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Abstract

In this paper, we propose a novel approach for solv-
ing the reliable broadcast problem in a probabilistic
unreliable model. Our approach consists in first defin-
ing the optimality of probabilistic reliable broadcast
algorithms and the adaptiveness of algorithms that
aim at converging toward such optimality. Then, we
propose an algorithm that precisely converges toward
the optimal behavior, thanks to an adaptive strategy
based on Bayesian statistical inference. We compare
the performance of our algorithm with that of a typ-
ical gossip algorithm through simulation. Our results
show, for example, that our adaptive algorithm quickly
converges toward such exact knowledge.

1. Introduction

Diffusing information efficiently and reliably in an
environment composed of many unreliable nodes in-
terconnected by lossy communication links is an abil-
ity sought by many current large-scale systems (e.g.,
large-scale publish-subscribe architectures). Achiev-
ing reliable and efficient information diffusion in such
contexts, however, is a complex task. First, being com-
posed of many nodes, it is unrealistic to assume that
any one of them has precise a priori information about
the network topology and the reliability of the com-
ponents. Second, even if such information were avail-
able to nodes at the beginning of the execution, the dy-
namic nature of a large system would render it obso-
lete quickly. Nodes, for example, may leave the system

constantly (due to failures or explicit disconnections),
changing its topology. Finally, as observed by many
researchers, mechanisms traditionally used to reliably
broadcast information in small- and middle-size net-
works do not scale well when the system grows [2].

Many works have investigated this problem from a
probabilistic perspective (e.g., [2, 4, 9, 10, 11, 12]).
Probabilistic algorithms scale much better than deter-
ministic ones and achieve high reliability. Intuitively,
every node that receives a message chooses a subset of
system members, for example among the complete set
of destinations, and propagates (i.e., gossips) the mes-
sage to these nodes. The gossip nature of the algorithm
combined with the possibility of crashes and message
loss implies that there are some chances that not all
nodes receive the original message. Nevertheless, pro-
vided that nodes keep gossiping the original message
“long enough” it can be guaranteed that with very high
probability all nodes receive the message.

In this paper, we propose an approach to improve
the performance of gossip-based algorithms by taking
into account the topology and probabilistic nature (i.e.,
node failure and message loss probabilities) of the en-
vironment in which these algorithms execute. Since
nodes adapt to the environment characteristics during
the execution, we call such algorithms adaptive. This
adaptive characteristic is precisely what distinguishes
our approach from previous works, which in general
do not take topology and reliability aspects into ac-
count to improve performance. As we discuss in the
paper, our approach is complementary to previous op-
timizations proposed in the literature (e.g., [12]) and
could be combined with them.
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The motivation for adaptive algorithms is perfor-
mance. Large-scale systems are usually composed of
several parts with varying reliability characteristics
(e.g., local-area network links are usually more reli-
able than wide-area network links), and adjusting the
gossip mechanism according to the system character-
istics can provide more efficient results. To better spell
out our argument, consider the following simple exam-
ple in which two nodes are connected through two in-
dependent paths. Path one loses messages with proba-
bility �, � � � � �. Path two is less reliable than path
one and loses messages with probability ��, where
� � �. With a typical gossip algorithm, which chooses
paths randomly for every send, after node one sends ��
messages to node two, the probability that at least one
message reaches node two is � � �

�
����� [5]. Us-

ing an algorithm adapted to this environment, which
chooses the paths according to their reliability prob-
abilities (and therefore always chooses the first path),
node one reaches node two with probability ����� af-
ter �� messages are sent.
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Figure 1. Adaptive vs traditional gossip

Consequently, to reach the same reliability as an
environment-adapted algorithm, a typical gossip al-
gorithm has to retransmit more messages, wasting
throughput and unnecessarily consuming system re-
sources. Figure 1 depicts the relation between �� and
�� as a function of � when both algorithms achieve
the same reliability. When � � �, both paths have the
same reliability and so, there is no difference between
the algorithms. When � � ��, even if path one is very
reliable, for example � � ������, an adaptive algo-
rithm only needs about 87% of the messages sent by a
traditional gossip algorithm to reach the same overall
reliability. Further improvements are obtained in more
complex topologies. Section 5 discusses this issue in
detail, using a more sophisticated traditional gossip al-
gorithm.

