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Abstract

Protocols that solve agreement problems are essential
building blocks for fault tolerant distributed systems. While
many protocols have been published, little has been done to
analyze their performance, especially the performance of
their fault tolerance mechanisms. In this paper, we present
a performance evaluation methodology that can be gener-
alized to analyze many kinds of fault-tolerant algorithms.
We use the methodology to compare two atomic broadcast
algorithms with different fault tolerance mechanisms: un-
reliable failure detectors and group membership. We evalu-
ated the steady state latency in (1) runs with neither crashes
nor suspicions, (2) runs with crashes and (3) runs with no
crashes in which correct processes are wrongly suspected
to have crashed, as well as (4) the transient latency after
a crash. We found that the two algorithms have the same
performance in Scenario 1, and that the group membership
based algorithm has an advantage in terms of performance
and resiliency in Scenario 2, whereas the failure detector
based algorithm offers better performance in the other sce-
narios. We discuss the implications of our results to the
design of fault tolerant distributed systems.

1 Introduction

Agreement problems — such as consensus, atomic broad-
cast or atomic commitment — are essential building blocks
for fault tolerant distributed applications, including trans-
actional and time critical applications. These agreement
problems have been extensively studied in various system
models, and many protocols solving these problems have
been published [1, 2], offering different levels of guaran-
tees. However, these protocols have mostly been analyzed
from the point of view of their safety and liveness prop-
erties, and very little has been done to analyze theirper-
formance. Also, most papers focus on analyzing failure

free runs, thus neglecting the performance aspects of failure
handling. In our view, the limited understanding of perfor-
mance aspects, in both failure free scenarios and scenarios
with failure handling, is an obstacle for adopting such pro-
tocols in practice.

Unreliable failure detectors vs. group membership. In
this paper, we compare two (uniform) atomic broadcast al-
gorithms, the one based onunreliable failure detectorsand
the other on agroup membership service. Both services
provide processes with estimates about the set of crashed
processes in the system.1 The main difference is that fail-
ure detectors provide inconsistent information about fail-
ures, whereas a group membership service provides con-
sistent information. While several atomic broadcast algo-
rithms based on unreliable failure detectors have been de-
scribed in the literature, to the best of our knowledge, all
existing group communication systems provide an atomic
broadcast algorithm based on group membership (see [3]
for a survey). So indirectly our study compares two classes
of techniques, one widely used in implementations (based
on group membership), and the other (based on failure de-
tectors) not (yet) adopted in practice.

The two algorithms. The algorithm using unreliable fail-
ure detectors is the Chandra-Toueg atomic broadcast algo-
rithm [4], which can toleratef < n/2 crash failures, and
requires the failure detector♦S. As for an algorithm us-
ing group membership, we chose an algorithm that imple-
ments total order with a mechanism close to the failure de-
tector based algorithm, i.e., a sequencer based algorithm
(which also toleratesf < n/2 crash failures). Both al-
gorithms were optimized (1) for failure and suspicion free
runs (rather than runs with failures and suspicions), (2) to
minimize latency under low load (rather than minimize the
number of messages), and (3) to tolerate high load (rather

1Beside masking failures, a group membership service has other uses.
This issue is discussed in Section 8.
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than minimize latency at moderate load).
We chose these algorithms because they are well-known

and easily comparable: they offer the same guarantees in
the same model. Moreover, they behave similarly if neither
failures nor failure suspicions occur (in fact, they generate
the same exchange of messages given the same arrival pat-
tern). This allows us to focus our study on the differences
in handling failures and suspicions.

Methodology for performance studies. The two algo-
rithms are evaluated using simulation. We model message
exchange by taking into account contention on the network
and the hosts [5]. We model failure detectors (including the
ones underlying group membership) in an abstract way, us-
ing the quality of service (QoS) metrics proposed by Chen
et al. [6]. Our performance metric for atomic broadcast is
calledlatency, defined as the time that elapses between the
sending of a messagem and the earliest delivery ofm. We
study the atomic broadcast algorithms in several benchmark
scenarios, including scenarios with failures and suspicions:
we evaluate the steady state latency in (1) runs with neither
crashes nor suspicions, (2) runs with crashes and (3) runs
with no crashes in which correct processes are wrongly sus-
pected to have crashed, as well as (4) the transient latency
after a crash.

