
Dependable Adaptive Real-Time Applications in Wormhole-based Systems

Pedro Martins
pmartins@di.fc.ul.pt

Univ. of Lisboa∗

Paulo Sousa
pjsousa@di.fc.ul.pt

Univ. of Lisboa

António Casimiro
casim@di.fc.ul.pt
Univ. of Lisboa

Paulo Veŕıssimo
pjv@di.fc.ul.pt
Univ. of Lisboa

Abstract

This paper describes and discusses the work carried on
in the context of the CORTEX project, for the development
of adaptive real-time applications in wormhole based sys-
tems. The architecture of CORTEX relies on the existence
of a timeliness wormhole, called Timely Computing Base
(TCB), which we have described in previous papers. Here
we focus on the practical demonstration of the wormhole
concept, through a demo with two complementary facets.
The objective is to illustrate the effectiveness of the concept
from a practical, yet rigorous, perspective, which is done
with the help of an emulation framework that we present in
the paper. Furthermore, the paper also describes two dif-
ferent ways of implementing timeliness wormholes on top
of both wired and wireless infrastructures.

1. Introduction

The convergence of several factors, including advances
in wireless and sensory technologies, is creating the condi-
tions for the construction of highly autonomous and proac-
tive applications, such as those considered in the context of
the IST CORTEX project [9], under which we have devel-
oped, applied and experimented our work.

CORTEX assumes that a new class of (sentient) appli-
cations can be envisaged, which is composed of a (possibly
large) number of smart components that are able to sense
their surrounding environment and interact with it. These
components, referred to assentient objects, interact with
each other and with the environment by accepting and pro-
ducing events, and these interactions may occur in ways that
demand predictable and sometimes guaranteed Quality of
Service (QoS). The problem is that achieving predictabil-
ity is made difficult by the characteristics of the chang-
ing environment in which these objects typically operate,

∗ Faculdade de Ciências da Universidade de Lisboa. Bloco C6,
Campo Grande, 1749-016 Lisboa, Portugal. Navigators Home Page:
http://www.navigators.di.fc.ul.pt. This work was partially supported
by the EC, through project IST-FET-2000-26031 (CORTEX), by
the FCT, through the Large-Scale Informatic Systems Laboratory
(LaSIGE), and by Microsoft Research Ltd, UK.

dictated by unstable and mobile object population, unpre-
dictable network load, varying connectivity, and the pres-
ence of failed system components.

In order to deal with this problem, the architecture of
a CORTEX system explores the wormhole metaphor [7],
considering the existence of a specific timeliness wormhole,
called aTimely Computing Base(TCB) [10].

The design and development of CORTEX applications is
done in accordance with the TCB model, where TCB com-
ponents (which can be seen as local representations of the
wormhole) provide a set of very simple (but crucial to time-
liness) services to sentient objects.

In previous papers we have already addressed the funda-
mental concepts underlying the development of dependable
applications in wormhole enabled systems [2, 3]. In this pa-
per, the fundamental objective is to illustrate these concepts
from a more practical point of view, which is done by de-
scribing and discussing a demonstration that was conceived
in the context of the CORTEX project. The demonstration
has two facets that illustrate not only the practical relevance
of the concepts, but also the effectiveness of the solutions
under a rigorously controlled scenario.

In addition, this paper also addresses an issue that due
to its importance has already received some attention in
previous papers: the feasibility of TCB wormholes. Since
the demonstration makes use of two distinct TCB instan-
tiations, which rely on both wired and wireless infrastruc-
tures, we discuss the most relevant aspects of these two im-
plementations.

The paper is organized as follows. In Section 2 we review
key issues for programming with TCB wormholes. Then, in
Section 3 we describe the two TCB implementations used in
this demo. After that, Section 4 is totally devoted to the pre-
sentation and discussion of the demonstration. Finally, Sec-
tion 5 concludes the paper.

