,
we insertcodeinline to checkwhetherthe locking opera-
tion is necessary. Only if we determinethata lock needsto
beacquireddo we actuallyattemptto acquireit. This will
generallysave at leastonemethodcall perfield access,and
couldpotentiallysavemany more.

As a moreambitiousoptimization,we observedthat the
mostcommonlyaccessedobjectin a methodis this , the
objectuponwhich instancemethodsgenerallyoperate.In
almostall cases,a methodwill accessits this object. As
a result, if we can statically determinethat a methodac-
cessesthe this objectat leastonce,we canacquirea sin-
gle lock for that objectat the beginning of the method. If
any accessesarewrites,weacquireawrite lock. Otherwise,
we acquirea readlock. All subsequentlocksof this are
omitted.

Wewould like to extendtheaboveto applyto all objects
in a method.If we couldstaticallydeterminethatmultiple
locksareacquiredfor thesameobject,all but thefirst could
be removed. Similarly, if a readlock requestanda write

lock requestweremadeon the sameobjectfrom the same
method,thereadlock requestwouldberedundant.

To addressthis problem, we could use a variation of
lazy code motion [21, 13], a well known compiler opti-
mization. Using this technique,we could eliminatemore
of the redundantlock acquisitionswithin a method.Since
this methodhasbeenshown to be optimal, any redundant
lock requeststhatcanbedetectedwill bedetectedwith this
method. Lazy codemotion also guaranteesthat no code
pathsareextended,meaninga lock requestis only madeif
it is necessary. Hoskinget al. [17] discusssimilar methods
for optimizing sucha system.Note that with any of these
methods,therestill needsto beonelock acquisitionperob-
ject permethod.Inter-proceduralanalysismayhelpfurther
eliminatetheselock operations.

3.8. Integration into a real-world system

As mentionedin Section2, we assumethat this sys-
tem is alreadyrunning in a pseudo-transactionalenviron-
ment. That is, there is a long-running systemwith a
numberof transientcodeletsrunningconcurrentlyin sep-
aratethreadsand providing someservicesto the system.
In this case, starting a transactioncan coincides with
starting a codelet thread: the method Transaction.
doTransaction() is called with a java.lang.
Runnable object as a parameter. The run() method
of this Runnableobject, as rewritten by the transactional
rollback transformer, is the entry point to the transaction.
When the methodreturns,either normally or abnormally,
the transactionis completed,either having committedor
aborted,respectively. If thetransactionwasaborted,anex-
ceptionis thrown. The systemhostingthe codeletsmight
chooseto implementa loop which automaticallyrestarts
codeletsif they areaborted.

4. Performance

We measuredthe performanceof our systemusing an
AMD Athlon workstation(1.2 GHz CPU with 512MB of
RAM, running Linux version 2.4.16) and version 1.3 of
Sun’sJava 2 JVM, which includestheHotSpotJIT.

We performedtwo classesof tests: microbenchmarks
which measurethe performanceof specificJava language
constructs,andsomereal-world programs.

We performedthree different measurementsfor each
benchmark.The first was the unmodifiedbenchmark. In
the second,the classfiles wererewritten, but werenot ex-
ecutedin transactionalcontexts. This casewasdesignedto
strictly show the performanceoverheadof the larger class
files and additionalper-object datastorage(with nothing
storedthere,but taking up more space). Finally, we ran
eachbenchmarkin a transactionto measurethe total over-
headof the transactionsystem.Finally, for theapplication
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Figure 4. Performance of rewritten mi-
crobenc hmark class files, run both inside and
outside of a transactional conte xt, relative to
the perf ormance of the corresponding origi-
nal class files.

benchmarks,we furthermeasuredtheperformancewith an
“arraycheat”whichwe will describebelow.

4.1. Micr obenchmarks

Wefirst measuredaseriesof microbenchmarksto stress-
test the JVM with certain languageconstructs: looping,
methodand field accesses,exception handling, synchro-
nization,andI/O. We useda microbenchmarkpackagede-
velopedat Universityof California,SanDiego, andmodi-
fied at Universityof Arizonafor theSumatraProject3. The
resultsareshown in Figure4.