We believe that our methodology can be generalized to
analyze other fault-tolerant algorithms. In fact, beside the
results of the comparison, the contribution of this paper is
the proposed methodology.

The results. The paper shows that the two algorithms have
the same performance in run with neither crashes nor suspi-
cions, and that the group membership based algorithm has
an advantage in terms of performance and resiliency a long
time after crashes occur. In the other scenarios, involving
wrong suspicions of correct processes and the transient be-
havior after crashes, the failure detector based algorithm of-
fers better performance. We discuss the implications of our
results to the design of fault tolerant distributed systems.

The rest of the paper is structured as follows. Section 2
presents related work. Section 3 describes the system model
and atomic broadcast. We introduce the algorithms and
their expected performance in Section 4. Section 5 sum-
marizes the context of our performance study, followed by
our simulation model for the network and the failure detec-
tors in Section 6. Our results are presented in Section 7, and
the paper concludes with a discussion in Section 8.

2 Related work

Most of the time, atomic broadcast algorithms are evalu-
ated using simple metrics like time complexity (number of
communication steps) and message complexity (number of

messages). This gives, however, little information on the
real performance of those algorithms. A few papers provide
a more detailed performance analysis of atomic broadcast
algorithms: [7] and [8] analyze four different algorithms
using discrete event simulation; [5] uses a contention-aware
metric to compare analytically the performance of four al-
gorithms; [9, 10] analyze atomic broadcast protocols for
wireless networks, deriving assumption coverage and other
performance related metrics. However, all these papers ana-
lyze the algorithms only in failure free runs. This only gives
a partial understanding of their quantitative behavior.

Other papers analyze agreement protocols, taking into
account various failure scenarios: [11] presents an approach
for probabilistically verifying a synchronous round-based
consensus protocol; [12] analyzes a Byzantine atomic broad-
cast protocol; [13] evaluates the performability of a group-
oriented multicast protocol; [14] compares the impact of
different implementations of failure detectors on a consen-
sus algorithm (simulation study); [15] analyzes the latency
of the Chandra-Toueg consensus algorithm. Note that [15],
just as this paper, models failure detectors using the quality
of service (QoS) metrics of Chen et al. [6].

3 Definitions

3.1 System model

We consider a widely accepted system model. It con-
sists of processes that communicate only by exchanging
messages. The system is asynchronous, i.e., we make no
assumptions on its timing behavior: there are no bounds
on the message transmission delays and the relative pro-
cessing speeds of processes. The network is quasi-reliable:
it does not lose, alter nor duplicate messages (messages
whose sender or recipient crashes might be lost). In prac-
tice, this is easily achieved by retransmitting lost messages.
We consider that processes only fail by crashing. Crashed
processes do not send any further messages. Process crashes
are rare, processes fail independently, and process recovery
is slow: both the time between crashes and time to repair
are much greater than the latency of atomic broadcast.

The atomic broadcast algorithms in this paper (and all
the fault-tolerant algorithms in the literature) use some form
of crash detection. We call the parts of the algorithms that
implement crash detectionfailure detectors. The failure de-
tector based atomic broadcast algorithm uses failure detec-
tors directly; the group membership based atomic broadcast
algorithm uses them indirectly, through the group member-
ship service. A failure detector maintains a list of processes
it suspects to have crashed. It might make mistakes: it might
suspect correct processes and it might not suspect crashed
processes immediately.2

2To make sure that the atomic broadcast algorithms terminate, we need
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Note that whereas we assume that process crashes are
rare, (wrong) failure suspicions may occur frequently, de-
pending on the tuning of the failure detectors.

3.2 Atomic broadcast

Atomic Broadcast is defined in terms of two primitives
calledA-broadcast(m) andA-deliver(m), wherem is some
message. Informally speaking, atomic broadcast guaran-
tees that (1) if a message is A-broadcast by a correct pro-
cess, then all correct processes eventually A-deliver it, and
(2) correct processes A-deliver messages in the same order
(see [18, 4] for more formal definitions).Uniform atomic
broadcast ensures these guarantees even for faulty processes.
In this paper, we focus on uniform atomic broadcast.

4 Algorithms

This section introduces the two atomic broadcast algo-
rithms and the group membership algorithm (a more de-
tailed description can be found in [19]). Then we discuss
the expected performance of the two atomic broadcast al-
gorithms.

