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Abstract

Languagerun-timesystemsire routinelyusedo hostpo-
tentially buggy or maliciouscodelets— softwae modules,
agents,applets,etc. — in a secue ervironment. A num-
ber of techniquesexist for manajing accesscontmol to sys-
temservicesandevenfor terminatingcodeletsoncethey’ve
beendeterminedto be misbehaving However, because
codeletscan be terminatedanywhee in their execution,a
codeletsinternal statemightbecomenconsistentyestart-
ing the codeletcould resultin unexpectedbehavior Any
statethe codeletshaes with other codeletsmay likewise
becomeinconsistentdestabilizingthosecodeletsas well.
To addresstheseproblemswehavedesigneda medanism,
strictly usingcode-to-codéransformationswhich provides
transactionalrollback supportfor codelets.Ead instance
of a codeletis run in its own transaction,and standad
(ACID) transactionalsemanticsapply. All changes made
by the codeletare automaticallyrolled badk whenthe cor-
respondingransactionaborts. We discussa transactional
rollback implementatiorfor Java, and presentits perfor-
mance

1. Intr oduction

Languagerun-time systemsare routinely usedto host
potentially buggy or maliciouscodelet$ in a secureenvi-
ronment. Maintaining such secureervironmentrequires
somecontrol over the executionof thesecodelets. At its
mostbasiclevel, this meanghe ability to mediatebetween
a codeletandthe potentially dangerougprimitivesit is al-
lowedto call, aswell astheability to stopandstartcodelets
atwill.

A numberof mechanismsxist for accesgontrolandfor
safeterminationof codelets. However, languagerun-time
systemssuffer the dual problem of restartingterminated

1The term “codelet” is also usedin artificial intelligence, numerical
processingXML tag processingandPDA software,all with slightly dif-
ferentmeanings. When we say “codelet, we refer to a small program
meantto be executedin conjunctionwith or asaninternalcomponenbf a
larger program.

codelets.Languageaun-timesystemsllow andencourage
unrestricteddatasharingamongcodeletstheseshareddata

structuresouldbein aninconsistenstatewhenthe codelet
is terminated. Theseinconsistenciesan destabilizeother

runningcodeletsaswell asmake it complicatedo restarta

terminateccodelet.

Oneapproacho addressinghis problemis equivalentto
an approachtaken for codetermination: if datasharingis
the problem,simply disallonv datasharing. If all the state
a codeletever touchess destryed with the codelet,there
is no restartproblem. However, this severely restrictsthe
capabilitiesof thelanguageslt alsomeansprogramsrit-
ten for the original languagesystem,which could depend
on datasharing,might needto be rewritten to work in this
new ervironment.

We proposea language-basedolution to addressthis
problem. We obsene that mary codeletsystemssuchas
component-basedeb seners (e.g. a Jaza Servletweb
sener), executein a transactionaktyle, spavning codelet
instancedo independentlyservicerequestsasthey arrive.
We track the changeghe codeletsmake to ary state;if a
codeletis terminated,we roll backall of its changes. If
the codeletis later restartedthe systemis notin somein-
termediatestatethat might causeinstability. Becauseof
the natureof the rollback operation,codeletsmustbe run
astransactionsn orderto maintainthe consisteng of the
state. Note, hawever, that we are not saving the codelets
call stackor executionstate— thatis, we arenot saving a
continuation.Whenthe codeletis resumedthis stateis ini-
tialized from scratch.Only the codelets persistenstateis
saved. Similarly, transactionatollback only dealswith op-
erationson memory anddoesnt addressetwork- or file-
basedstate. From the perspectie of writing codelets,our
designonly requiresthe addition of transactionstart and
commitinstructionsto the systemthat hostscodelets. We
expectthesetransactionainstructionswould be integrated
in the event dispatchingmechanisnusedin suchsystems
asWebsener plug-ins.No otherchangesvould needto be
visible to the codeletprogrammer

In this paper we presentthe designand implementa-
tion of a reusableframework for introducingtransactional



rollback to programsat the languagdevel. Section2 dis-

cusseur designgoalsand presentsand justifies our de-

sign. In Section3, we discussa Java-basedmplementation
of our transactionafollback design,andaddressa number
of implementation-specificssues. Section4 presentper

formanceresults.

2. Systemdesign

The ability to terminatecodeletsassumedo be execut-
ing transientlyin an otherwiselong-runningsystem,is a
necessanpropertyof this long-runningsystem. We have
addressedhis problemwith soft termination[31]. How-
ever, asaresultof a codelets untimely termination,shared
statemightbecomenconsistentTo addresshis, we needa
mechanisnto returnthesystento aknown-consistenstate.

A numberof possibledesignsxist for rolling backstate
in alanguageun-timesystem.We begin by explaininghow
transactionareanappropriatanechanisnior rollback. We
thenexploretherangeof possibledesignsandexplainhow
we choseto approactthe problem. We alsoaddressssues
in the designof rollback.