Briefly, in our approach each time a node decides
to broadcast a message, it builds a Maximum Relia-
bility Tree (MRT), a spanning tree that determines the
best way to propagate messages. To build an MRT,
nodes use information about the system topology and
the reliability of nodes and communication links. The
more precise this information, the closer to the optimal
the gossiping mechanism will be. We initially assume
that broadcasting nodes have perfectly accurate infor-
mation about the system topology and the nodes and
links reliability to build the MRT, leading to an opti-
mal reliable broadcast algorithm. Then, we replace the
full-knowledge assumption with a more realistic one
in which nodes try to approximate the topology and
the reliability parameters of the system during the ex-
ecution, adapting to changes. This results in a modu-
lar and simple design. Our optimal algorithm, based
on perfect knowledge about the system, remains the
same, while our adaptive strategy is completely encap-
sulated in a separate activity that tries to approximate
such perfect knowledge. We believe that this approach
could be used to develop other adaptive algorithms in
large-scale environments.

Our approximation strategy works as follows. First,
nodes keep exchanging their local knowledge of the
network topology with their direct neighbors. This
guarantees that each node will eventually discover the
complete network topology. Second, nodes monitor
their direct neighbors and try to assess their availabil-
ity and the reliability of the communication links in-
terconnecting them. This information is also part of the
messages exchanged between neighbors. Upon receiv-
ing a message from a neighbor, a node updates its lo-
cal information. This process combines Bayesian sta-
tistical inference and a distortion factor. The latter ap-
proximates the time ran out since the information was
created, and how far in the network it originated. We
show that if the systems’ characteristics remain sta-
ble for some time, the topology and reliability infor-
mation assessed by the nodes eventually converge to-
ward a perfect knowledge of the system. Finally, al-
though nodes keep exchanging information with their
neighbors, this data can also be opportunistically pig-
gybacked in gossip messages, saving bandwidth.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system model and the concepts
of optimal and adaptive reliable broadcast algorithms.
Section 3 describes an optimal algorithm to solve
probabilistic reliable broadcast. Section 4 presents our
adaptive algorithm. Section 5 evaluates our approach
through simulation. Section 6 reviews related work,
and Section 7 concludes the paper.
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2. Probabilistic Model and Definitions

2.1. Processes and Communication Links

We consider a system of distributed processes com-
municating by message passing. There are no strong
assumptions about the time it takes for processes to
execute and for messages to be transmitted. The sys-
tem’s topology is defined by � � �����, where
� � ���� ��� ���� is a set of processes (��� � �), and
� � ���� ��� ���� � ��� is a set of bidirectional com-
munication links. A link �� from �� to �� is also de-
noted by ���� . If ���� � � and � �� �, we say that ��
is neighbor of ��. The set of all ��’s neighbors is de-
noted by ���	
��
�����. We define a path as a com-
bination of links and intermediate processes through
which a message can transit to reach a destination.

Processes can crash and subsequently recover and
links can lose messages. We do not consider Byzantine
failures, i.e., processes execute according to their algo-
rithms. Processes have access to local volatile memory
and stable storage. Information recorded in stable stor-
age survives crashes, which is not the case for informa-
tion stored in volatile memory. Processes should be ju-
dicious about using stable storage, however, since it is
significantly slower than volatile memory.

Processes execute a sequence of steps, which can be
of two kinds. In a normal step, a process (a) may re-
ceive a message from one of its neighbors or send a
message to one of its neighbors (but not both), (b) un-
dergo a state transition, and (c) may write some in-
formation in stable storage. These assumptions sim-
plify the probabilistic analysis and proofs of our algo-
rithms. In a crashed step, the process simply loses all
the contents of its volatile memory, if any, and passes
to the next step, which may be normal or crashed. If ��
executes a crashed step �� followed by a normal step
����, we say that �� has recovered at step ����.

A configuration � � ���� ��� ���� ����� ��� ��� ����

����� is a tuple of probabilities, where �� is the ra-
tio between the number of crashed steps and the to-
tal number of steps executed by �� in some execution
of the algorithm, and �� is the ratio between the num-
ber of messages lost by �� and the total number of mes-
sages transmitted through �� in the execution. �� can
be understood as the probability that process �� exe-
cutes a crashed step in the execution and �� as the
probability that link �� loses a message, whenever it is
requested to transmit one.