4.1 Chandra-Toueg uniform atomic broadcast al-
gorithm

The Chandra-Toueg uniform atomic broadcast algorithm
uses failure detectors directly [4]. We shall refer to it as
the FD atomic broadcast algorithm, or simply as theFD
algorithm. A process executes A-broadcast by sending a
message to all processes.3 When a process receives such a
message, it buffers it until the delivery order is decided. The
delivery order is decided by a sequence of consensus num-
bered 1, 2,. . .. The initial value and the decision of each
consensus is aset of message identifiers. Let msg(k) be
the set of message IDs decided by consensus#k. The mes-
sages denoted bymsg(k) are A-delivered before the mes-
sages denoted bymsg(k+1), and the messages denoted by
msg(k) are A-delivered according to a deterministic func-
tion, e.g., according to the order of their IDs.

Chandra-Toueg ♦S consensus algorithm. For solving
consensus, we use the Chandra-Toueg♦S algorithm [4].4

The algorithm can toleratef < n/2 crash failures. It is
based on the rotating coordinator paradigm: each process
executes a sequence of asynchronous rounds (i.e., not all

some assumptions on the behavior of the failure detectors [16]. These
assumptions are rather weak: they can usually be fulfilled in real systems
by tuning implementation parameters of the failure detectors [17].

3This message is sent using reliable broadcast. We use an efficient
algorithm inspired by [20] that uses only one broadcast message in most
cases; see [19] for more details.

4Actually, we included some easy optimizations in the algorithm.

processes necessarily execute the same round at a given
time t), and in each round a process takes the role ofco-
ordinator (pi is coordinator for roundskn + i). The role
of the coordinator is to impose a decision value on all pro-
cesses. If it succeeds, the consensus algorithm terminates.
It may fail if some processessuspectthe coordinator to have
crashed (whether the coordinator really crashed or not). In
this case, a new round is started. We skip the details of the
execution, since they are not necessary for understanding
the paper.

Example run of the FD algorithm. Figure 1 illustrates
an execution of the FD atomic broadcast algorithm in which
one single messagem is A-broadcast and neither crashes
nor suspicions occur. At first,m is sent to all processes.
Upon receipt, the consensus algorithm starts. The coordi-
nator sends its proposal to all other processes. Each process
acknowledges this message. Upon receiving acks from a
majority of processes (including itself), the coordinator de-
cides its own proposal and sends the decision (using reli-
able broadcast) to all other processes. The other processes
decide upon receiving the decision message.

consensus

proposal ack

decision

coordinator / sequencer

p5

p4

p3

p2

p1
t

A-deliver(m)A-broadcast(m)

m

seqnum deliver

non-uniform GM alg. uniform GM alg.

FD alg.

m

ack

Figure 1. Example run of the atomic broadcast
algorithms. Labels on the top/bottom refer to
the FD/GM algorithm, respectively.

4.2 Fixed sequencer uniform atomic broadcast al-
gorithm

The second uniform atomic broadcast algorithm is based
on a fixed sequencer [21]. It uses a group membership ser-
vice for reconfiguration in case of a crash. We shall refer to
it as the GM atomic broadcast algorithm, or simply as the
GM algorithm. We describe here theuniformversion of the
algorithm.

In the GM algorithm, one of the processes takes the role
of sequencer. When a process A-broadcasts a messagem,
it first broadcasts it to all. Upon reception, the sequencer (1)
assigns a sequence number tom, and (2) broadcasts the se-
quence number to all. When non-sequencer processes have

647



receivedm and its sequence number, they send an acknowl-
edgment to the sequencer.5 The sequencer waits for acks
from a majority of processes, then deliversm and sends a
message indicating thatm can be A-delivered. The other
processes A-deliverm when they receive this message. The
execution is shown in Fig. 1. Note that the messages de-
notedseqnum, ack anddeliver can carry several sequence
numbers. This is essential for achieving good performance
under high load. Note that the FD algorithm has a similar
“aggregation” mechanism: one execution of the consensus
algorithm can decide on the delivery order of several mes-
sages.

When the sequencer crashes, processes need to agree on
the new sequencer. This is why we need a group member-
ship service: it provides a consistentview of the group to
all its members, i.e., a list of the processes which have not
crashed (informally speaking). The sequencer is the first
process in the current view. The group membership algo-
rithm described below can toleratef < n/2 crash failures
(more in some runs) and requires the failure detector♦S.