2.1 Rollback and transactions

The most straightforvard solution for designing
language-basedollback is to simply keep a record of
changesnadeby a codelet,and roll the changesback if
the codeletis terminated. However, dueto the concurrent
natureof multi-threadedanguagesystemswheremultiple
codeletsmay read and write to shareddatain parallel,
terminationcould still result in inconsistentstate. Two
general types of data conflicts complicate our design,
read-aftetwrite conflictsandwrite-afterwrite conflicts.

Write-afterwrite conflicts occur when two codelets
write to the samevariable. If oneof the codeletss termi-
nated,t becomesinclearhow to roll backthattransactiors
writesto thevariable.Read-aftemrite conflictsoccurwhen
onecodeletreadsa variableanothercodelethaspreviously
written to. If the writing codeletis terminated,the value
readby the readingcodeletbecomesnvalid, andtheread-
ing codeletmustnow beterminatedor atleastrestartedas
well.

Write-afterwrite and read-afteswrite conflictsare well
known in the domainof databasesThey aregenerallyad-
dressedy ensuringthatall stateis operatecbn strictly by

ACID (atomic, consistent,jsolated,durable)transactions.

In particular we canpreventtheseconflictsby constraining
theorderof operationsvithin transactionso preventtheof-
fendingcases.Theresultingorderis saidto have the prop-
ertiesof serializability andstrictness Corveniently a well
known locking protocol, strict two-phasdocking, guaran-
teestheseproperties. Any textbook on databasessuchas

Silbershatzet al. [33], providesa morein-depthcoverage
of this material.

For our systemthen,eachcodeletrunswithin atransac-
tion, utilizing the systemmemoryasa databaseln therest
of this section,we shav how this canbe integratedinto a
languagesystem.We alsodiscusssomeissueghatarisein
addingdatabaséunctionalityto alanguageun-timesystem
for supportingtransactionatollback.

2.2 Ar chitecture of transactional rollback

Transactionatollbackhasanumberof similaritiesin de-
signto languagepersistencePersistencés the notion that
the stateof a programis maintainedeven in casesas ex-
tremeasthe computerrebooting. To accomplishthis, the
systemmustkeeptrack of which dataa programaccesses.
At prescribedpointsin the code,the systemmustsare the
stateto disk, makingit persistent. It mustalso dealwith
systemfailures before the data hasbeenwritten to disk.
Similarly, transactionafollback mustkeeptrack of which
statea codelethasmodified. If the codeletis terminated,
the changeghe codelethas mademust be rolled back to
stored stablevalues.Thesystenmighttrackthismeta-state
atmary differentlevels.

Likewise,therearenumerougarallelsbetweerntransac-
tional rollback andlanguagesecurity In languagesecurity
the basicgoalis to protectsystem-leel invariants,suchas
codeletseparatiorand resourcdimitations. Transactional
rollbackis concernedvith protectingunspecifiednvariants
attheuserlevel.

Like languagepersistencandlanguagesecurity we can
designtransactionatollbackto runbelow thelanguageun-
time system,insidethe run-timesystem,or above the run-
time system.

2.2.1.Below the run-time system. At the lowestlevel,

transactionatollback canbe designedo operatebelow the
languageun-timesystemgenerallyasa serviceof the op-
erating system. Since operatingsystemmechanismsare
simpleandwell-understoodgreaterassuranceanbe pro-
vided by addingtransactionabehaior at this level. How-

ever, the operatingsystemonly seespagesand words in

memory anddoesnot understandhe semanticof the data
it is operatingon. As aresultit cannottake advantageof

thesesemanticgo preventunnecessargontentionfor sys-
temresources.

Numerouspersistentobject systemsoperateat the op-
erating systemlevel. The operatingsystemcan use the
pageaccespatternf runningcodeletso determinenhich
pagesof memoryneedto be madepersistent. This is the
approachtaken by such persistentsystemsas Grasshop-
per[12], KeyKOS[15], andothers.Similar approacheare
taken by software distributed sharedmemorysystemg30]
to propagatechanges. Finally, Howell [19] describesan



implementationof Java persistencevhich operatesabove
the operatingsystembut below the languageruntime. A
more complete discussionof operating system support
for persistenceand transactionalsystemsis provided by
DearleandHulse[11].

The operatingsystemcan also be usedto enforcelan-
guagesecurity invariants. For languagesecurity the op-
erating systemalreadyhas built-in protectionsfor cross-
domain accessof state. However, the operatingsystem
usesprocesse$o separatgrotectiondomains,so individ-
ual codeletshave to berunin separate)VM processesAt
amoreextremelevel, onecantake advantageof the separa-
tion affordedby runningthe codeletson differentmachines
entirely. Several systemausethesemechanismso provide
languagesecurity[24, 34].

2.2.2.Inside the run-time system. We can also imple-
menttransactionalollback as a customizatiorto the lan-
guagerun-time system. With the languagerun-time sys-
tem’s semantiaunderstandingf the languages datastruc-
tures,we can provide transactionatollback at the granu-
larity of thesedatastructures.The languageun-time sys-
temimplementatioritself doesnot necessarilysuffer from
the performanceor designconstraintsmposedon codelets
runningabove thelanguageun-timesystem.However, this
approactsuffersfrom alackof portability; to providetrans-
actionalrollback in differentimplementation®of the same
programmindanguagethedesignmustbere-implemented
for eachlanguageun-timesystem.

