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Abstract

The aim of this paper is to compare the dependability
of three operating systems (Windows NT4, Windows
2000 and Windows XP) with respect to erroneous
behavior of the application layer. The results show a
similar behavior of the three OSs with respect to
robustness and a noticeable difference in OS reaction
and restart times. They also show that the application
state (mainly the hang and abort states) significantly
impacts the restart time for the three OSs

1. Introduction

System developers are increasingly resorting to off-
the-shelf operating systems (commercial or open source),
even in critical application domains. However, any
malfunction of the Operating System (OS) may have a
strong impact on the dependability of the global system.
Therefore, it is important to make information about the
OS dependability available, despite the lack of
information issued from its development. The current
trend is to use dependability benchmarks [1-3].

The aim of an OS dependability benchmark is to
objectively characterize the OS behavior in presence of
faults. A dependability benchmark is based on
experimentation on the OS. Its results are intended i) to
characterize qualitatively and quantitatively the OS
behavior in the presence of faults and ii) to evaluate
performance-related measures in the presence of faults.
These results can help in selecting the most appropriate
OS, based on the benchmark measures evaluated, in
complement to other criteria (e.g., performance,
maintenance, etc.).

The work reported here is part of the European project
on Dependability Benchmarking, DBench [4, 5], whose
objectives are to i) define a framework for designing
dependability benchmarks for computer systems and to ii)
implement examples of benchmark prototypes. Our
previous work, [6], gives the specification of an OS
dependability benchmark and presents the experimental
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framework as well as some preliminary results related to
Windows 2000. This paper is aimed at further exploring
the portability and suitability of the proposed benchmark
by applying it to two other OSs from the same family,
namely Windows NT4 and Windows XP professional.

Several relevant attempts have been previously
proposed to help characterize the failure modes and
robustness of software executives. A comprehensive
analysis of the issues linking robustness and
dependability can be found in [7]. The executives targeted
in these studies encompass real time microkernels and
general purpose OSs [1, 8]. The work reported in [9]
specifically addressed the robustness of the Win32
application programming interface which is the case of
our experiments.

The remainder of the paper is organized as follows.
Section 2 summarizes the benchmark and describes a
particular prototype for Windows family. Section 3
presents comparison results obtained using this prototype.
Section 4 concludes the paper.

2. OS Dependability Benchmark Summary

A dependability benchmark should define clearly:
i) the benchmarking context, ii) the benchmark measures
and measurements to be performed on the system for
obtaining them, iii) the  benchmark execution profile to
be used and iv) the set-up and related implementation
issues required for running a benchmark prototype.

The benchmark results can be meaningful, useful and
interpretable only if all these items are provided with the
results. The detailed definition of these items, related to
the OS benchmark used in this paper are given in [6].
They are summarized hereafter to allow understanding of
the results presented in this paper.

2.1. Benchmarking Context

The benchmark target corresponds to an OS with the
minimum set of device drivers necessary to run the OS
under the benchmark execution profile. The three OS
targets are Windows NT4 with Service Pack 6, Windows
2000 Professional with Service Pack 4 and Windows XP
Professional with Service Pack 1. All the experiments
have been run on the same platform, composed of an Intel
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Pentium III Processor, 800 MHz, and a memory of 512
MB. The hard disk is 18 GB, ULTRA 160 SCSI.

Our dependability benchmark is a robustness
benchmark. Robustness can be viewed as OS capacity to
resist/react to faults induced by the applications running
on top of it, or originating from the hardware layer or
from device drivers.

We emphasize in this work the OS robustness as
regards possible erroneous inputs provided by the
application software to the OS via the Application
Programming Interface (API). We mainly consider
corrupted parameters in system calls. For the sake of
conciseness, such erroneous inputs are shortly referred to
as faults. Results concerning the robustness with respect
to faults in device drivers can be found in [10-12].

The benchmark addresses the user perspective, i.e., it
is primarily intended to be performed by (and to be useful
for) someone or an entity who has no in depth knowledge
about the OS and whose aim is to significantly improve
her/his knowledge about its behavior in presence of faults.
In practice, the user may well be the developer or the
integrator of a system including the OS. The OS is
considered as a “black box” and the source code does not
need to be available. The only required information is the
description of the services provided by the OS and the
description of the OS in terms of system calls.