Themicrobenchmarkresultswereentirelyunsurprising.
In thebenchmarkwhichfocusesonfield andarrayaccesses,
theoverheadof thetransactionalsystemwasextreme(over
10

�
overhead).All othertestbenchmarkshadsignificantly

lower overhead.The only othermicrobenchmarkwith an
overheadof more than 
���
 was the loop test, at 1.5

�
.

However, this reflectsan actualmargin of ��� ����� seconds,
andtheoverheadshows up for therewritten classesin both
transactionalandnon-transactionalcontexts. Becauseit is
sosmall in wall-clock time, we cannotconclusively deter-
minethecauseof thisoverhead.

3Theoriginal website is http://www- cse.ucsd.edu/users/
wgg/JavaProf/javaprof.html . The source we used was
distributedfrom http://www.cs.arizona.edu/sumatra/ftp/
benchmarks/Benchmark.java
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Figure 5. Performance of rewritten application
class files, run both inside and outside of a
transactional conte xt, as well as inside with
the array cheat enabled, relative to the per-
formance of the corresponding original class
files.

4.2. Application benchmarks

We benchmarkedthe real-world applicationsJavaCup4,
Linpack5, Jess6, andOTP7, to getafeel for theperformance
impactof our transformationson real-world code.JavaCup
is a LALR parser-generatorfor Java. Jessis anexpertsys-
temshell. Linpackis a loop-intensivefloating-pointbench-
mark. OTP is a one-timepassword generatorwhich usesa
cryptographichashfunction. Theresultsareshown in Fig-
ure5.

The first trend we noticed was in the overheadof
the transformedcodenot running in a transactionalcon-
text. JessandJavaCupdemonstratedsignificantoverheads,
whereasOTPandLinpackdid not. In searchingfor acause
for thisoverhead,weconsideredgrowth in theheapsizeand
growth in the classfiles. Unfortunately, no strongcorrela-
tion appearedbetweenmeasuredincreasesin thesevalues
andtheperformancevalueswepresentin Figure5. Java1.3
doesnot provide very sophisticatedheapprofiling tools,so
we cannotrule out thechangein memoryusageasthecul-
prit. Furtherinvestigationwouldrequiremoresophisticated
profiling toolsthanwehaveatour disposal.

Whentransactionswereenabled,theoverheadswereim-
pressively large — performanceoverheadrangedfrom a
factorof 6

�
to 23

�
. Clearly, thesenumbersindicateour

systemis not yet suitablefor deploymentin practice. We
suspectedthata majorcomponentof this overheadwasre-
latedto our handlingof arrays(seeSection3.3). To study

4http://www.cs.princeton.edu/˜appel/modern/
java/CUP/

5http://netlib2.cs.utk.edu/benchmark/
linpackjava/

6http://herzberg1.ca.sandia.gov/jess/
7http://www.cs.umd.edu/˜harry/jotp/



this further, we implementedan “array cheat.” While no
longer semanticallysound,this cheateliminatesthe hash
tablelookupsto find theper-arraylocks(onegloballock is
used),and it no longerperformsbackupsof arrays. This
cheatrepresentsanupperboundon theperformancebene-
fit that might be achieved with a hypotheticallyextensible
arrayimplementation,giving usa slot perarrayto storethe
locks. Our measurementsshow significantgainsrelative
to theoriginal transactionalsystem(reducingtheoverhead
to betweena factorof 2

�
and15

�
). ExcludingLinpack,

whichis afundamentallyarray-drivenbenchmark,theover-
headexperiencedon theotherapplicationbenchmarkswith
the arraycheatwasat most5

�
. The relative speedupon

OTPwasquiteimpressive(from 23
�

to 4
�

). OTPallocates
a largenumberof smallarrayswhich it usesfor temporary
storageandwhich thenquickly becomegarbage.Clearly,
sucha programintroducesa largeoverheadwhenexternal
referencesmustbekeptto eachtemporaryarray.