2.2. Probabilistic Reliable Broadcast

Reliable broadcast is defined by the primitives
broadcast��� and deliver���. To simplify the dis-
cussion, we assume that processes in � are part of
a single broadcast group; in practice, there may ex-
ist several broadcast groups, with processes possibly
being members of more than one group. A proba-
bilistic reliable broadcast algorithm �� ensures with
at least probability � that if a process in � deliv-
ers some message �, then all processes in � will
deliver �. For brevity, we do not require a mes-
sage to be delivered exactly once by each process.
Usually, to ensure exactly-once message deliv-
ery in a crash/recovery model, processes have to do
some local logging to keep track of messages al-
ready delivered. If needed, this guarantee can be built
on top of our reliable broadcast primitive.

2.3. Adaptation and Optimality

To compare the efficiency of different probabilistic
reliable broadcast algorithms, we consider the number
of messages exchanged. According to this parameter,
it seems intuitive that processes should privilege paths
requiring the lowest possible number of retransmis-
sions to reach other processes. Our definition of adap-
tation is based on the notion of optimal algorithms.
We informally define optimal and adaptive probabilis-
tic reliable broadcast algorithm as follows.

Definition 1 A probabilistic reliable broadcast algo-
rithm�� is optimal to some configuration� w.r.t. the
number of messages if there is no algorithm 	� such
that processes executing 	� in � exchange fewer
messages than processes executing �� in �.

Definition 2 A probabilistic reliable broadcast algo-
rithm �� is adaptive to some configuration � iff the
number of messages exchanged by processes execut-
ing �� in � in response to a broadcast is eventually
equal to the number of messages exchanged by pro-
cesses executing �� in �.

3. An Optimal Algorithm

Our optimal algorithm relies on the assumption that
each process knows the topology and the failure con-
figuration of the system, and uses this knowledge to
minimize the number of messages needed to reach all
processes with a given probability. This is achieved by
having each process first compute a Maximum Relia-
bility Tree (MRT) of the system, as described next.
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��������� ���� �

�
� if �� ���

�����
��� ��� ��� 	��� ��� 
��� ��� 	���

�������� �������� � ���� otherwise
(1)

��������� ���� �

����
���

�� ��� ��� 	��������� ��� 
��� ��� 	���
������ (2)

3.1. Maximum Reliability Tree (MRT)

The Maximum Reliability Tree is a spanning tree
containing the most reliable paths in � connecting all
processes in �. We assume that the MRT is calculated
by function ������
� using a modified version of
Prim’s algorithm [1]. Both algorithm and proof of op-
timality can be found in [5]. If processes agree on the
system’s topology and configuration, they all build the
same MRT. Under more realistic assumptions, how-
ever, processes may have different views of the system
topology and configuration. In such cases, they will
build different MRT’s. To avoid ambiguity, we denote
�������
� the MRT built by some process ��. No-
tice that since MRT is a tree, it always contains ex-
actly �� � links.

3.2. From MRT to Optimal Algorithm

Intuitively, given a sender ��, our optimal algorithm
uses �������
� to determine the minimum necessary
number of messages that must transit through each
edge in order to reach all processes with probability
�. To state this idea more formally, we introduce some
additional notation.

Let �	 be the root of the tree, �� all other pro-
cesses in ���	���
�, with � � � � ��� � �, ��
the link that leads to ��, and �� the number of mes-
sages going through ��. Moreover, let �� be the sub-
tree of ���	���
� with �� as root—from this defini-
tion, �	 � ���	���
�—and let �� be the set of di-
rect subtrees of ��, i.e., �� contains any subtree whose
root is a process �� directly connected to �� via link �� .
Finally, we define ��� to be a vector whose compo-
nents are the numbers of messages transiting through
the links of ��.

Given a tree �� and a vector ���, the reach func-
tion computes the probability that all processes in ��
are reached by at least one message. Eq. (1) presents
the ����� function in a recursive form with ������ be-
ing the �-th component of vector ���. The idea consists
in multiplying the probability that at least one message
reaches the root process �� of each subtree �� � �� by

the recursive probability to reach all processes of �� .
Then, if process �� is a leaf (�� ��), we have that
���� � � � and ����������� � �.

Since Eq. (1) presents a typical tail-recursion form,
we can also write the ����� function in pure iterative
form, as shown by Eq. (2), with ������� being the pro-
cess that precedes �� in ��.