2. The TCB timeliness wormhole

The idea of wormhole-based systems has been intro-
duced in [8]. Essentially, the wormhole metaphor helps il-
lustrating a possible way of constructing distributed sys-
tems, by following a few guiding principles that address
the problems posed by uncertainty. First, assume that uncer-
tainty is not ubiquitous and is not everlasting— this means



that the system has some parts which are more predictable
than others and tends to stabilize. Then, be proactive in
achieving predictability— in concrete, make predictability
happen at the right time, right place. These more predictable
parts can be seen as wormholes, through which it is possi-
ble to do things much faster or reliably than apparently pos-
sible in the other parts of the system.

The wormhole concept can in fact be instantiated in dif-
ferent ways. For example, when applied in the security do-
main, a wormhole takes the form of a security kernel, a
trusted component, as described in [4]. On the other hand,
when timeliness is the relevant non-functional property to
secure, the wormhole should essentially be timely. Note
again that these ”better” properties (timeliness, trustworthi-
ness) must be obtainedby construction(making some parts
be more predictable). In this work we are concerned with
timeliness and, therefore, we focus on the TCB timeliness
wormhole (thoroughly discussed in [10]), to which we will
refer in the remainder of this paper simply as the TCB.

2.1. Architecture, properties and services

The architecture of a system with a TCB has a generic or
payloadpart, in which protocols and application processes
are executed. Communication takes place over a global net-
work or payload channel. The system also has acontrol
part, made of local TCB modules, interconnected by some
form of medium, thecontrol channel. Processes execute on
the several sites, in the payload part, making use of the TCB
whenever appropriate.

In a system with a TCB the payload partcan have any de-
gree of synchronism. On the other hand, the TCB subsystem
(the control part) enjoys, by construction, a few synchro-
nism properties: known upper bounds on processing delays,
on the rate of drift of local clocks and on message deliv-
ery delays.

Given that the TCB is a comparably small part of the sys-
tem (recall the wormhole concept), it provides just the fol-
lowing essential services:timely execution, duration mea-
surementand timing failure detection. These services are
provided to processes via the local TCB components, even
when they have a distributed scope.

2.2. Dependable applications in TCB-based sys-
tems

The availability of a TCB may be exploited to handle
the negative effects of the lack of synchrony and reliabil-
ity of the payload system. Whentiming failuresoccur, there
are essentially three kinds of problems that can arise:unex-
pected delays(the most immediate effect),decreased cov-
erageandcontamination.

Unexpected delays correspond to the violation of time-
liness properties. Decreased coverage can be explained as
follows. When we make assumptions about the absence of
timing failures, we have in mind a certain coverage, which

is the correspondence between system timeliness assump-
tions and what the environment can guarantee. If the envi-
ronment conditions start degrading to states worse than as-
sumed, the probability of timing failure increases, that is,
the coverage incrementally decreases. Contamination oc-
curs when a safety property of the system is violated on
account of the occurrence of timing failures.

In order to avoid these problems, it is sufficient to ensure
that coverage stays close to the assumed value, a condition
expressed by theCoverage Stability property, or that the ef-
fect of timing failures is confined to the violation of timeli-
ness properties alone, as specified by theNo-Contamination
property.

Unfortunately, not all applications can enjoy these prop-
erties and escape the consequences of uncertain syn-
chrony. However, when assisted by a TCB, some applica-
tions classes can deal with the effects of timing failures
and achieve varying degrees of dependability. For exam-
ple, thefail-safeclass, which exhibits correct behavior or
else stops in fail-safe state, thetime-elasticclass, which ex-
hibits coverage stability, and thetime-safeclass, which
exhibits no-contamination.

In the demonstration described in Section 4 we will ob-
serve applications of the fail-safe and time-elastic classes
and the way in which they use the TCB to behave in a de-
pendable way. In particular, we will see how the TCB-based
QoS coverage service introduced in [2] can be used to pro-
vide support for adependable adaptationframework.