2.2. Benchmark Measures

Corrupted system calls are provided to the OS
through the Win32 environment subsystem, as the three
considered OSs cannot run without it [13]. Win32 is thus
the API considered in our current benchmark
environment.

The OS behavior is characterized by the various
outcomes at the API level, while the impact of OS on the
application behavior is observed at the workload level.
After execution of a corrupted system call, the OS is in
one of the states defined in Table 1.

Table 1: OS outcomes

SEr An error code is returned

SXp An exception is raised, processed and notified to the application

SPc Panic state

SHg Hang state

SNS None of the above situations is observed (No-signaling state)

The OS Robustness Measure is defined as the
percentage of experiments leading to any of the outcomes
listed in Table 1.

Reaction Time (Texec) corresponds to the mean time
necessary for the OS to respond to a system call in
presence of faults, either by signaling an exception or by
issuing an error code or by executing the required
instructions.

Restart Time (Tres) corresponds to the mean time
necessary for the OS to restart after the execution of the
workload in the presence of faults.

Texec and Tres are also observed in absence of faults,
for comparison purpose. They are respectively denoted
τexec and τres.

The benchmark temporal measures are primarily
evaluated as a mean time over all experiments categorized
by a specific outcome. However, standard deviation is of
prime interest as well. Table 2 recapitulates these
temporal measures.

Table 2: OS temporal measures
τexec Time for the OS to execute a system call in absence of faults

Texec Time for the OS to execute a system call in presence of faults

τres Duration of OS restart in absence of faults

Tres Duration of OS restart in presence of faults

The workload is characterized by one of the following
outcomes: i) the workload completes with correct results,
ii) it completes with erroneous results and iii) the
workload is aborted or hangs. Clearly, the workload can
end up in any of the three states irrespective of the
outcomes of the OS. Conversely, whenever the OS is in
the Panic state, this can only lead the workload to abort
or hang, while an OS Hang necessarily leads the
workload to hang. In [6], we have detailed all possible
combined outcomes and defined a set of measures
characterizing the OS taking into account the workload
states. In this paper, we mainly use information on the
workload final states to examine the impact of the
workload state on system restart time.

2.3. Benchmark Execution Profile

In the case of performance benchmarks, the benchmark
execution profile is simply a workload that is as
representative as possible for the system under test. For
dependability benchmarks, the execution profile includes
in addition corrupted parameters in system calls. The set
of corrupted parameters is referred to as the faultload.

From a practical point of view, the faultload can be
either integrated within the workload (i.e., the faults are
embedded in the program being executed) or provided in a
separate module. For enhanced flexibility, we made the
latter choice: the workload and the faultload are
implemented separately.

The prototype we have developed uses a TPC-C client
[14] as a privileged workload to be in conformance with
the experiments performed on transactional systems in
DBench [15, 16]. We simply use the TPC-C client as a
workload, but we do not use the performance measures
specified by TPC-C as they are far from being suitable to
characterize the behavior of an OS.  

The faultload is defined by: i) the technique used for
corrupting the system call parameters and ii) the set of
system calls to be faulted.
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Parameter Corruption Technique: We use a
parameter corruption technique similar to the one used in
[17], relying on thorough analysis of system call
parameters to define selective substitutions to be applied
to these parameters. A parameter is either a data element
or an address. The value of a data can be substituted either
by an out-of-range value or by an incorrect (but not out-
of-range) value, while an address can be substituted by an
incorrect (but existing) address (containing usually an
incorrect or out-of-range data). We have used a mix of
these three corruption techniques.

System Calls Corrupted: Ideally, and without any
time limitation, all system calls used in the workload
with parameters should be corrupted. For small workloads
this might be possible. However, for workloads such as
TPC-C client (that involves more than 130 system calls,
with several occurrences in the program), this would
require several weeks of experimentation. In addition, all
system calls are not necessarily interesting to be
corrupted. Indeed, using a fully automated benchmark set
up, an experiment lasts 5 minutes on average and,
roughly speaking, about 1400 experiments can be
achieved in 5 days. This leads to consider 30 to 60
system calls to be corrupted for a 5-day fully automated
benchmark execution. Accordingly, we have targeted
system calls related to the following components:
Processes and Threads, File Input/Output, Memory
Management and Configuration Manager. Thus 28
system calls have been targeted, for which 75 parameters
have been corrupted leading to 552 corrupted values,
hence to 552 experiments using the benchmark
experimental set-up presented hereafter.