Using the ����� function, we can state
our optimization problem in a concise man-
ner, as shown in Eq. (3), where �� expresses
�� ��� 	��������� ��� 
��� ��� 	��.

minimize ����� �

�����
���

����

subject to ����� �

�����
���

�� �
����
� � �

(3)

We encapsulate the solution to this optimization
problem in the ���������� function, which takes an
MRT and � as input parameters and returns a vec-
tor ��	. Algorithm 1 shows how the optimize function
is used to implement our optimal probabilistic reliable
broadcast.

Algorithm 1 Optimal Algorithm at �

1: To execute broadcast��� do
2: ���� � ���������
3: �����	��
�������� ���
4: deliver���

5: when receive (�, ����) for the first time
6: �����	��
������� � ���
7: deliver���

8: function �����	��
������� � ���
9: ��� � ������

������ ��

10: for all subtree �� � ���� do
11: repeat ��� ��� times
12: send (�, ����) to ��
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3.3. The ���������� Function

Algorithm 2 implements ���������� via a greedy
strategy. From operational research it follows that a
greedy algorithm does indeed yield an optimal solu-
tion if the problem it solves is itself greedy (a fact
proved in [5]). The algorithm starts with a minimal so-
lution, i.e., an initial vector �� of the form ��� �� 			� ��,
and then proceeds in incremental steps. In each step,
the algorithm chooses the link 
� in the MRT that max-
imizes the gain in terms of the probability to reach all
processes when sending one more message through 
� .
It then stops when the desired probability� is reached
and returns vector �� as solution. In Algorithm 2, ���
denotes a vector in which the 
-th element is 1 and the
others are 0, e.g., ��� � ��� �� �� 			� ��.

Algorithm 2 A Greedy Algorithm for ����������

1: function �������������	�
2: 
�� ��� �� �� � � � � ��
3: while ��
�� � 	 do
4: let 
�� be such that

���������

�����
is maximum

5: 
�� 
�� 
��
6: return 
�

4. An Adaptive Algorithm

4.1. Overview of the Algorithm

Our adaptive protocol is based on Algorithm 1,
used by the optimal protocol. The difference lies in
the knowledge processes have about the topology� �
����� and the configuration �. In the optimal proto-
col, this knowledge is accurate; in the adaptive pro-
tocol, it is an approximation. Thus, with the adaptive
protocol, in addition to executing Algorithm 1, pro-
cesses are constantly trying to approximate � and �

based on what they observe from the system. If �

and � remain stable for “long enough”, our adaptive
protocol converges toward the optimal one.

Network topology (�). Initially, processes know only
the links connecting them directly to their neighbors—
notice that we do not require processes to agree on the
system membership at any given time. To share this
knowledge, each process periodically sends heartbeat
messages containing its view of the topology to all its
neighbors. When receiving a heartbeat, a process up-
dates its topology knowledge with the information re-
ceived. The next time this process propagates its topol-
ogy view, it will include the recently added informa-
tion. If the network topology remains stable and par-

titions are temporary, even in the presence of process
crashes and message losses processes eventually learn
the global system topology.

Reliability configuration (�). Heartbeats are also
used by processes to determine the reliability of the
system and to share this information with other pro-
cesses. The probability of crashing is approxi-
mated by the process itself by periodically reading the
value of its local clock and storing it in stable stor-
age. When the process recovers from a crash, it reads
the last clock value from stable storage and com-
pares it to the current time. The probability of failure
is proportional to the number of intervals missed dur-
ing some sufficiently large amount of time. When
a process �� receives a heartbeat from some neigh-
bor �� , it updates its local estimate of ��’s failure prob-
ability by simply adopting the value received from
�� . In addition, �� adjusts the message loss probabil-
ity of link 
��� . If �� does not receive any heartbeats
from �� for some time, �� increases the failure prob-
ability of �� and the message loss probability of 
��� .
To approximate the reliability of non-neighbor pro-
cesses and remote links, �� only relies on informa-
tion received from its neighbors. When �� receives a
heartbeat with �� from its neighbor �� , it must de-
cide which estimates to keep, i.e., its current ones or
the ones in �� . Intuitively, the idea is to choose the
less distorted estimates. This implies that each esti-
mate has a distortion factor, which expresses how ac-
curate the estimate is: the higher the factor, the less
accurate the estimate. As explained in next sec-
tion, two factors tend to erode an estimate accuracy:
time and distance.