3. Construction of TCB wormholes

The feasibility of the TCB synchrony assumptions is an
important issue, which has already received our attention in
[1]. Now we review the implementation discussed in that
paper, designed for communication over a wired infrastruc-
ture. Additionally, we describe a TCB implementation de-
signed for wireless/mobile systems, which is used in the
demonstration.

In order to secure the required synchrony properties, the
TCB subsystem has to be constructed is such a way that
its timeliness is not impaired by the rest of the system (the
payload part). Furthermore, it is necessary to ensure the pre-
dictability of execution times within the TCB and commu-
nication delays over the control channel.

Concerning the predictability of execution times, it is
fundamental to use operating systems and hardware plat-
forms with the necessary support for real-time operation. So
far, we have implemented TCB prototypes for the most pop-
ular real-time versions of the Linux operating system (RTAI
and RT-Linux), executing over a PC architecture, and also
for the Windows CE operating system, executing over iPAQ
Pocket PCs. These operating systems provide the neces-
sary support in terms of priorities, scheduling and other fea-
tures. Potential predictability problems caused by PC hard-
ware (e.g. loose control over shared buses) can be addressed



with specific solutions, as exemplified in [6] for the case of
the PCI bus.

In the currently available TCBs, the synchronous com-
munication channel is based on a physically different net-
work from the one supporting thepayloadchannel. There-
fore, the problem of achieving predictability is much alle-
viated, since this allows to establish an upper bound on the
network load.

We developed TCBs for both wired and wireless ad
hoc networks. In the former case, we exploit some spe-
cific characteristics of switched Fast-Ethernet networks (ab-
sence of collisions in micro-segmented topologies when op-
erating in full-duplex mode), to enforce predictability at
the MAC level. Message scheduling problems are automat-
ically solved centrally at the switch.

Ensuring the timely operation of the TCB over wireless
networks is a more complex task. In fact, the most com-
monly available technology for wireless LANs in existence
today (IEEE 802.11b) does not support real-time communi-
cation when operating in ad hoc modes.

There are some proposals to endow ad hoc networks with
real-time capabilities, such as theTime-Bounded Medium
Access Controlprotocol (TBMAC) [5] or the upcoming
IEEE 802.11e [11] standard, which introduces the concept
of traffic categories. However, since no implementation of
TBMAC nor 802.11e have yet been made available, we de-
veloped amock-upof a real-time MAC protocol for ad hoc
wireless networks. Under certain conditions, thismock-up
provides the desired properties and thus fully serves the pur-
poses of the demo presented in Section 4.3. More specif-
ically, we use a simpletoken-basedalgorithm on top of a
regular 802.11b channel to enforce a predictable medium
access latency and we assume that it is possible to isolate
the control channel from the payload channel using a dual
network architecture, with two non-overlapping 802.11b ad
hoc wireless networks.

4. Demonstration setup

4.1. Emulation system

Several classes of sentient applications have strict de-
pendability requirements that emerge from safety rules im-
posed by the environment and that must be preserved by the
system under any circumstance — avoiding collisions be-
tween moving objects (e.g. planes, cars). In some of these
applications, the computations must comply with timeliness
constraints so that safety rules can be secured.

Testing such kind of sentient applications in real scenar-
ios using real hardware may not be always possible, be-
cause of cost reasons and/or safety constraints. Therefore,
we propose a software platform for the emulation of real en-
vironments, which can be a very useful and inexpensive tool
to test subtle coordination and synchronization phenomena,
difficult to reproduce and/or follow in real-life systems.

Y

X

CONTROLLED SYSTEMCONTROLLED SYSTEM
EMULATOREMULATOR

Virtual Instrumentation InterfaceVirtual Instrumentation Interface

sensor

actuator

virtual controlled entities

Monitoring ComponentMonitoring Component

CLOCK

Figure 1. Emulation system.