Languagepersistencés alsocommonlyintegratedinto
the languageun-time. The languagerun-time systemun-
derstandghe datastructuresa programis using, and can
thus save and restoredata at the granularity of objects,
ratherthanindividual memorywords or large datapages.
This more precisegranularitycanresultin fewer casesof
falsesharingcontention(that is, casesvheretwo codelets
areaccessingnemorythatis within thesamememorypage,
but is actually usedfor separateand unrelatedobjects).
Most persistenianguage-basedystemstrack changesat
the granularity of objects. This granularityhasalso been
shawvn to reducecontentionin distributed sharedmemory
systemg20].

This approachis the earliestin persistensystems.Per
sistentsystemsgrew up aroundsuchearly persistentpro-
gramminglanguagess PS-Algol [2] andElle [1], aswell
asthelaterNapier88[10], in which persistencsupportex-
istedasa necessaryart of the languagerun-time system.
The earliestpersistenbbjectsystemwas POMS[7]; more
recentexamplesinclude Thor [23] and Mneme[26]. Java
hasbeena specifictargetof modificationso supporipersis-
tencewith suchsystemsasPJamd?29].

Finally, the languagerun-time systemcan provide en-
forcemenbpf languagesecurity Thelanguageun-timesys-

temunderstandthe datastructuresa programis using,and
canusethisinformationto provide morepreciseprotection.
In fact, mary systemsenforcinglanguagesecurityexist as
partof thelanguageun-timesystemdbecauséheseaspects
of languagesecurityareactuallyintegratedinto the design
of the language.A numberof Java resourcemanagement
systemslsorely oncustomizationso theJVM [3, 4,5, 35].
Some,suchasPERC]27], evengo sofar asto modify the
languageo provide certainresourceguaranteesVino [32]
directly tracksthe resourcesusedby its codeletsallowing
for alimited form of transactionafollback.

2.2.3. Above the run-time system. Designingtransac-
tional rollback to run on top of the languagerun-time sys-
tem solvesthe issueof portability. Sincethe transactional
rollback systemis designedn termsof the languagetself,
ary implementationof the languagerun-time systemcan
usethe transactionalollback systemunmodified. What's
more,code-to-coddransformationsrewell-understoodn
languagetheory and a high-level designbasedon code-
to-codetransformationscould be more easily adaptedto
work with mary differentprogramminglanguages.How-
ever, thesecode-to-coddransformatiorsystemssuffer per
formanceandflexibility penaltiedecausehey areunableto
modify all aspect®f theunderlyinglanguageaun-timesys-
tem. In our previouswork on soft termination[31], facing
thesesametradeofs, we choseto implementour systemas
a code-to-coderansformationandthe performancepenal-
ties were still quite reasonablgworst casebenchmarks,
doing numericalprocessingexperiencedan 18-25%over-
head, where other benchmarksexperiencedonly a 3-6%
overhead).

This approacthasbeenusedin designinglanguageper
sistenceln suchsystemsthe codeletis transformedat run-
time to provide the persistentsystem,alsorunningin the
languageun-timesystemwith accessnformationfor that
codelet.Marquezetal. [25] describeapersistensystenim-
plementedn Java entirely using bytecodetransformations
atclassloadtime.

Someaspect®f languagesecuritycanalsobe enforced
on top of the languagerun-time system. In thesesystems,
the codeletis transformedasit is loadedby the run-time
systemto malke run-timechecksenforcinglanguagenvari-
ants. Theserun-time checkslikewise run entirely on top
of the languagerun-time system. Suchcheckshave been
usedin the pastfor accesscontrol [14, 28, 36|, resource
managemer(6, 8, 16, 22], andto allow for programtermi-
nation[31].

2.3 Designdiscussion
Becausewve wanta portablesystem we have chosento

implementtransactionalollback above the languagerun-
time systemusing code-to-codetransformations,as de-



scribedin section2.2.3 above. We begin my describing
the transactionatollbacktransformation We alsodescribe
somecomplicationsnherentin designingransactionatoll-
back.

2.3.1.The transactional rollback transformation. The
code-to-codetransformationfor transactionalrollback is
relatively straightforvard. First, eachsubroutineof the
codeletis duplicatedanda parameters addedo thedupli-
catesubroutines.This parameteis an objectrepresenting
the currenttransactionandis usedto identify the current
codelet.In addition,all subroutineapplicationdrom dupli-
catesubroutinesarerewritten to insteadcall the duplicate-
equivalentsubroutinespassingthe currenttransactiorpa-
rameteralong. This effectively duplicatesthe call graph
of the entire system,forming a transactionaland a non-
transactionatontext for eachcodelet.

Each object instanceis mappedone-to-oneto a lock.
The duplicatesubroutinesare rewritten suchthat beforea
codeletcan accessa datastructure,the transactionwhich
correspond$o the codeletmustfirst acquirethelock corre-
spondingo thedatastructure As mentionedn Section2.1
above, lock acquisitionfollows the strict two-phaselock-
ing protocolto ensurethe systems consisteng. If a dead-
lock is detectedthe codeletis terminatedandits modifica-
tionsrolled back. The original subroutinesemainunmodi-
fied, allowing for minimal overheadn the eventthata non-
transactionatontext is desiredthe costof this flexibility is
a2x overheadn the codesizeof the program.