4.2. A Detailed Approximation Algorithm

Algorithm 4 presents our solution to approximate
the knowledge some process �� has about� and �. To
simplify the algorithm, we assume that �� knows �,
the set of processes in the system, right from the
start—this assumption is not essential and can be re-
moved at the cost of some additional complexity in the
algorithm.1 Thus �� must approximate� and�. In Al-
gorithm 4, �� and �� denote the view �� has on � and
�, respectively, at any given time.

Data structures. The two main data structures of Al-
gorithm 4 are �� and ��. While �� has exactly the
same structure as � (i.e., a set of links), �� is more
complex than �. Hereafter ������ denotes ��, the

1 Additional complexity here means using dynamic data struc-
tures instead of static ones.
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crash probability of �� at ��, and����� � denotes�� , the
message loss probability of �� at ��. ������ and ����� �
are complex data structures representing ��’s current
estimates of �� and �� , respectively—we refer to such
data structures as simply estimates. An estimate con-
tains a small Bayesian network used to approximate
�� and �� . Section 4.3 describes how Bayesian net-
works are used to compute such probabilities via func-
tions ��������	
�
��������
��, ����
��
�
��������
��
and �
��
��
�
��������
��. In addition to Bayesian
networks, estimates contain several other fields, listed
and initialized between Lines 2 and 12, and explained
next.

Algorithm structure. Algorithm 4 is an epidemic-type
protocol: each process �� periodically sends its �� and
�� approximation to its neighbors; the periodicity is
set to Æ and also serves as a heartbeat protocol to detect
process crashes and messages losses. This epidemic-
type propagation is shown on Lines 14 to 17. Although
these messages are completely independent of the ap-
plication, the information they convey could be piggy-
backed into application messages.

Approximating �. Process �� initializes �� with the
links to its neighbors (Line 9). Whenever �� receives
��� � ��� from some neighbor �� , it adds all links in
�� to �� (Line 33.) Next time �� sends its view of ��

to its neighbors,�� will contain these additional links.
As already discussed, this strategy ensures that �� will
eventually embrace the complete topology, i.e., it will
eventually converge to �.

Approximating �. To approximate � (i.e., the crash
probability of processes in � and the message loss
probability of links in �), �� relies on the four events
presented next.

Event 1. Reception of ��� � ��� from neigh-
bor �� (Lines 18–33). This event allows �� to know
how many messages were lost by link ���� . Each
heartbeat sent by �� holds a sequence number in
�� ��� ���
�. Similarly, �� keeps in ����� ���
� the se-
quence number of the last heartbeat received from ��
and in �� ��� ������
��
� the number of times it sus-
pected ���� since the last time it received a heartbeat
from �� . Based on this information, �� can propor-
tionally adjust the message loss probability of ����
(Line 19) and decide whether the suspicion time-
out associated with �� should be adjusted (Line
23).

Process �� also uses �� to select and adopt the best
estimate for each process and for each link. This is
done by function �
�
���
���������
�� presented in
Algorithm 3. This function selects the best estimate

based on the notion of distortion factor. Intuitively, for
any ��, the corresponding distortion factor �������� is
proportional both to the network distance between ��
and ��, and to how much time ran out since �� last
updated its estimate about ��. A similar principle ap-
plies to the estimate of any link ��, except that in this
case the distortion factor merely captures the distance
between �� and ��. The minimal value of �������� is
given by the network distance between �� and ��, and
�������� increases as �� hears nothing about �� (di-
rectly or indirectly) for a given period of time (timeout
������). This is why process estimates in �� have their
distortion factor initialized to �: initially, �� knows
nothing about the failure probabilities of other pro-
cesses. For its own probability and the probability of
direct links, the distortion factor is 0.

Given two distortion factors, selecting the best es-
timate means adopting the less distorted one. In addi-
tion, when adopting ��’s estimate, process �� also in-
crements the corresponding distortion factor. This ac-
counts for the fact that the estimate �� just adopted is
now second-hand. Note that having the distortion fac-
tor �� ��� ��� � � guarantees that the estimate of ��
concerning its own reliability will always be adopted
by ��. Finally, selecting the best estimates only makes
sense for links that are already known to ��. For new
links, �� merely adopts ��’s estimate and adjusts the
distortion factor (Lines 30–32).