The software emulator is illustrated in Figure 1. The cen-
tral component, or module, that emulates a real environment
is called Controlled System Emulator(CSE). To explain
how the CSE can be used, we will focus on the concrete ex-
ample of our demo. The environment emulated for the first
part of the demonstration (presented in Section 4.2) con-
sists of a bi-dimensional space delimited by walls in which
four virtual controlled entities move at a certain speed and
in several directions. Each entity is defined by four physi-
cal attributes: a position〈x,y〉 in the plane, a shape, a speed
and a direction. For simplicity, but without loss of general-
ity, physical laws such as friction or kinetic energy transfers
are not modelled in this environment. Therefore, in the ab-
sence of external control, entities tend to keep a constant
speed and direction, unless they collide with a wall or with
another moving entity, in which case they will change their
direction.

The entities emulated inside the CSE are shaped as four
colored balls: red, green, blue and yellow. They can repre-
sent real objects with similar dynamics, such as cars, robots
or even sub-atomic particles. Initially, the balls start their
movements with random speeds and directions.

The progress of the emulator is triggered by a periodic
clock signal with a certain pre-defined frequency (which
just affects our perception of the emulation speed, but not
the emulation states). At each clock tick, the positions of all
the controlled entities are updated accordingly to their evo-
lution rules, dictated by their speed and direction.

The emulation system has a monitoring component (see
Figure 1) that provides a representation of the emulated en-
vironment. Periodically, the monitor gathers the state of the
emulated environment from the CSE and updates its graph-
ical representation. Note that this graphical representation
does not have to be updated with the same frequency as the
frequency of emulator updates. In any case, it is guaranteed
that all relevant events occurred in the emulated environ-
ment (e.g. ball collisions) will eventually be notified.

The CSE provides a virtual instrumentation interface
composed of sensors and actuators to interact with the emu-
lated environment. In our example, the CSE provides a sen-
sor/actuator pair for each emulated ball. Through the sensor
a control application can know the position, speed and di-



rection of a ball and through the actuator it can change the
movement (speed and/or direction) of the emulated ball.

In distributed control applications (e.g. if each ball is
controlled from a different node), each sensor/actuator pair
can be remotely accessed through a remote interface made
available to each controller entity (each ball controller). In
order to ensure bounded errors when sensing and actuating
on the emulated environment from a remote interface, it is
necessary to guarantee a timely connection between the re-
mote instrumentation interface and the CSE central unit.

4.2. Sentient computing using emulated balls

In what follows we describe an application composed of
four sentient objects that control the movement of the em-
ulated balls, trying to avoid collisions among them. This is
the safety rule that must be ensured in this application.

The infrastructure that was used to build the emulation
system and this application is illustrated in Figure 2. The
emulator runs in a dedicated machine that executes a real-
time version of the Linux operating system (RTAI-Linux).
The emulator CSE component runs as a hard real-time task
of RTAI kernel and is executed periodically (this establishes
the clock signal of the CSE). The monitoring application is
anX11application (user-level process) that periodically ac-
quires the state of the CSE and displays a graphical repre-
sentation of the emulated space and balls.

Each CORTEX machine runs a sentient object that con-
trols one of the emulated balls. As explained above, remote
access is provided through a remote instrumentation in-
terface. Dedicated real-time communication channels have
been setup to allow a timely remote sensing/actuation.

CORTEX node
(yellow ball)

Ball
Controller

user

kernel

CORTEX 
com. services

TCB

X11 Application

Periodic
RT-Task

Emulation 
system

emulation node

yellow ball sensing

yellow ball actuation

RT channels

C
O

R
T

E
X

 n
od

e
re

d 
ba

ll

C
O

R
T

E
X

 n
od

e
bl

ue
ba

ll

C
O

R
T

E
X

 n
od

e
gr

ee
n

ba
ll

Figure 2. Balls demo setup.

Sentient objects communicate with each other through

the payload channel. We use CORTEX communication ser-
vices to publish and subscribe information concerned with
the control algorithm. A sentient object publishes the po-
sition, speed and direction of the ball it controls, and sub-
scribes the same information from the other sentient objects.
This allows every sentient object to build a local image of
the overall system. This image will be used to decide when
and how to actuate on the controlled ball.