When a write lock is granted,the correspondingdata
structuremust additionally be bacled up. A referenceis
thus maintainedfrom every data structureto its shadav
backup. If the currenttransactionis aborted,any modifi-
cationswill berolled back,thusadditionallyrequiringthe
maintenancef referencesrom the backupsto their orig-
inal locations. Whenthe write lock is granted,a shallav
copy of the datastructureis madeinto the backup. Deep
copiesareunnecessargasary datastructuregeferredto by
the currentdatastructureare themselesbaclked up when
write-locked. Note thata datastructureis only backed up
oncepertransactionthefirsttime thewrite lock is acquired.
Figuresl-3illustrateatransactiomeadingfrom andwriting
to anobject.

If atransactiorcommits,ary backupsbeingmaintained
for that transactiors write locks are thrown away. If the
transactioraborts,its backupsare restored. Aborts occur
wheneerthecorrespondingodeletabnormallyterminates,
either becauseof a bug, in responseo a terminationre-
guestby the system,or to breaka deadlock.Locks arere-
leasedwhenthe transactiorfinishes,eitherby committing
or aborting.

Object Lock state
lock —— - readers={}
backup writers={}
cl=yellow
c2=green
c3=red

Figure 1. Before a transaction has begun op-
erating on the object, its backup is empty and
it points to an empty lock. The original object
consisted only of the fields c1, ¢2, and ¢3. The
badkupand lockfields were added in transf orm-
ing the object for transactional rollbac k.

Transaction Object Lock state
id=1 lock —— = readers={1}
modified backup writers={}
objectsT cl=yellow

c2=green

c3=red

Figure 2. Transaction 1 has read from the ob-
ject. It has a read lock on the object, but the
object has not been written to, so no backup
has been created. Grayed-out fields are those
whic h are not modified in the operation.

Transaction Object Lock state
id=1 lock ——— = readers={}
Backup
modified backup A writers={1}
object — cl=yellow
cl=black
c2=green
c2=green
c3=red
c3=mauve

Figure 3. Transaction 1 has written to the ob-
ject. It has a write lock on the object, and the
backup has been allocated and filled with the
old values of each field. Grayed-out fields are
those whic h are not modified in the operation.



2.3.2. Deadlocks. Introducing transactionsto a lan-
guage,asin transactionalollback, cancausea previously
deadlock-fregorogramto deadlock.Thesedeadlockamust
be dealtwith, eitherby preventingthem beforehandr by
detectingthem after the fact. Deadlockprevention algo-
rithms involve acquiringlocks beforethey are neededand
in awell-definedorder Unfortunately codeletsarenotwrit-
tento useary particularlock accesgliscipline(andarenot,
in general designedaroundthe thoughtthatthey might be
runningin atransactionakrnvironment),andattemptingto
statically add sucha discipline to a codeletwould be in-
feasiblewithout grosslyoverestimatinghe lock usageof a
codelet. This makesit unreasonabléo attemptan imple-
mentationof deadlockprevention.

Deadlockdetectionsimply involves maintaininga di-
rectedgraphof lock dependencieslf this graphever de-
velopsa cycle, thereis a deadlock.This canbe determined
by performinga simple graphtraversalwhena lock is re-
questedIf acycleis detectedthe newvesttransactiorin the
cycleis terminated.This guaranteethatat leastonetrans-
actionin the system(the oldest)will never be terminated
dueto deadlockandthereforethatdeadlockwill neverpre-
ventthe systemfrom makingforward progressThesecon-
ceptsarewell-known in thefield of databasef33].

Note that locks availableto a languageare not directly
usedin transactionalrollback, although such language-
basedocks,if available,maybeusedshort-termwithin crit-
ical sectionsf thelock managerAs aresult,our deadlock-
detectiorschemaloesnotaddressleadlocksvhicharepre-
existing in the codelet. This alsointroduceshe possibility
that codeletsmay deadlockon a mix of normallanguage-
basedocksandtransactionatollbacklocks.

If thelock-stateof language-baseldcksis accessibleo
our deadlock-detectiomlgorithm, we canincorporatethis
informationto detectsuch“mixed” deadlocks.Otherwise,
we could implementa timeout for transactionakollback
locks. When someapplication-specifitheuristic function
determinegthat no forward progressis occurring (for in-
stance by detectingthat no lock activity hasoccurredfor
one minute), we can begin abortingtransactionsuntil the
systenmresumesnakingforwardprogress.

3. Implementation

We choseto implementtransactionalrollback for the
Java programminglanguagegiving us experiencethat di-
rectly appliesto apopularlanguageandwhich canbeeasily
appliedto otherobject-orientedanguagesWe alsofavored
Javafor the presencef preeistingtoolsto helpimplement
anddehug the code-to-coderansformations.

In this sectionwe discusshow to transformJava codeto
supportransactionatollback. We thendiscussanumberof
implementatiorissuesandhow we addressethem. Some

are Java-specific,and would not posea problemfor other
languagesystemswhile othersareuniversal.