4.3 Group membership algorithm

A group membership service [3] maintains theviewof a
group, i.e., the list of correct processes of the group. The
current view6 might change because processes in the group
might crash or exclude themselves, and processes outside
the group might join. The group membership service guar-
antees that processes see the same sequence of views (ex-
cept for processes which are excluded from the group; they
miss all views after their exclusion until they join again).
In addition to maintaining the view, our group membership
service ensuresView Synchronyand Same View Delivery:
correct and not suspected processes deliver the same set of
messages in each view, and all deliveries of a messagem
take place in the same view.

Our group membership algorithm [22] uses failure detec-
tors to start view changes, and relies on consensus to agree
on the next view. This is done as follows. A process that
suspects another process starts a view change by sending a
“view change” message to all members of the current view.
As soon as a process learns about a view change, it sends its
unstable messages7 to all others (all the other messages are
stable, i.e., have been delivered on all processes already).
When a process has received the unstable messages from all
processes it does not suspect, sayP , it computes the union
U of the unstable messages received, and starts consensus

5Figure 1 shows that the acknowledgments and subsequent messages
are not needed in the non-uniform version of the algorithm. We come back
to this issue later in the paper.

6There is only one current view, since we consider anon-partitionable
or primary partitiongroup membership service.

7Messagem is stablefor processp whenp knows thatm has been
received by all other processes in the current view.

with the pair(P,U) as its initial value. Let(P ′, U ′) be the
decision of the consensus. Once a process decides, it deliv-
ers all messages fromU ′ not yet delivered, and installsP ′

as the next view. The protocol for joins and explicit leaves
is very similar.

State transfer. When a process joins a group, its state
needs to be synchronized with the other members of the
group. What “state” and “synchronizing” exactly mean is
application dependent. We only need to define these terms
in a limited context: in our study, the only processes that
ever join are correct processes which have been wrongly
excluded from the group. Consequently, the state of such a
processp is mostly up-to-date. For this reason, it is feasible
to update the state ofp the following way: whenp rejoins,
it asks some process for the messages it has missed since
it was excluded. Processp delivers these messages, and
then starts to participate in the view it has joined. Note that
this only works because our atomic broadcast algorithm is
uniform: with non-uniform atomic broadcast, the excluded
process might have delivered messages never seen by the
others, thus having an inconsistent state. In this case, state
transfer would be more complicated.

4.4 Expected performance

We now discuss, from a qualitative point of view, the
expected relative performance of the two atomic broadcast
algorithms (FD algorithm and GM algorithm).

Figure 1 shows executions with neither crashes nor sus-
picions. In terms of the pattern of message exchanges, the
two algorithms are identical: only the content of messages
differ. Therefore we expect the same performance from the
two algorithms in failure free and suspicion-free runs.

Let us now investigate how the algorithms slow down
when a process crashes. There are two major differences.
The first is that the GM algorithm reacts to the crash of
everyprocess, while the FD algorithm reacts only to the
crash ofp1, the first coordinator. The other difference is that
the GM algorithm takes a longer time to re-start delivering
atomic broadcast messages after a crash. This is true even
if we compare the GM algorithm to the worst case for the
FD algorithm, i.e., when the first coordinatorp1 fails. The
FD algorithm needs to execute Round 2 of the consensus
algorithm. This additional cost is comparable to the cost
of an execution with no crashes (3 communication steps,
1 multicast and about2n unicast messages). On the other
hand, the GM algorithm initiates an expensive view change
(5 communication steps, aboutn multicast andn unicast
messages). Hence we expect that if the failure detectors de-
tect the crash in the same time by the two algorithms, the
FD algorithm performs better.

Consider now the case when a correct process is wrongly
suspected. The algorithms react to a wrong suspicion the
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same way as they react to a real crash. Therefore we expect
that if the failure detectors generate wrong suspicions at the
same rate, the FD algorithm will suffer less performance
penalty.

5 Context of our performance study

5.1 Performance measures

Our main performance measure is thelatencyof atomic
broadcast. LatencyL is defined for a single atomic broad-
cast as follows. LetA-broadcast(m) occur at timet0, andA-
deliver(m) onpi at timeti, for eachi = 1, . . . , n. Then la-
tency is defined as the time elapsed until the first A-delivery

of m, i.e., L
def= (mini=1,...,n ti) − t0. In our study, we

compute the mean forL over a lot of messages and several
executions.