In this application scenario, it is fundamental to ensure
that every ball controller has a consistent view (in time and
space) of the environment, so that it takes the correct con-
trol decisions in order to avoid collisions. Therefore, the
communication and processing needed to construct the lo-
cal (real-time) image of the environment has to fulfill some
timeliness requirements. For the control algorithm it is suf-
ficient to have a representation of each ball with a known
and bounded positioning error. To achieve that, a maximum
ball speed must be defined and each controller must per-
form the following real-time computations: 1) publish the
information of its controlled ball with a given period (to re-
fresh other controllers’ real-time images); 2) timely receive
the information published by the other controllers (to update
on time its real-time image). This also implies: 3) timely ac-
tuating in response to received information (e.g. change the
ball direction to avoid a possible collision).

The objective of the demo is to show that despite the lack
of timeliness of the payload channel, we can use the TCB
to secure the required safety property and avoid collisions.

Given that the application is of the fail-safe class (the
fail-safe state corresponds to stopping a ball), every con-
troller (sentient object) can use theTiming Failure Detec-
tion (TFD) service provided by the local TCB component
in order to force the system to switch to a fail-safe state in
a timely manner when a timing failure occurs (i.e. when 1),
2) or 3) are not met). The demonstration shows that a con-
troller will timely stop its ball whenever timing failures are
detected by the TCB, and that it will recover as soon as its
real-time image becomes consistent again.

Although the safety of the system is ensured by using
TFD primitives of the TCB, it is desirable to minimize the
activation of fail-safety procedures. If possible, it is better to
ensure that some progress is nevertheless made, even if in a
degraded operational mode (e.g. slowing down the speed of
a ball). In order to adapt the essential variables while ensur-
ing coverage stability (thus, dependably adapting), the con-
trollers use the QoS services provided by the TCB.

To observe the behavior of the application under sev-
eral timeliness conditions, we have developed an additional
demonstrator module that provides a better control of the
demo. It allows to: 1) inject artificial timing failures (pos-
sibly omissions) on the payload communication channel;
2) enable or disable the use of TFD and/or QoS adaptation
services; and 3) specify the desired level of coverage to be
used in the QoS specification. The demo explores the sev-
eral combinations, as summarized in Table 1.



TFD QoS artificial description
adapt. delays

ON ON no The system behaves as expected,
balls do not collide.

OFF OFF yes The balls start colliding because
timing failures are being
generated and TFD is OFF.

ON OFF yes The balls stop on fail-safe states
because timing failures are being
generated and TFD is ON. However,
they keep blocked on fail-
safe because QoS is OFF.

ON ON yes The speed of the balls is adjusted
accordingly to the injected delays.

Table 1. Balls demo guideline.

4.3. A cooperating cars scenario

So far we have demonstrated the fundamental mecha-
nisms underlying the construction of adaptable real-time
applications, with the help of a TCB. However, we be-
lieve that it is interesting to enrich the demonstration with a
more realistic setup, still showing how fail-safety and time-
elasticity characteristics of an application can be used to
overcome the uncertainty of the environment in TCB-based
systems.

This part of the demo is inspired in the vision of au-
tonomous cars communicating and cooperating with other
cars or entities in its proximity. The demo takes as back-
ground scenario a city area where only perpendicular streets
exist. There are three cars with different colors (red, green
or blue), advancing in a different street and always in the
same direction (up, down, left or right). This virtual world
is modelled as a small sphere, so that cars are continuously
meeting with each other in the same street crossings.

All cars have the same control logic, advancing if the two
following conditions are satisfied: 1) there is no car in front;
and 2) there is no car approaching from the right. This con-
trol logic is only applied to a safety area around the car,
to avoid having a car stopping in a crossing due to another
one approaching from the right (or standing in front) but
still very far. The car safety area depends on its speed— a
higher speed results in a higher safety area.