Our implementationof transactionalrollback utilizes
Java bytecoderewriting; we uselBM'’ s JikesBT? bytecode
toolkit.

3.1 Locking codeinsertion

The systemswe have in mind in our designof trans-
actionalrollback arethosewhich run potentially untrusted
code. As aresult,we make no assumptiongiboutthe code
asit is input into the system,and the systemitself must
ensurethatthe codehasbeentransformedo supporttrans-
actionalrollback. We can ensurethis by performingthe
transactionatollbacktransformationgn theclassloader as
theclassis beingloadedinto the JVM.

A compiled Java programis representedas a set of
.class files, eachof which containsthe bytecodefor a
single Java class. Theseclassesare loaded,typically on-
demandby aclassloader. Classloadersarebuilt into most
JVMs and can be extendedto supportother functionality,
suchasrewriting codeasit is loaded.By performingcode
transformationén the classloader the pointthroughwhich
all codeis loadedinto the systemwe canguarante¢hatall
codein thesystemwill beconsistentlytransformed.

Thetransformeimplementghedesigndescribedn Sec-
tion 2.3 for transactionatollback. All methodsare dupli-
cated,andaTransaction  parameteis addedto theend
of the parametetist of the duplicatemethods.All method
calls within theseduplicatemethodsare then rewritten to
call theduplicatesof the original targets,passingalongthe
Transaction  argumentfrom the callerto the callee.Fi-
nally, all stateaccesses theseduplicatemethodsarepre-
cededby callsto thelock manager

A numberof instancefields needto be addedto every
class.First, every instancemusthave a referenceo alock
object.Sincewe employ lock statesharing(seeSection3.2,
below), ary statespecificto the object(suchasothertrans-
actionswaiting for the objectto becomefree) needalsobe
storedin the object. Finally, we needa way to storebackup
datafor when a codeletmustbe rolled back. To address
this, two new Java classesarecreated.Theinstancebadup
classstoresbackupsfor instancesvariables;it is instanti-
atedon demandby the backuproutine. The static badkup
classstoresbackupdor staticclassvariables;it is instanti-
atedwhenthe classis initialized.

The backupoperation,whencalled on an object, saves
the fields of that objectinto the respectie backupobject,
instantiatingthe backupobjectif necessaryThefieldsare
copiedusing Java’s assignmenbperator If the field is a
primitive, thenrollback will restorethe appropriatevalue.
If thefield is anobject,thenany modificationsof thatobject

2http://www.alphaworks.ibm.com/tech/jikesbt



requirewrite locksonthatobject. If thebackupoperationis
working on anarray asopposedo anobject,similar back-
upsaremade,but somespecialhandlingis necessarySee
Section3.3for details.

The static backupclassservicesan additional purpose.
Whenaclasshasbeenrewritten, it is alsodeclaredo imple-
mentthe TransObject interface. This interfaceallows
the transactionabystemto operateon transaction-enabled
objectsin a uniform manner As static classescannotbe
passedas parametersand cannotbe operatedon through
an interface, we insteadusethe static backupclass. It is
createchsanimplementatiorof TransObject , wrapping
thestaticclassfor thetransactiorsystem.

3.2 Lock statesharing

We implementtwo-phaselocking at the granularity of
objectinstancedo guaranteeonsisteng. We usedobject
instancegranularityasa matterof corvenience.In partic-
ular, it allows usto useJava interfacesasthe primary in-
terfacebetweerthelock managemandthe units of locking.
We canalsostoresomelock statein objects eliminatingthe
overheadf separatelallocatingadditionalobjects.

Notethatthelock managemustmaintainlock statefor
eachobjectin thesystem.Therewill tendto bemary more
objectsin a systemthan active transactionsoperatingon
theseobjects,and multiple objectswill tendto have the
samelock state. Traditionally, a lock objectwould need
to beallocatedandinstantiatedor eachobjectthatwascre-
ated.To take advantageof this patternwe useNLSS[9], a
form of lock statesharing In sucha system,objectswith
the samelock state (that is, objectslocked by the same
transactionsand in the samemodes)will have references
to the samelock object. NLSS additionally eliminatesthe
needto maintainmappingsrom eachtransactiono the ob-
jectsthat the transactionhaslocked for reading. We still
mustmaintaina mappingfrom eachtransactiorto the ob-
jectsit haswrite-locked, for the purposeof rollback. We
expectthis setto be muchsmaller however.

3.3 Arrays

Arrays aretreatedspeciallyin Java. On the one hand,
they areinstancesf java.lang.Object ; they cannot
be treatedas primitives, becausahey are compositedata
structuresln addition,two separat@bjectscould maintain
reference$o thesamearray;it is necessaryo maintainlock
statefor eacharrayindependently On the otherhand,it is
notpossibleto addor changemethodsor fieldsof arrays,so
they cannotbetreatedik e otherobjects.