This performance metric makes sense in practice. Con-
sider a service replicated for fault tolerance using active
replication [23]. Clients of this service send their requests to
the server replicas using Atomic Broadcast. Once a request
is delivered, the server replica processes the client request,
and sends back a reply. The client waits for the first reply,
and discards the other ones (identical to the first one). If we
assume that the time to service a request is the same on all
replicas, and the time to send the response from a server to
the client is the same for all servers, then the first response
received by the client is the response sent by the server to
which the request was delivered first. Thus there is a direct
link between the response time of the replicated server and
the latencyL.

Latency is always measured under a certain workload.
We chose simple workloads: (1) all destination processes
send atomic broadcast messages at the same constant rate,
and (2) the A-broadcast events come from a Poisson stochas-
tic process. We call the overall rate of atomic broadcast
messagesthroughput, denoted byT . In general, we deter-
mine how the latencyL depends on the throughputT .

5.2 Scenarios

We evaluate the latency of the atomic broadcast algo-
rithms in various scenarios. We now describe each of the
scenarios in detail, mentioning which parameters influence
latency in the scenario. Parameters that influence latency in
all scenarios are the algorithm (A), the number of processes
(n) and the throughput (T ).

Steady state of the system. We measure latency after it
stabilizes (a sufficiently long time after the start of the sys-
tem or after any crashes). We distinguish three scenarios,
based on whether crashes and wrong suspicions (failure de-
tectors suspecting correct processes) occur:

• normal-steady: Neither crashes nor wrong suspicions
in the experiment.

• crash-steady: One or several crashes occur before
the experiment. BesideA, T andn, an additional pa-
rameter is the set of crashed processes. As we assume
that the crashes happened a long time ago, all fail-
ure detectors in the system permanently suspect all
crashed processes at this point. No wrong suspicions
occur.

• suspicion-steady:No crashes, but failure detectors
generate wrong suspicions, which cause the algorithms
to take extra steps and thus increase latency. Beside
A, T andn, additional parameters include how of-
ten wrong suspicions occur and how long they last.
These parameters are discussed in detail in Section 6.2.

It would be meaningful to combine the crash-steady and
suspicion-steady scenarios, to have both crashes and wrong
suspicions. We omitted this case, for we wanted to observe
the effects of crashes and wrong suspicions independently.

Transient state after a crash. In this scenario we force
a crash after the system reached a steady state. After the
crash, we can expect a halt or a significant slowdown of the
system for a short period. In this scenario, we define la-
tency such that it reflects the latency of executions that are
affected by the crash and thus happen around the moment
of the crash. Also, we must take into account that not all
crashes affect the system the same way; our choice is to
consider the worst case (the crash that slows down the sys-
tem most). Our definition is the following:

• crash-transient: Consider that a processp crashes at
time t (neither crashes nor wrong suspicions occur,
except for this crash). We have processq (p 6= q) ex-
ecuteA-broadcast(m) at t. Let L(p, q) be the mean
latency ofm, averaged over a lot of executions. Then

Lcrash
def
= maxp,q∈P L(p, q), i.e., we consider the

crash that affects the latency most. In this scenario,
we have one additional parameter, describing how
fast failure detectors detect the crash (discussed in
Section 6.2).

We could combine the crash-transient scenario with the
crash-steady and suspicion-steady scenarios, to include other
crashes and/or wrong suspicions. We omitted these cases,
for we wanted to observe the effects of (i) the recent crash,
(ii) old crashes and (iii) wrong suspicions independently.
Another reason is that we expect the effect of wrong suspi-
cions on latency to be secondary with respect to the effect
of the recent crash: wrong suspicions usually happen on a
larger timescale.
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6 Simulation models

Our approach to performance evaluation is simulation,
which allowed for more general results as would have been
feasible to obtain with measurements in a real system (we
can use a parameter in our network model to simulate a va-
riety of different environments). We used the Neko proto-
typing and simulation framework [24] to conduct our exper-
iments.