Event 2. No update of ��’s estimate for ����� � time
(Lines 34–39). The distortion factor associated with
some estimate �� ��� � captures the fact that in absence
of news about �� , its estimate should get more dis-
torted. This increase in distortion is captured by in-
crementing ����� ��� (Line 35). If �� is also a neighbor
of ��, the absence of update means that �� did not re-
ceive any heartbeats from �� for some time, and so,
it should suspect it. Furthermore, both �� and the link
to it should have their estimated reliability decreased
(Lines 38–39).

Events 3 and 4. No crash of �� during ���

time, and returning from a crash lasting ����	 time
(Lines 40–43). The last two events help augment ��’s
knowledge about its own reliability. The idea is to in-
crease or decrease ��’s estimate of its own relia-
bility proportionally to how long it stayed up and
down.

Algorithm 3 Best estimate selection at process ��
1: function ���������������	����� 
 ���
2: if �� �� 
 ���� then �less distorted is best�
3: �� � �� �adopt the best and�
4: ����� ����� � �adjust distortion�
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Algorithm 4 Approximating ���� ��� at process ��
1: INITIALIZATION:

2: for all �� � � do
3: ���������������	����
��� �����
4: �������
��
5: ����������� �
6: ���������������
� �
7: ������� Æ
8: �������
� �

9: �� � ����� � �� � neighbors�����
10: for all �� � �� do
11: ���������������	����
��� �����
12: �������
� �

13: TO UPDATE ���� ���:

14: every ������ do :
15: ����������� ���������� � 	
16: for all �� � �����	������� do
17: send ���� ��� to ��

18: when received ��� � ��� from �� do �Event 1�
19: �
����� ����� ����������
�

��� ��� ������ ����� ������
20: ����� ����������
� �
21: if �
���� � � then
22: �������������	����
��� ����� �� �
�����
23: if �
���� � 	 then ����� �� ����� � � Æ
24: if �
���� � � then
25: 
������������	����
��� ����� �� ��
������
26: for all �� � � do
27: �������������������������� �� �����
28: for all �� � ��� � ��� do
29: �������������������������� �� �����
30: for all �� � �� � ��� � ��� do
31: �� ����� �� ����
32: �� �����
� �� �����
� 	
33: �� � �� � ��

�Event 2�
34: when not[updated �� ��� �, �� 	
��, in the last ����� �] do
35: ����� ��
� �� �����
� 	
36: if �� � �����	������� then
37: �� ��� ����������
� ����� ����������
� 	
38: 
������������	����
��� ��� �� 	�
39: 
������������	����
��� ����� �� 	�

40: every ����� do �Event 3�
41: �������������	����
�������� 	�

�Event 4�
42: when recovering from a crash lasting �
����� do
43: 
������������	����
�������� ��

4.3. Bayesian Networks

To estimate the failure probability of some pro-
cess or link, �� builds a list of probability intervals
and maintains for each interval a belief that the fail-
ure probability lies within the corresponding interval.
In doing so, �� actually builds a small Bayesian net-
work � � �, where � is the belief and � is the fail-
ure probability. Functions ������	�
���	����	��
��,
����������	����	��
�� and ����������	����	��
��
are responsible for managing such Bayesian net-
works (see Algorithm 5).

Algorithm 5 Reliability beliefs management
1: Initialization
2: � � 	�� �precision of probabilistic intervals�

3: function ���������������	����
����������
4: with �������� do
5: for all � 
 	��� do
6: �� �� ����

����
�	

�probabilistic intervals�

7: �� ����
�
	

�with equal initial beliefs�

8: function 
������������	����
���������� �������
9: with �������� repeat ������ times

10: for all � 
 	��� do

11: �� ����

� ����
� �� ���

�
�

���

� ����
� �� ���

12: function �������������	����
���������� �������
13: with �������� repeat ������ times
14: for all � 
 	��� do

15: �� ����

� �������
� �� ����

�
�
���


� �������
� �� ����

Let � be the event associated with the crash of
some process, the message loss of some link, or merely
the suspicion that such a crash or loss occurred. We
denote by �� �� ��� the �-th probability interval asso-
ciated with � at ��, and by �� ��� the corresponding
belief, i.e., the probability that the “real” failure proba-
bility in � lies within the �-th interval. In Algorithm 5
we consider � failure probability intervals (Line 2),
initially associated to identical beliefs (Lines 5 to 7).