Sincewe mustmaintainthe lock statefor eachindivid-
ual arrayandwe cannotmodify the arrayimplementation,
we mustmaintainan externalmappingfrom arraysto their
lock state. A hashtableis usedto storethis mapping. To

lower the costof hashtableaccesseaye memoizehashta-
ble queries. In the commoncase,whenthe lock statewe
arelooking for is in the memotable, the additionalwork
performedwhenlocking anarrayversusa regularobjectis
amethodcallto getthearray'shashCode() andamethod
call to retrieve the lock from the memotable. In practice,
codeletswhich rely heavily on arraymanipulationwill ex-
periencesignificantslovdownsin our system. Fixing this
would requireaccesgo the Java implementatiorfor arrays
to directly add a referenceto the array’s lock in the array
objectsheader

3.4. Constructors

Constructomethodsalsoneedto be dealtwith specially
in Java. Arbitrary work canbe donein constructorssothey
mustberewrittenjustlik e any otherJavtamethod.Java con-
structorsarealsoresponsibldor initializing variablego ap-
propriatedefaultvalues.Thisincludesthenew fieldswhich
areintroducedaspartof thetransactionatollback(e.g., the
lock field, the backupfields).

We obsenre an opportunity for optimization here, as
notedin DaynesandCzajkowski [9]. Whena codeletrun-
ning insideatransactiorinstantiates new object,it is only
visible to thatcodeletuntil eitherthetransactioraborts and
the object becomesunreachablepr the transactioncom-
mits. Additionally, the very act of instantiationwrites to
theobject.

Therefore,whenan objectis instantiatedwe initialize
thelock pointerof the objectto the singlewrite ownerfor
the transaction.The singlewrite owneris a lock structure
whichidentifiesthetransactiorashaving anexclusive write
lock. Sincelock statesaresharedwe only needo createthe
singlewrite owneroncefor eachtransactionThisoptimiza-
tion eliminatesthe needfor newly instantiatedbjectsto be
explicitly (andinevitably) locked, reducingoverhead par
ticularly if we implementa fast-pathasdiscussedn Sec-
tion 3.7 below.

3.5 Native methods

Java programscaninvoke native methodgmethodsnot
written in Java), which cannotbe transformedthatis, we
cannotpassTransaction  objectsto the native methods.
This is particularly problematicbecausethe native code
might thencall backto Jasa code,and needssomeway of
gettingthe currenttransaction.To solve this problem,we
rewrite Java classedo storethe currenttransactiorwith the
currentthreadbeforecalling anatve method.Whencontrol
returnsfrom a native method,we can restorethe current
transaction.Our currentsystemonly addsthe transaction
restoratiorlogic at up-callpointsthatwe know occurin our
benchmarkests. Doing this moregenerallywould require
similar analysisand transformationgo that performedin



SAFKASI [36]. SAFKASI shaved performanceoverheads
of 15-30%for passingits securitycontext argumentto all
methodsn thesystem We would expecta similaroverhead
here.

3.6. Openfiles

As notedby Howell [19] and others,openfiles andnet-
work connectionposea problembecausehey canbeused
to storestatewherethe transactionakystemcannotroll it
back. They alsothemselesrepresenstate(suchasfile off-
sets)thatis managedhatively by thelanguageun-timesys-
temor operatingsystem.Shouldthe codeletterminatepre-
maturely thereis noway for thetransactionasystento roll
backany writes to files or onto the network, or otherwise
restorethe stateof the object.

We obsene, however, thatmultipleinstance®f acodelet
will nottendto sharethe sameopenfile descriptoror net-
work soclet. As aresult,if a codeletterminatesprema-
turely, all of its openfile descriptorsand network soclets,
whichwerecreatedwhile the codeletwasrunning,become
inaccessible. If multiple instancesof a codeletsharean
openfile in an environmentwherecodeletscan fail asyn-
chronouslythesystems equallyatrisk of inconsistentiata
in fileswith or withouttransactionatollback;we do notex-
acerbateahe problem.

3.7. Optimizations

We implementeda numberof optimizationsonthe code,
andcanforeseea numberof othersthatmay speedhe code
up considerablyThe optimizationswe did implementwere
inspiredby the resultsof profiling runsof the code. Thisis
discussedh Section4.3. The simplestoptimizationwe use
is afastpath. As partof thethreadlocking transformation,
we insertcodeinline to checkwhetherthe locking opera-
tion is necessaryOnly if we determinghatalock needso
be acquireddo we actuallyattemptto acquireit. This will
generallysave atleastonemethodcall perfield accessand
could potentiallysase mary more.

As amoreambitiousoptimization,we obsenedthatthe
mostcommonlyaccesseabjectin a methodis this , the
objectuponwhich instancemethodsgenerallyoperate.In
almostall casesa methodwill accessts this object. As
a result, if we can statically determinethat a methodac-
cesseshethis objectatleastonce,we canacquirea sin-
gle lock for that objectat the beginning of the method. If
ary accessearewrites,we acquireawrite lock. Otherwise,
we acquireareadlock. All subsequenbcksof this are
omitted.

We would like to extendtheabove to applyto all objects
in amethod.If we could statically determinethat multiple
locksareacquiredor thesameobiject,all but thefirst could
be removed. Similarly, if a readlock requestand a write

lock requestwere madeon the sameobjectfrom the same
method thereadlock requesivould beredundant.