6.1 Modeling the execution environment

We now describe how we modeled the transmission of
messages. We use the model of [5], inspired from sim-
ple models of Ethernet networks [25]. The key point in
the model is that it accounts forresource contention. This
point is important as resource contention is often a limiting
factor for the performance of distributed algorithms. Both
a host and the network itself can be a bottleneck. These
two kinds of resources appear in the model (see Fig. 2): the
network resource (shared among all processes) represents
the transmission medium, and the CPU resources (one per
process) represent the processing performed by the network
controllers and the layers of the networking stack, during
the emission and the reception of a message (the cost of
running the algorithm is neglectable). A messagem trans-
mitted for processpi to processpj uses the resources (i)
CPUi, (ii) network, and (iii)CPUj , in this order. Message
m is put in a waiting queue before each stage if the corre-
sponding resource is busy. The time spent on the network
resource is our time unit. The time spent on each CPU re-
source isλ time units; the underlying assumption is that
sending and receiving a message has a roughly equal cost.

The λ parameter (0 ≤ λ) shows the relative speed of
processing a message on a host compared to transmitting it
over the network. Different values model different network-
ing environments. We conducted experiments with a variety
of settings forλ.
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Figure 2. Transmission of a message in our
network model.

Crashes are modelled as follows. If a processpi crashes

at timet, no messages can pass betweenpi andCPUi after
t; however, the messages onCPUi and the attached queues
are still sent, even after timet. In real systems, this cor-
responds to a (software) crash of the application process
(operating system process), rather than a (hardware) crash
of the host or a kernel panic. We chose to model soft-
ware crashes because they are more frequent in most sys-
tems [26].

6.2 Modelling failure detectors

One approach to modeling a failure detector is to use a
specific failure detection algorithm and model all its mes-
sages. However, this approach would restrict the generality
of our study: another choice for the algorithm would likely
give different results. Also, it is not justified to model the
failure detector in so much detail, as other components of
the system, like the execution environment, are modelled
in much less detail. We built a more abstract model in-
stead, using the notion of quality of service (QoS) of failure
detectors introduced in [6]. The authors consider the fail-
ure detector at a processq that monitors another processp,
and identify the following three primary QoS metrics (see
Fig. 3):

trust

suspect suspect

trust

FD at q

TM

TMR

t
mistake duration

mistake recurrence time

up
p t

Figure 3. Quality of service metrics for failure
detectors. Process q monitors process p.

Detection timeTD: The time that elapses fromp’s crash
to the time whenq starts suspectingp permanently.

Mistake recurrence timeTMR: The time between two con-
secutive mistakes (q wrongly suspectingp), given that
p did not crash.

Mistake duration TM : The time it takes a failure detector
component to correct a mistake, i.e., to trustp again
(given thatp did not crash).

Not all of these metrics are equally important in each of
our scenarios (see Section 5.2). In Scenarionormal-steady,
the metrics are not relevant. The same holds in Scenario
crash-steady, because we observe the system a sufficiently
long time after all crashes, long enough to have all fail-
ure detectors to suspect the crashed processes permanently.
In Scenariosuspicion-steadyno crash occurs, hence the la-
tency of atomic broadcast only depends onTMR andTM . In
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Scenariocrash-transientno wrong suspicions occur, hence
TD is the relevant metric.

In [6], the QoS metrics are random variables, defined
on a pair of processes. In our system, wheren processes
monitor each other, we have thusn(n − 1) failure detec-
tors in the sense of [6], each characterised with three ran-
dom variables. In order to have an executable model for the
failure detectors, we have to define (1) how these random
variables depend on each other, and (2) how the distribution
of each random variable can be characterized. To keep our
model simple, we assume that all failure detector modules
are independent and the tuples of their random variables are
identically distributed. Moreover, note that we do not need
to model howTMR andTM depend onTD, as the two for-
mer are only relevant in Scenariosuspicion-steady, whereas
TD is only relevant in Scenariocrash-transient. In our ex-
periments, we considered various settings forTD, and var-
ious settings for combinations ofTMR andTM . As for the
distributions of the metrics, we took the simplest possible
choices:TD is a constant, and bothTMR andTM are expo-
nentially distributed with (different) constant parameters.

Note that these modelling choices are not realistic: sus-
picions from different failure detectors are probably corre-
lated. Our study only represents a starting point, as we are
not aware of any previous work we could build on (apart
from [6] that makes similar assumptions). We will refine
our models as we gain more experience.