To compute the new degree of belief � on
a given interval �, based on the observation of
an event � , �� uses basic conditional probabil-
ity ���� ���� �� � �� �� ���� �� ��� and Bayes the-
orem given by Eq. (4). This equation is used to com-
pute the belief a posteriori on �� �� ��� (denoted by
���� ���), which will be the new value of �� ��� af-
ter event � has been observed by ��. This is pre-
cisely what function ����������	����	��
�� of
Algorithm 5 does (Lines 8 to 11). As shown in func-
tion ����������	����	��
��, a similar computation
is performed to account for the absence of fail-
ure (Lines 12 to 15).

���� ��� �
�� �� ���� �� ���

�
�

���
�� �� ���� �� ���

(4)

5. Simulation Results

In order to evaluate the performance of our adaptive
algorithm we built a discrete-event simulation model
and conducted several experiments with it. Our model
simulates the behavior of processes and links in a dis-
tributed system, associating a crash probability to each
process and a loss probability to each link. To sim-
plify the interpretation of our results, we considered
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Figure 2. Algorithms with (a) reliable links and (b) reliable processes

that all processes have the same crash probability �

and that all links have the same loss probability �.
This choice counts against our adaptive algorithm be-
cause contrary to traditional gossip, our solution se-
lects the most reliable links. Nevertheless, even under
such unfavorable conditions, the results provide strong
evidence about the benefits of an adaptive strategy.

We performed experiments with 100 processes for
several network topologies. In the minimal network
connectivity setup each process had two neighbors
(i.e., the network is a ring). The connectivity was in-
creased until each process had 20 neighbors. Heartbeat
messages were 50K bytes long and contained a small
Bayesian network per process, information about the
loss probability of links, and some additional fields as
described in Section 4.2.

Our results were compared to a reference algo-
rithm, implementing a typical gossip-based reliable
broadcast. The execution proceeds in steps, and in
each step processes forward data messages to their
neighbors. The execution continues until all processes
have been reached with probability 0.9999—the ex-
act number of steps needed depends on the parame-
ters of a particular setup and were determined interac-
tively. As a simple optimization, processes acknowl-
edge the receipt of data messages. Thus, when choos-
ing the neighbors to which some data message � will
be forwarded, each process � never forwards � to its
neighbor � if (a) it has previously received � from
�, or (b) it has received an acknowledgment message
from � for �.

In Figure 2 we compare the adaptive and the refer-
ence algorithms. In Figure 2(a), we varied the crash
probability while assuming that links were reliable
(i.e., � � �); in Figures 2(b) we varied the message
loss probability while assuming that processes were
reliable (i.e., � � �). In both figures, the y-axis shows

the ratio between the number of messages sent by the
reference algorithm and by the adaptive algorithm to
reach all processes with the same probability. For ex-
ample, when the connectivity is 16 and � � ����, the
adaptive algorithm needs 4 times fewer messages than
the reference algorithm to reach all processes with the
same probability. The adaptive algorithm provides bet-
ter results as the connectivity of the network increases.
This is due to the fact that in low-connected graphs in
which processes and link have the same reliability, the
adaptive algorithm does not have much room for im-
proving the forwarding mechanism.

Figure 3 shows the effort needed to converge (i.e.,
all processes in the system learn the reliability proba-
bilities) in number of messages per link. This parame-
ter is twice the number of heartbeat messages sent by
a process through a link until all processes converge.
For example, when the network connectivity is 6 and
� � ����, about 400 heartbeat messages will be sent
per process through a link. If heartbeats are sent each 1
second, the adaptive mechanism will converge in about
7 minutes. Two factors amount for the convergence
time: the time it takes for the Bayesian networks to find
the right probability interval accurately—in the sim-
ulations we used 100 probability intervals—and the
time it takes for this information to reach all processes.