2.4. Benchmark Set-up

Since perturbing the operating system may lead the
OS to hang, a remote machine is required to reliably
control the benchmark experiments. This machine is
called the benchmark controller. Accordingly, for running
an OS dependability benchmark we need at least two
computers: i) the Target Machine for hosting the
benchmarked OS and the workload, and ii) the
Benchmark Controller that is primarily in charge of
diagnosing and collecting data in case of a hang or an
abort. Furthermore, as we are using a TPC-C client as
workload, the (Oracle) Data Base Management System
(DBMS), that processes the TPC-C client requests, can be
installed on the benchmark controller or on another
machine. Accordingly, Figure 1 illustrates the various
components that characterize the proposed OS
dependability benchmark prototype, for Windows 2000.
The same set-up is used for the three OS targets, only the
benchmark target is changed.

To intercept the Win32 functions (i.e., system calls),
we have modified the “Detours” tool [18], a library for
intercepting arbitrary Win32 functions on x86 machines.
This modification was made to facilitate their replacement

by substitution values. Also, we have added several
modules in the library to observe the reactions of the OS
after parameter substitution, and to retrieve the required
measurements.

Figure 1. Experimental set-up

The experiment steps are illustrated in Figure 2 in
case of workload completion. In case of workload
abort/hang state, the end of the experiment is provided by
a watchdog timeout. As the average time necessary for the
OS to execute the TPC-C client is about 70 seconds when
no faultload is applied, the timeout is of 5 minutes.

tExpStart 
(n)

tExpEnd 
(n)

tResume 
(n)

tResponse 
(n)

tWStart
 (n)

tExpStart 
(n+1)

Restart timeOS Reaction time

System Call 
intercepted

Workload End

Time

Workload execution time

Execution 
resumed

Figure 2. Benchmark execution sequence

2.5. Benchmarking Time

The benchmarking time corresponds to the benchmark
implementation time and to the benchmark execution
time.

The implementation of the benchmark itself was not
very time consuming.

• The TPC-C client implementation used in the
current set up is the same as the one used by other
DBench partners (see e.g., [19]). The installation
took three days.

• The implementation of the different components of
the controller took about 10 days.

• The implementation of the faultload took one
week, during which we have i) defined the set of
the values related to the 28 system call with their
75 parameters to be corrupted and ii) created the
database of the corrupted values.

The duration of an experiment with workload
completion is less than 3 minutes (including the time to
workload completion and the restart time), while it is
about 7 minutes without workload completion (including
the workload watchdog timeout of 5 minutes and the
restart time). Thus, on average, an experiment lasts less

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04) 
0-7695-2052-9/04 $ 20.00 © 2004 IEEE 



than 5 minutes. These experiments are fully automated
and the whole benchmark execution duration (552
experiments for each OS) is thus about 46h for each OS.

3. Comparison of the three OSs

The benchmark defined in the previous section is used
to compare the behavior of Windows NT4, 2000 and XP.
We first evaluate the three benchmark measures defined in
Section 2.2 (robustness, reaction time and restart time).
These measures give information on the global behavior
of the OSs. We will then show how they can be refined
and complemented by making sensitivity analyses taking
into account the workload states after execution of a
corrupted system call.

3.1. Benchmark Measures

The robustness measures are given in Figure 3. No
panic and hang states were observed for the three OSs.
Exceptions have been notified in 11.4 % to 12 % of the
cases, while the number of experiments with error code
return varies between 31.2 % and 34.1 %. More than half
of the experiments led to a No signaling outcome.
Figure 3 shows a similar behavior for the three OSs with
respect to robustness. Sensitivity analyses with respect to
the faultload selection is performed in Section 3.2.1.

The system reaction time in absence of faults,
 τexec, is evaluated as the mean reaction time of the
28 selected system calls whose parameters are being
corrupted for the experiments. Table 3 shows that, in
absence of faults, the three OS have different reaction
times.