To addressthis problem, we could use a variation of
lazy code motion [21, 13], a well known compiler opti-
mization. Using this technique we could eliminate more
of the redundantock acquisitionswithin a method. Since
this methodhasbeenshaowvn to be optimal, any redundant
lock requestshatcanbedetectedvill be detectedwith this
method. Lazy code motion also guaranteeshat no code
pathsareextendedmeaninga lock requesis only madeif
it is necessaryHoskingetal. [17] discusssimilar methods
for optimizing sucha system. Note that with ary of these
methodstherestill needgo be onelock acquisitionperob-
jectpermethod.Inter-procedurabnalysismay helpfurther
eliminatethesdock operations.

3.8 Integration into a real-world system

As mentionedin Section2, we assumethat this sys-
tem is alreadyrunningin a pseudo-transactionanviron-
ment. That is, there is a long-running systemwith a
numberof transientcodeletsrunning concurrentlyin sep-
aratethreadsand providing someservicesto the system.
In this case, starting a transactioncan coincides with
starting a codeletthread: the method Transaction.
doTransaction() is called with a java.lang.
Runnable objectasa parameter The run() method
of this Runnableobject, as rewritten by the transactional
rollback transformer is the entry point to the transaction.
When the methodreturns,either normally or abnormally
the transactionis completed,either having committedor
abortedrespectiely. If thetransactiorwasabortedan ex-
ceptionis thrown. The systemhostingthe codeletsmight
chooseto implementa loop which automaticallyrestarts
codeletsf they areaborted.

4. Performance

We measuredhe performanceof our systemusing an
AMD Athlon workstation(1.2 GHz CPU with 512 MB of
RAM, running Linux version 2.4.16) and version 1.3 of
SunsJara 2 JVM, whichincludesthe HotSpotJIT.

We performedtwo classesof tests: microbenchmarks
which measurehe performanceof specificJava language
constructsandsomereal-world programs.

We performedthree different measurement$or each
benchmark. The first was the unmodifiedbenchmark. In
the secondthe classfiles wererewritten, but werenot ex-
ecutedin transactionatontets. This casewasdesignedo
strictly shawv the performanceoverheadof the larger class
files and additional perobject data storage(with nothing
storedthere, but taking up more space). Finally, we ran
eachbenchmarkn atransactiorto measurehe total over-
headof the transactiorsystem.Finally, for the application
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benchmarkswe further measuredhe performancevith an
“array cheat"whichwe will describebelow.

4.1 Micr obenchmarks

We first measure@ seriesof microbenchmark stress-
testthe JVM with certain languageconstructs: looping,
methodand field accessesexception handling, synchro-
nization,and1/O. We useda microbenchmarlpackagede-
velopedat University of California, SanDiego, and modi-
fied at University of Arizonafor the SumatraProject. The
resultsareshovn in Figure4.

The microbenchmarkesultswereentirely unsurprising.
In thebenchmarkvhichfocusesonfield andarrayaccesses,
the overheadf the transactionasystemwasextreme(over
10x overhead)All othertestbenchmark$adsignificantly
lower overhead. The only other microbenchmarkwith an
overheadof more than 10% was the loop test, at 1.5x.
However, this reflectsan actualmamin of 0.008 seconds,
andthe overheadshaws up for the rewritten classesn both
transactionahnd non-transactionatontexts. Becauset is
sosmallin wall-clock time, we cannotconclusvely deter
minethe causeof this overhead.

3Theoriginal websiteis http://www-  cse.ucsd.edu/users/
wgg/JavaProf/javaprof.html The source we used was
distributed from http://www.cs.arizona.edu/sumatra/ftp/
benchmarks/Benchmark.java
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Figure 5. Performance of rewritten application
class files, run both inside and outside of a
transactional conte xt, as well as inside with
the array cheat enabled, relative to the per-
formance of the corresponding original class
files.

4.2 Application benchmarks

We benchmarkdthe real-world applicationsJazaCu,
Linpack®, Jes§, andOTP’, to getafeelfor theperformance
impactof our transformation®n real-world code.JavaCup
is aLALR parsergeneratoffor Java. Jesss anexpertsys-
temshell. Linpackis aloop-intensve floating-pointbench-
mark. OTP is a one-timepasswrd generatomwhich usesa
cryptographichashfunction. Theresultsareshavn in Fig-
ure5.

The first trend we noticed was in the overhead of
the transformedcode not running in a transactionakon-
text. JessandJavaCupdemonstratedignificantoverheads,
wherea€OTP andLinpackdid not. In searchindor a cause
for thisoverheadyve consideredjrowth in theheapsizeand
growth in the classfiles. Unfortunately no strongcorrela-
tion appearedetweenmeasuredncreasesn thesevalues
andtheperformancevalueswe presentn Figure5. Jara1.3
doesnot provide very sophisticatedheapprofiling tools, so
we cannotrule out the changen memoryusageasthe cul-
prit. Furtherinvestigationwould requiremoresophisticated
profiling toolsthanwe have atour disposal.