Connectivity has a double effect on convergence.
On the one hand it helps convergence since it reduces
the time it takes for the inferred information to arrive
at all processes. On the other hand, it hurts conver-
gence since as more links are added, more informa-
tion has to be inferred. We have also observed that low
probabilities are easier to be inferred by our Bayesian
model than high probabilities. In the case of links, the
effects are more noticeable since links are more nu-
merous than processes. This can be observed in Fig-
ure 3(b) when � � ����.
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Figure 3. Convergence with (a) reliable links and (b) reliable processes

To evaluate the scalability of our adaptive algo-
rithm, we executed simulations using two types of net-
work topologies: a ring (i.e., each process connected
to two others) and a random tree. In both cases about
100 graphs were generated for each experiment (see
Figure 4). The ring is a worst-case topology in which
messages should traverse in the average half the pro-
cesses in the network. In such a case, the convergence
time increases linearly with the size of the system. For
random trees, however, the convergence time is almost
constant . In practical scenarios, the topology is ex-
pected to be closer to a tree than to a ring.
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Figure 4. Algorithm scalability

6. Related Work

Epidemic protocols, also known as gossip pro-
tocols, were introduced in the context of replicated
database consistency management [3]. They were first
used to implement reliable broadcast in large net-
works in [2]. This latter protocol proceeds in two
phases. In the first phase, processes use an unreli-
able gossip-based dissemination of information to

transmit messages; in the second phase, message
losses are detected and repaired via re-transmissions.
Many variations of this protocol have been pro-
posed, mostly orthogonal to the ideas described in
our paper. Improved buffering techniques, for ex-
ample, have been considered in [7] and [10]. In
both cases, the goal is to limit the amount of buffer-
ing required for a message. While the former work
requires a full knowledge about the system mem-
bership, the latter does not. The approach in [10] is
mainly concerned with process recovery. Alterna-
tive approaches have considered recovering messages
from the sender’s log [13]. In [7], heuristics are pre-
sented to garbage collect messages. It aims to identify
”aging” buffered messages.

The only adaptive gossip-based reliable broadcast
protocol we are aware of is [12]. In this protocol, pro-
cesses adjust the message rate emission to the amount
of resources available (i.e., buffer size) and to the
global level of congestion in the system. Processes pe-
riodically evaluate the available resources in the sys-
tem and from time to time exchange the minimum
buffer size. Senders then reduce their gossip rate ac-
cording to their estimates about the mean number of
messages in a process’ buffer. We are not concerned
with adjusting sending rates in this work, and the ideas
described in this work could be easily integrated in our
algorithm. Control information, for example, used in
both algorithms could be combined into a single mes-
sage.

In [4] and [6] the authors show how to implement a
gossip-based reliable broadcast protocol in an environ-
ment in which processes have a partial view of the sys-
tem membership. Our approach does not require pro-
cesses to know all the system members or the topol-
ogy connecting them. This information, however, al-
lows processes to improve their gossiping.
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Reducing the number of gossip messages ex-
changed between processes by taking the network
topology into account is discussed in [8] and [9]. Pro-
cesses communicate according to a pre-determined
graph with minimal connectivity to attain a de-
sired level of reliability. Similarly to our approach, the
idea is to define a directed spanning tree on the pro-
cesses. Differently from ours, no process and link reli-
ability guarantees are taken into account to build such
trees.

7. Concluding Remarks

This paper was motivated by a simple observation:
typical gossip algorithms need to retransmit more mes-
sages than adaptive algorithms to reach the same reli-
ability probability. Based on this observation, we pro-
posed a new approach for broadcasting messages with
a given reliability probability. For this purpose, we de-
fined the notions of optimal and adaptive probabilistic
reliable broadcast algorithms. We then proposed an al-
gorithm that converges toward optimality, by adapting
its behavior to the distributed environment in which it
executes. When provided with exact knowledge about
failure probabilities, we proved that our adaptive al-
gorithm is indeed optimal. We also evaluated the per-
formance of our algorithm through simulation and
showed that it quickly converges toward exact knowl-
edge of failure probabilities.

We plan to pursue this work in several directions.
First, we intend to apply our approach to distributed
problems other than reliable broadcast and to consider
optimality criteria different than the number of mes-
sages. Another idea is to improve our statistical infer-
ence mechanism, for example by dynamically increas-
ing the number of probabilistic intervals when better
precision is required. Along the simulation axis, we
also plan to gather further results based on more com-
plex topologies. For example, our current simulations
rely on the conservative assumption that all failure
probabilities are identical. By revisiting this assump-
tion, we expect our adaptive algorithm to further in-
crease its performance gain with respect to typical gos-
sip algorithms.
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