Table 3: OS reaction time

Windows NT4 Windows 2000 Windows XP

Mean SD Mean SD Mean SD

 τexec         344 µs       1782 µs        111 µs

Texec 128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs

The OS reaction time in the presence of faults, Texec,
corresponds to the mean reaction time of the selected 28
system calls. Table 3 shows that the shortest time is
obtained for Windows XP while the longest one
corresponds to Windows 2000. For Windows XP, this

time is slightly longer than the reaction time in absence
of faults while it is significantly lower for the two others.
This may be explained by the fact that in about 45% of
cases the OS detects the injected fault. It does not execute
the faulted system call and returns an error code or signals
an exception. The standard deviation (SD) is significantly
longer than the mean for the three OSs. Section 3.2.2 will
provide more detailed information to explain the various
behaviors.

The system restart time is given in Table 4 which
shows that Windows XP restart time is 70% of that of
Windows 2000, without faults and 73% of this time in
the presence of faults. For all systems, the restart time is
only few seconds longer than without faults.

Table 4: System restart time

Windows NT4 Windows 2000 Windows XP

Mean SD Mean SD. Mean SD

τres 92 s 105 s 74 s

Tres 96 s 4 s 109 s 8 s 80 s 8 s

Summary
The above results show that the Windows NT4,

Windows 2000  and Windows XP kernels have equivalent
robustness. This is not surprising as the three OSs are
from the same family. They also show that Windows XP
has the shortest system call execution time as well as the
shortest restart times, both with and without faults. These
results do not contradict well-known information about
Windows XP's behavior in absence of faults. They
confirm that they also hold in the presence of faults.

3.2. Measure Refinement

We will consider successively the three benchmark
measures and show how they can be enriched by
examining additional information that can be provided by
the current benchmark set up.

3.2.1. Robustness Measure. The faultload used in the
previous section includes a mix of the three corruption
techniques presented in Section 2.3: i) out-of-range data
(or out of the boundaries of accepted parameter values),
ii) incorrect data (but within the boundaries of accepted
parameter values) and iii) incorrect addresses. In total 552
corrupted values for the 75 parameters related to the

OS Hang/Panic
0.0%

No Signaling
55.1%

OS Error Code
33.0%

OS Exception
12.0%

Windows NT4

OS Hang/Panic
0.0%

No Signaling
54.5%OS Error Code

34.1%

OS Exception
11.4%

Windows 2000

OS Hang/Panic
0.0%

No Signaling
57.4%

OS Error Code
31.2%

OS Exception
11.4%

Windows XP

Figure 3: OS Robustness measure using a mix of the three corruption techniques
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28 selected system calls. This faultload is referred to as
FL0.

It can be argued that incorrect data is not
representative of application faults that should be detected
by the OS. In order to analyze its impact on the
benchmark results, we have considered a reduced faultload
FL1 including only out-of-range data and incorrect
addresses. Thus FL1 is composed of 325 corrupted
values. The comparison shows that even though the
robustness of each OS has been slightly affected by the
corruption technique used, the three OSs have still very
similar robustness.

Incorrect addresses usually point to out-of range or
incorrect data. Taking a pessimistic view, let us assume
that they only point to incorrect data and could be
discarded as in FL1. We have thus considered a faultload,
FL2, comprising only out-of-range data (composed of 113
corrupted values). Comparison also shows that using FL2
leads to similar robustness of the three OSs.

This latter result encourages corruption of the
parameters of all system calls involved in the workload
using only the out-of-range technique, without increasing
significantly the benchmark run duration. We have thus
considered a faultload, FL3, composed of only out-of-
range data, targeting all of the 132 system calls with their
353 parameters. 468 experiments have been performed for
each OS. The results show that the three OSs still have
similar robustness, when corrupting all system calls
involved in TPC-C client workload.

The faultloads considered are summarized in Table 5.
FL0 to FL3 use a selective substitution technique.