Whentransactionsvereenabledtheoverheadsvereim-
pressvely large — performanceoverheadrangedfrom a
factorof 6x to 23x. Clearly thesenumbersindicateour
systemis not yet suitablefor deploymentin practice. We
suspectedhata major componenbf this overheadvasre-
latedto our handlingof arrays(seeSection3.3). To study

4http://www.cs.princeton.edu/"appel/modern/
java/CUP/

Shitp://netlib2.cs.utk.edu/benchmark/
linpackjava/

Shttp://herzbergl.ca.sandia.gov/jess/

Thttp://www.cs.umd.edu/ harry/jotp/



this further, we implementedan “array cheat. While no
longer semanticallysound, this cheateliminatesthe hash
tablelookupsto find the perarraylocks (onegloballock is
used),andit no longer performsbackupsof arrays. This
cheatrepresentan upperboundon the performancéene-
fit that might be achiezed with a hypotheticallyextensible
arrayimplementationgiving usaslot perarrayto storethe
locks. Our measurementshown significantgainsrelative
to the original transactionasystem(reducingthe overhead
to betweena factorof 2x and 15x). Excluding Linpack,
whichis afundamentallyarray-drivenbenchmarktheover
headexperiencednthe otherapplicationbenchmarksvith
the array cheatwas at most5x. The relative speedupn
OTPwasquiteimpressve (from 23x to 4x). OTPallocates
alarge numberof smallarrayswhich it usesfor temporary
storageand which then quickly becomegarbage.Clearly,
sucha programintroducesa large overheadwvhenexternal
referencesnustbekeptto eachtemporaryarray

An interestingquestionis how theseperformancenum-
berscompareto othersystemghatattemptto solve similar
problems.Whenreadingthe literatureon persistenbbject
systemswe have not found mary paperswilling to com-
paretheir performanceo the original, non-persistensys-
tem. Marquezetal. [25] presentacode-to-codéransforma-
tion that implementsorthogonalpersistenceand compare

its performanceo JDK 1.2 with no supportfor persistence.

They indicatetheir system,with a warm disk cache hasa
roughly9x performanceostrelative to JDK 1.2whenrun-
ning theirtestbenchmarkThis confirmsthatwe are“in the
ball park” but further optimizationis still necessary

4.3 Optimization profiling

In orderto gaininsightinto thebestmethoddor optimiz-
ing the systemwe instrumentedhe transformedclasseso
provide an accountingof whenlocks were acquired. This
includesattemptsto acquirelocks whenthe fast path de-
terminedthe acquisitionis not necessaryOur goal wasto
developa stratey to allow thetransformetto staticallyde-
terminethatalock acquisitionis not necessargandomit it.

In analyzing these results, an interesting pattern
emeged: a large portion, and for somebenchmarksthe
vastmajority, of redundantock requestsvereonthethis
object. This resultis becausea methodwill accesdields
of its own objectfar more frequentlythan fields of other
objects.We notedthatit is never safeto removeall lock ac-
quisitionsfor an objectfrom a singlefunctionwithout per
forminginter-procedurahknalysisput evenconsideringhis
requisiteacquisition,therewerestill mary redundantock
request®f this

Our solution, and the only optimizationwe performed
for our system,was, whenever we could statically detect
thata methodwould be accessinghethis  object,we ac-
quirethe appropriatdock to this  at the beginning of the

methodandomit any lock requestgor this  anywhereelse
in the method. This reducesnary redundantock requests
while addinglimited deadlockpressure.Theresultis best
illustratedin the OTP benchmark.

OTP usesthe MD5 hashfunctionto generateone-time
passwerds. The MD5 implementatiorkeepsmathematical
statein objectfields,andperformslong sequencesf math-
ematicaloperation®nthem.Beforethis optimization,each
mathematicabperationneededo be prefixedby alock ac-
quisition. Afterwards,alock acquisitiorwasonly neededat
thebeginningof eachfunction. Theresultwasa substantial
dropin overheador this benchmarkandsmallerdropsfor
otherbenchmarks).

Evenwith this optimization,however, thereis still con-
siderableroom for improvement. There are still a large
numberof subsequerbck acquisitiongo the sameobject,
readlock acquisitionsfollowed closely by write lock ac-
quisitions,and other redundantock acquisitions. As dis-
cussedn section3.7, dataflow and control flow analysis
could be usedto identify redundantock requestsandre-
ducethis overhead.

5. Conclusion

Terminationis acrucialcapabilityfor providing resource
controlin language-baseslystemsin thefaceof datashar
ing, the ability to roll the systembackto a safestateand
to safely restartprogramsbecomesan equally important
problemin suchsystemsTransactionatollback providesa
language-baseportablesolutionto the problemof restart-
ing codelets. Our designis independenbf ary particular
languageun-timesystemallowing implementationsvhich
do notdependon a singlelanguage Our Java implementa-
tion shavsaworst-cas@verheadf 23x, with overheadsf
6-7x in the absencef extensive arrayusage.While these
overheadsare quite large relative to the original systems
performancethey representa startingpoint for semantics
that are otherwiseunavailable to the designerof systems
that mustreliably executeuntrustedor buggy codelets. A
numberof opportunitiesexist to further optimize our sys-
tem, particularlywith regardto makingsmallmodifications
to the run-time systemto allow us to annotatearrayswith
direct referencego their backupinformation. With small
run-time modifications,we believe we can offer transac-
tional rollback semanticdor codeletswith reasonablger
formance.
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