7 Results

We now present the results for all four scenarios. Due
to lack of space, we only present the results obtained with
λ = 1 in this paper. Note that in current LANs, the time
spent on the CPU is higher than the time spent on the wire,
and thusλ > 1. Results for such values ofλ are presented
in [19]. Most graphs show latency vs. throughput. For
easier understanding, we set the time unit of the network
simulation model to 1 ms. The 95% confidence interval is
shown for each point of the graph. The two algorithms were
executed with 3 and 7 processes, to tolerate 1 and 3 crashes,
respectively.

Normal-steady scenario (Fig. 4). In this scenario, the two
algorithms have the same performance. Each curve thus
shows the latency ofbothalgorithms.

Crash-steady scenario (Fig. 5). For both algorithms, the
latency decreases as more processes crash. This is due to
the fact that the crashed processes do not load the network
with messages. The GM algorithm has an additional fea-
ture that improves performance: the sequencer waits for
fewer acknowledgements, as the group size decreases with
the crashes. By comparison, the coordinator in the FD al-
gorithm always waits for the same number of acknowledg-
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Figure 4. Latency vs. throughput in the
normal-steady scenario.

ments. This explains why the GM algorithm shows slightly
better performance with the same number of crashes.

For the GM algorithm, it does not matter which pro-
cess(es) crash. For the FD algorithm, the crash of the coor-
dinator of Round 1 gives worse performance than the crash
of another process. However, the performance penalty when
the coordinator crashes is easily avoided: (1) each process
tags its consensus proposal with its own identifier, and (2)
upon decision, each process re-numbers all processes such
that the process with the identifier in the decision becomes
the coordinator of Round 1 in subsequent consensus exe-
cutions. This way, crashed processes will stop being co-
ordinators eventually, hence the steady-state latency is the
same regardless of which process(es) we forced to crash.
Moreover, the optimization incurs no cost. Hence Fig. 5
shows the latency in runs in which non-coordinator pro-
cesses crash.

Note also that the GM algorithm has higher resiliency on
the long term if crashes occur, as the group size decreases
with the crashes. E.g., withn = 7 and 3 crashes, the GM
algorithm can still tolerate one crash after excluding the
crashed processes, whereas the FD algorithm can tolerate
none.

Suspicion-steady scenario (Fig. 6, 7).The occurence of
wrong suspicions are quantified with theTMR andTM QoS
metrics of the failure detectors. As this scenario involves
crashes, we expect that the mistake durationTM is short.
In our first set of results (Fig. 6) we hence setTM to 0,
and latency is shown as a function ofTMR. We have four
graphs: the left column shows results with 3 processes, the
right column those with 7; the top row shows results at a
low load (10 s−1) and the bottom row at a moderate load
(300 s−1); recall from Fig. 4 that the algorithms can take a
throughput of about 700 s−1 in the absence of suspicions.

The results show that the GM algorithm is very sensitive
to wrong suspicions: even atn = 3 andT = 10 s−1, it
only works ifTMR ≥ 50 ms, whereas the FD algorithm still
works atTMR = 10 ms; the latency of the two algorithms
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Figure 5. Latency vs. throughput in the crash-
steady scenario. The legend lists the curves
from the top to the bottom.

is only equal atTMR ≥ 5000 ms.
In the second set of results (Fig. 7)TMR is fixed andTM

is on the x axis. We choseTMR such that the latency of the
two algorithms is close but not equal atTM = 0: (i) TMR =
1000 ms forn = 3 andT = 10 s−1; (ii) TMR = 10000 ms
for n = 7 andT = 10 s−1 and forn = 3 andT = 300 s−1;
and (iii) TMR = 100000 ms forn = 7 andT = 300 s−1.

The results show that the GM algorithm is sensitive to the
mistake durationTM as well, not just the mistake recurrence
timeTMR.

Crash-transient scenario (Fig. 8). In this scenario, we
only present the latency after the crash of the coordinator
and the sequencer, respectively, as this is the case result-
ing in the highest transient latency (and the most interesting
comparison). If another process is crashed, the GM algo-
rithm performs roughly the same, as a view change occurs.
In contrast, the FD algorithm outperforms the GM algo-
rithm: it performs slightly better than in the normal-steady
scenario (Fig. 4), as fewer messages are generated, just like
in the crash-steady scenario (Fig. 5).