In this scenario, each car periodically disseminates an
event (with its position, speed and direction), which can
be received and used by every car to construct a real-time
image of the reality (an RT-image). These events must be
timely delivered, in order to achieve this RT-image and
avoid car crashes. Intuitively, time bounds for the dissem-
ination of events are related to the sender speed: a higher
speed requires a smaller deadline. Because we are using a
TCB-based system, a car can detect deadline violations of
the events it is supposed to receive (by using the TFD ser-
vice). Then, it will (timely) switch to a fail-safe state (e.g.
by stopping) because its RT-image may no longer be con-
sistent with the reality. Moreover, each car can (and should)
also adapt its speed to the environment conditions, follow-

ing the same reasoning of the first part of the demonstra-
tion.

In addition, this demo application also illustrates acov-
erage awarenessmode of operation, privileging the knowl-
edge of current coverage level, without requiring car speed
changes.

In the demo, each car is represented by an IPAQ. The ac-
tual position of the device is simulated in this demo, just
because the IPAQs are not equipped with a location mech-
anism such as the one provided by a GPS receiver. The
speed is also simulated, and changeable through the IPAQ’s
car interface (see Figure 4a). We have used the Windows
CE TCB implementation to provide each IPAQ with a local
TCB component. Therefore, IPAQs communicate using the
802.11b dual network architecture described in Section 3.
Beyond the IPAQs, there is a monitor application running
in a laptop which is described below. The overall demon-
strator architecture is depicted in Figure 3 (the TCB control
channel network is omitted, for clarity of presentation).

Figure 3. Cooperating Cars demo architecture.

The monitor application interface running on the laptop
is divided in three types of panels. AReality View panel
shows the actual reality (the view of God), allowing to ob-
serve the behavior of each car and detect car crashes (laptop
screen in Figure 3). For each of the three cars, there exists
a Car Control panel (Figure 4b) that allows to (centrally)
control the speed of the car and the parameters (e.g. level
of coverage) of the QoS-Adaptation feature. This panel also
shows some car statistics, namely the average delay of re-
ceived events and the number of lost events.

An interesting aspect of this demo is that when the QoS-
Adaptation feature is enabled it is possible to continuously
observe thepdf generated by the TCB QoS coverage ser-
vice in the car control panels. This allows to observe the
evolution of the environment conditions and to better un-
derstand the variations on speed (coverage stability) or on
the level of coverage (coverage awareness).

To observe the effects of Fail-Safety/QoS-Adaptation,
we can also control on the fly the configuration of the cars,
that is, whether they are using or not the fail-safety and



Figure 4. a) Car interface (IPAQ); b) Control
panel (monitor).

QoS-adaptation mechanisms. This can be done in theMas-
ter Control panel of the monitor application.

The IPAQ car interface is presented in Figure 4a. The
top part of the screen displays the proximity view of the
car— the car is always in the center because this is a rel-
ative view. In the bottom part of the screen, it is possible
to observe/change the car speed, observe if Fail-Safety and
QoS-Adaptation features are ON or OFF, the state of the
breaking system (activated when some other car is in the
proximity) and check the current position of the car.

The demo presentation is divided in two major parts:
Fail-Safety demo:one extra feature of the monitor ap-

plication is the possibility of injecting artificial delays in the
events received by a car. We call this artificial delays ”fog”.
The intensity of the injected fog can be selected among
three predefined values (see Figure 4b): low, medium and
high. The intensity directly determines the artificial delay to
be used. If we inject fog (with a sufficient intensity) while
the Fail-Safety feature is turned OFF, car crashes are more
likely to happen. The demonstration shows a car crash hap-
pening in these conditions. Then we turn ON the Fail-Safety
feature and we see that the car in which the fog is being in-
jected stops before any car crash occurs (switching to a fail-
safe state in response to a timing failure). The fail-safe state
is indicated with a siren that appears in the respective car
control panel. A car recovers from a fail-safe state as soon
as a timely event is received from all cars from which a late
event was received.