An interestingquestionis how theseperformancenum-
berscompareto othersystemsthatattemptto solve similar
problems.Whenreadingthe literatureon persistentobject
systems,we have not found many paperswilling to com-
paretheir performanceto the original, non-persistentsys-
tem.Marquezetal. [25] presentacode-to-codetransforma-
tion that implementsorthogonalpersistenceand compare
its performanceto JDK 1.2with no supportfor persistence.
They indicatetheir system,with a warm disk cache,hasa
roughly9

�
performancecostrelativeto JDK 1.2whenrun-

ning their testbenchmark.Thisconfirmsthatweare“in the
ball park” but furtheroptimizationis still necessary.

4.3. Optimization profiling

In orderto gaininsightinto thebestmethodsfor optimiz-
ing thesystem,we instrumentedthetransformedclassesto
provide an accountingof whenlocks wereacquired.This
includesattemptsto acquirelocks when the fast pathde-
terminedthe acquisitionis not necessary. Our goalwasto
developa strategy to allow thetransformerto staticallyde-
terminethata lock acquisitionis not necessaryandomit it.

In analyzing these results, an interesting pattern
emerged: a large portion, and for somebenchmarks,the
vastmajority, of redundantlock requestswereon thethis
object. This result is becausea methodwill accessfields
of its own object far more frequentlythan fields of other
objects.Wenotedthatit is neversafeto removeall lock ac-
quisitionsfor anobjectfrom a singlefunctionwithout per-
forminginter-proceduralanalysis,but evenconsideringthis
requisiteacquisition,therewerestill many redundantlock
requestsof this .

Our solution, and the only optimizationwe performed
for our system,was, whenever we could statically detect
thata methodwould beaccessingthe this object,we ac-
quire theappropriatelock to this at thebeginningof the

methodandomit any lock requestsfor this anywhereelse
in themethod.This reducesmany redundantlock requests
while addinglimited deadlockpressure.The result is best
illustratedin theOTP benchmark.

OTP usesthe MD5 hashfunction to generateone-time
passwords. TheMD5 implementationkeepsmathematical
statein objectfields,andperformslongsequencesof math-
ematicaloperationsonthem.Beforethisoptimization,each
mathematicaloperationneededto beprefixedby a lock ac-
quisition.Afterwards,alock acquisitionwasonly neededat
thebeginningof eachfunction.Theresultwasasubstantial
dropin overheadfor this benchmark(andsmallerdropsfor
otherbenchmarks).

Evenwith this optimization,however, thereis still con-
siderableroom for improvement. There are still a large
numberof subsequentlock acquisitionsto thesameobject,
readlock acquisitionsfollowed closely by write lock ac-
quisitions,andother redundantlock acquisitions.As dis-
cussedin section3.7, dataflow andcontrol flow analysis
could be usedto identify redundantlock requestsand re-
ducethis overhead.

5. Conclusion

Terminationis acrucialcapabilityfor providingresource
controlin language-basedsystems.In thefaceof datashar-
ing, the ability to roll the systemback to a safestateand
to safely restartprogramsbecomesan equally important
problemin suchsystems.Transactionalrollbackprovidesa
language-basedportablesolutionto theproblemof restart-
ing codelets. Our designis independentof any particular
languagerun-timesystem,allowing implementationswhich
do not dependon a singlelanguage.Our Java implementa-
tion showsaworst-caseoverheadof 23

�
, with overheadsof

6-7
�

in theabsenceof extensive arrayusage.While these
overheadsare quite large relative to the original system’s
performance,they representa startingpoint for semantics
that are otherwiseunavailable to the designerof systems
that mustreliably executeuntrustedor buggy codelets.A
numberof opportunitiesexist to further optimizeour sys-
tem,particularlywith regardto makingsmallmodifications
to the run-timesystemto allow us to annotatearrayswith
direct referencesto their backupinformation. With small
run-time modifications,we believe we can offer transac-
tional rollback semanticsfor codeletswith reasonableper-
formance.
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