Figure 8 shows thelatency overhead, i.e., the latency mi-
nus the detection timeTD, rather than the latency. Graphs
showing the latency overhead are more illustrative; note that
the latency is always greater than the detection timeTD in
this scenario, as no atomic broadcast can finish until the
crash of the coordinator/sequencer is detected. The latency
overhead of both algorithms is shown forn = 3 (left) and
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Figure 6. Latency vs. TMR in the suspicion-
steady scenario, with TM = 0.
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Figure 7. Latency vs. TM in the suspicion-
steady scenario, with TMR fixed.

n = 7 (right) and a variety of values forTD.
The results show that (1) both algorithms perform rather

well (the latency overhead of both algorithms is only a few
times higher than the latency in the normal-steady scenario;
see Fig. 4) and that (2) the FD algorithm outperforms the
GM algorithm in this scenario.

8 Discussion

We have investigated two uniform atomic broadcast al-
gorithms designed for the same system model: an asyn-
chronous system (with a minimal extension to allow us to
have live solutions to the atomic broadcast problem) and
f < n/2 process crashes (the highestf that our system
model allows). We have seen that in the absence of crashes
and suspicions, the two algorithms have the same perfor-
mance. However, a long time after any crashes, the group
membership (GM) based algorithm performs slightly better
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Figure 8. Latency overhead vs. throughput in
the crash-transient scenario.

and has better resilience. In the scenario involving wrong
suspicions of correct processes and the one describing the
transient behavior after crashes, the failure detector (FD)
based algorithm outperformed the GM based algorithm. The
difference in performance is much greater when correct pro-
cesses are wrongly suspected.

Combined use of failure detectors and group member-
ship. Based on our results, we advocate a combined use of
the two approaches [27]. Failure detectors should be used
to make failure handling more responsive (in the case of
a crash) and more robust (tolerating wrong suspicions). A
different failure detector, making fewer mistakes (at the ex-
pense of slower crash detection) should be used in the group
membership service, to get the long term performance and
resiliency benefits after a crash. A combined use is also
desirable because the failure detector approach is only con-
cerned with failure handling, whereas a group membership
service has a lot of essential features beside failure han-
dling: processes can be taken offline gracefully, new pro-
cesses can join the group, and crashed processes can re-
cover and join the group. Also, group membership can be
used to garbage collect messages in buffers when a crash
occurs [27].

Generality of our results. We have chosen atomic broad-
cast algorithms with a centralized communication scheme,
with one process coordinating the others. The algorithms
are practical: in the absence of crashes and suspicions, they

are optimized to have small latency under low load, and to
work under high load as well (messages needed to establish
delivery order are aggregated). In the future, we would like
to investigate algorithms with a decentralized communica-
tion scheme (e.g., [28]) as well.

Non-uniform atomic broadcast. Our study focuses on
uniform atomic broadcast. What speedup can we gain by
dropping the uniformity requirement in either of the ap-
proaches (of course, the application must work with the re-
laxed requirements)? The first observation is that there is no
way to transform the FD based algorithm into a more effi-
cient algorithm that is non-uniform: the effort the algorithm
must invest to reach agreement on Total Order automati-
cally ensures uniformity ([29] has a relevant proof about
consensus). In contrast, the GM based algorithm has an effi-
cient non-uniform variant that uses only two multicast mes-
sages (see Fig. 1). Hence the GM based approach allows for
trading off guarantees related to failures and/or suspicions
for performance. Investigating this tradeoff in a quantita-
tive manner is a subject of future work. Also, we would
like to point out that, unlike in our study, a state transfer to
wrongly excluded processes cannot be avoided when using
the non-uniform version of the algorithm, and hence one
must include its cost into the model.

Methodology for performance studies. In this paper, we
proposed a methodology for performance studies of fault-
tolerant distributed algorithms. Its main characteristics are
the following: (1) we define repeatable benchmarks, i.e.,
scenarios specifying the workload, the occurence of crashes
and suspicions, and the performance measures of interest;
(2) the benchmarks include various scenarios with crashes
and suspicions; (3) we describe failure detectors using qual-
ity of service (QoS) metrics.

The methodology allowed us to compare the two algo-
rithms easily, as only a small number of parameters are in-
volved. Currently, it is defined only for atomic broadcast
algorithms, but we plan to extend it to analyze other fault
tolerant algorithms.
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