QoS-Adaptation demo: even without fog, when the
Fail-Safety feature is ON, cars obviously stop if they de-
tect a timing failure. The probability of an event to suffer a
timing failure is directly proportional to the sender speed.
As mentioned before, a speedy car in a degraded environ-
ment could cause all other cars in its proximity (i.e. that
have to receive its events) to constantly stop because of tim-
ing failures.

To avoid this, we turn ON QoS-Adaptation in coverage
stability mode. If we select a sufficiently high level of cov-

erage (through the coverage slider presented in Figure 4b),
cars adjust their speed to reflect the environment conditions
and in this way the probability of a timing failure to occur
decreases.

5. Conclusions

In this paper we have focused on a practical demonstra-
tion of the fundamental mechanisms and concepts involved
in the construction of dependable real-time adaptive appli-
cations in TCB-based systems. Because a TCB is just a
particular instantiation of a more general concept, that of
wormhole-based systems, this demonstration also serves to
illustrate the validity of the wormhole metaphor.

The demonstration shows, in particular, that the correct-
ness of real-time applications can be jeopardized because of
the uncertainty of the environment. Then it shows the im-
portance of being able to detect timing failures in a timely
manner and of the ability to dependably adapt. The scenario
consider applications that exhibit fail-safe and time-elastic
properties, which are fundamental properties to handle un-
certainty with the help of a TCB.

References

[1] A. Casimiro, P. Martins, and P. Verı́ssimo. How to Build a Timely
Computing Base using Real-Time Linux. InProc. of the 2000
IEEE Workshop on Factory Communication Systems, pages 127–
134, Porto, Portugal, Sept. 2000.

[2] A. Casimiro and P. Verı́ssimo. Using the Timely Computing Base
for Dependable QoS Adaptation. InProc. of the 20th IEEE Sympo-
sium on Reliable Distributed Systems, pages 208–217, New Orleans,
USA, Oct. 2001.

[3] A. Casimiro and P. Verı́ssimo. Generic timing fault tolerance using
a timely computing base. InProc. of the 2nd Int. Conference on De-
pendable Systems and Networks, Washington DC, USA, June 2002.

[4] M. Correia, P. Veŕıssimo, and N. F. Neves. The design of a COTS
real-time distributed security kernel. InFourth European Depend-
able Computing Conference, Oct. 2002.

[5] R. Cunningham and V. Cahill. Time bounded medium access con-
trol for ad hoc networks. InProc. of the Workshop on Principles of
Mobile Computing, Toulouse, France, Oct. 2002.

[6] S. Scḧonberg. Impact of PCI-Bus load on applications in a PC archi-
tecture. InProc. of the 24th IEEE International Real-Time Systems
Symposium, pages 430–439, Cancun, Mexico, Dec. 2003.

[7] P. Veŕıssimo. Traveling through wormholes: Meeting the grand chal-
lenge of distributed systems. InProc. Int. Workshop on Future Di-
rections in Distributed Computing, pages 144–151, Bertinoro, Italy,
June 2002.

[8] P. Veŕıssimo. Uncertainty and predictability: Can they be recon-
ciled? InFuture Directions in Distributed Computing, pages 108–
113. Springer-Verlag LNCS 2584, 2003.

[9] P. Veŕıssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and
J. Kaiser. Cortex: Towards supporting autonomous and cooperating
sentient entities. InProceedings of European Wireless 2002, pages
595–601, Florence, Italy, Feb. 2002.

[10] P. Veŕıssimo and A. Casimiro. The timely computing base model and
architecture. Transactions on Computers - Special Issue on Asyn-
chronous Real-Time Systems, 51(8), Aug. 2002.

[11] I. . WG. Draft Supplement to STANDARD FOR Telecommuni-
cations and Information Exchange Between Systems - LAN/MAN
Specific Requirements - Part 11: Wireless Medium Access Control
(MAC) and physical layer (PHY) specifications: Medium Access
Control (MAC) Enhancements for Quality of Service (QoS), IEEE
802.11e/D3.0, May 2002.