Table 5: Faultloads considered

Incorrect
data

Incorrect
address

Out-of-
range data

Bit-Flip # System
calls

#
exp

FL0 x x x 28 552

FL1 x x 28 325

FL2 x 28 113

FL3 x All (132) 468

FL4 x 28 2400

The sensitivity of the robustness measure to the
parameter corruption technique can be further analyzed,
using a bit-flip parameter corruption technique, referred to
as FL4. We use it here to corrupt the same set of 75
parameters in a systematic way (i.e., flipping the 32 bits
of each parameter considered). This leads to 2400
corrupted values (i.e., 2400 experiments). The results are
given in Figure 4 for Windows 2000. This figure shows
that the OS robustness is very similar using the two
parameter corruption techniques, which confirms our
previous work on fault representativeness [20].

We conclude that the results obtained for a subset of
system calls related to the most frequently used functions
of Windows (corresponding to Processes and Threads,
File Input/Output, Memory Management and
Configuration Manager) are similar to those obtained

when considering all system calls. This is why we have
targeted these four functions for the Windows family.

OS Hang/Panic
0.0%

No Signaling
54.5%OS Error Code

34.1%

OS Exception
11.4%

Windows 2000

   

OS Hang/Panic
0.0%

No Signaling
45.4%

OS Error Code
44.0%

OS Exception
10.6%

Windows 2000

     Selective substitution (552 exp.)          Systematic bit-flip (2400 exp.)

Figure 4: Sensitivity to corruption technique

3.2.2. OS Reaction Time. Table 6 completes the
information provided in Table 3. It gives the OS reaction
time with respect to OS outcomes after execution of a
corrupted system call. It can be seen that i) the time to
issue an error code is very short and comparable for the
three systems, ii) the time to signal an exception is higher
than that of error code return, but it is still acceptable for
Windows NT4 and XP, but very large for Windows 2000
and iii) the largest execution time is obtained when the
OS does not signal the error (SNS).

Table 6: Detailed OS reaction times

Windows NT4 Windows 2000 Windows XP

Mean SD Mean SD Mean SD

Error code 17 µs 18 µs 22 µs 28 µs 23 µs 17 µs

Exception 86 µs 138 µs 973 µs 2978 µs 108 µs 162 µs

No signaling 203 µs 281 µs 2013 µs 4147 µs 165 µs 204 µs

The very high standard deviation (SD) is due to a
large variation around the mean. As an example, Figure 4
shows this variation in the case of SNS. This figure
identifies the system calls that led to SNS with the mean
execution time of each of them. The large standard
deviation is mainly due to two system calls.
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Figure 5: OS reaction time in case of SNS

3.2.3 OS Restart Time. Careful analysis of the collected
data revealed a correlation between the system restart time
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and the state of the workload. When the workload is
completed, the mean restart time is very close to τres
(obtained without fault injection), and when the workload
is aborted or hangs, the restart time is 8% to 18% higher.
Indeed, the number of experiments that led to workload
abort/hang was respectively 101, 107 and 128 for
Windows NT4, 2000 and XP. Even though Windows XP
had induced more workload abort/hang outcomes, it still
has the lowest system restart time as indicated in Table 7.
The latter gives in rows 1 and 2 the restart times without
faults, τres, and in presence of faults, Tres, and refines in
the last two rows Tres according to the workload state,
irrespective of the OS outcome.

Table 7: Restart time and workload state

4.Conclusion

In this paper we have briefly presented a dependability
benchmark for OSs and an example of implementation
prototype, then we have used the prototype to benchmark
Windows NT4, 2000 and XP.

The benchmark addresses the user perspective. The OS
is considered as a black box and the only required
information is its description in terms of services and
functions (system calls). We emphasize the OS robustness
as regards application induced erroneous behavior.

The comparison of the three OSs showed that i) they
are equivalent from the robustness point of view and that
ii) Windows XP has the shortest reaction and restart
times. Detailed information provided by the current
benchmark prototype allowed refinement of the
benchmark measures and confirmed the benchmark
measure results. Sensitivity analyses with respect to the
parameter corruption technique showed that, even though
for each OS the robustness is slightly impacted by the
technique used, the three OSs are impacted similarly.

Finally, the results obtained showed that using a
reduced set of experiments (113) targeting only out-of-
range data led to results similar to those obtained from
the 552 initial experiments targeting additionally incorrect
data and addresses. If this is confirmed for other OS
families, this would divide the benchmark execution
duration (that is proportional to the number of
experiments) by almost 5, which is substantial.
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