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ABSTRACT
Register files are in the critical path of most high-performance 
processors and their latency is one of the most important 
factors that limit their size. Our goal is to develop error 
correction mechanisms at the architecture level. Utilizing this 
increased robustness, the clock frequencies of the circuits are 
pushed beyond the point of allowing full voltage swing. This 
increases the errors observed due to noise and other external 
factors. The resulting errors are then corrected through the 
error correction mechanisms. We first develop a realistic 
model for error probability in register files for a given clock 
frequency. Then, we present the overall architecture, which 
allows the error detection computation to be overlapped with 
other computation in the pipeline. We develop novel techniques 
that utilize the fact that at a given instance many physical 
registers are not used in superscalar processors. These 
underutilized registers are used to store the values of active 
registers. Our simulation results show that for a fixed 
architecture the access times to the registers can be reduced by 
as much as 80% while increasing the number of execution 
cycles by 0.12%. On the other hand, by reducing the register 
file access pipeline stages by 75%, the average number of 
execution cycles of SPEC applications can be reduced by 
11.5%.  

Keywords: Reliability, Fault-Tolerant Computing, 
Adaptive Systems.

1. INTRODUCTION
Over the last decade, in spite of the complexities of new 
manufacturing technologies and increasingly complicated 
architectures, designers have been able to steadily increase 
the performance of high-end microprocessors. This 
improvement is achieved through optimizations at the 
architecture level (such as aggressive pipelining strategies) 
and at the circuit level (such as smaller feature sizes). As 
we move into deeper sub-micron technologies, the 
complexity of pushing the circuit performance further 
becomes an important obstacle. To achieve better 
performance, there is an increasing need for collaboration 
of higher level (e.g. microarchitecture-level) and circuit-
level optimizations. In this work, we present such a 
collaborative optimization. Particularly, we provide 
architectural structures to increase the robustness of the 
register files in high-end processors, thereby allowing the 

designers to push the operating frequencies further1. The 
reduced delay times usually result in an increase in the 
number of errors observed due to noise and other external 
effects. However, the architectural structures proposed 
allow the processor to recover from these errors efficiently. 
Our goal in this paper is to investigate this trade off 
between the register file access delay and its reliability and 
allow architects to find the optimal operation frequency. 
Specifically, in this paper we make the following 
contributions:

We present a realistic model that determines the 
probability of an error for a given cycle time of a 
register,
We present simulation results showing that a significant 
fraction of the registers are not utilized for a 
representative processor architecture,
We propose a novel error recovery scheme that exploits 
these underutilized registers, 
We study how different error recovery mechanisms can 
be employed by a high-performance microprocessor,  
We present simulation results investigating an optimal 
point for trading off the reliability for reducing cycle 
time of a register file in a representative architecture.

High-performance processors are aggressive: they try to 
fetch and execute multiple instructions per cycle, are 
speculative. In such processors, there are two important 
hardware loops that affect performance: Branch Loop and 
Memory Loop [1]. The Branch Loop includes the stages 
between when a prediction for the outcome of a branch 
instruction is made and when the outcome of the branch 
instruction is found. The Memory Loop includes stages 
between a load operation is scheduled and the cache access 
is made. The lengths of these loops are arguably the most 
essential components in the overall performance of a 
processor [7]. The longer the loop, the longer it will take to 
recognize a misprediction and recover from it. For all high-
performance microprocessors, register file access stage(s) 
are in both of these loops. Hence, the access latency to a 

                                                     

1 Note that, we do not vary the supply voltage (Vdd). We change 
the input clock frequency.  
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register file is likely to have a significant impact on the 
overall performance. Our proposed schemes aim to achieve 
reduced access latency for the register file. Particularly, in 
Section 5, we show that the number of register file access 
pipeline stages can be reduced by as much as 75%, thereby 
reducing the average number of execution cycles of SPEC 
applications by 11.5% on average. By allowing the register 
file to operate at higher frequencies, we will allow larger 
register files to be implemented. 

In the next section, we present a study investigating the 
relation between the cycle time and error probability in 
register file. Section 3 gives an overview of how the errors 
are detected and corrected. In Section 4, we discuss our 
novel error correction schemes. Section 5 presents the 
experimental results. In Section 6, we overview the related 
work and Section 7 concludes the paper with a summary. 

2. FREQUENCY VS. RELIABILITY
We present an analytical framework, which relates 
reliability with overclocking scheme used in the register 
file. This section discusses the model that we have used in 
our work.

Figure 1. Voltage at a circuit node at two different frequencies 

Figure 2. Decrease of voltage swing with increase of frequency 

Injection of noise into a circuit node causes a signal 
deviation at that node. This signal deviation will affect the 
operation of the circuit or circuit block driven by the victim 
net. A functional failure is possible when induced noise is 
propagated and wrongly evaluated at the primary output. 
The parameters that determine if there will be a logic error 
are (i) the amplitude and the duration of the noise pulse, 
(ii) the type of the victim node and the circuit connected to 
the victim node, and (iii) the signal condition on the 
affected node. It is important to note that with increasing 

clock frequencies, a circuit node may suffer from reduced 
voltage swing, since there is not enough time to fully 
charge or discharge the load capacitance. Cfs in Figure 1 is 
the clock cycle time required to obtain the full voltage 
swing (Vfs) from zero to Vdd. Note that the supply voltage 
is kept constant at Vdd.

Figure 10 illustrates the decrease of voltage swing (Vs) 
with the decrease of clock cycle time (C). The clock cycle 
time and the voltage swing are normalized against the 
clock cycle at full swing (Cfs) and the full swing voltage 
(Vfs), respectively. The relative voltage swing is defined as 
Vsr = Vs/Vfs and the relative cycle time Cr = C/Cfs. If the 
voltage swing changes, all the signals become faster by the 
same ratio independent of the capacitive load at a circuit 
node. Note that the change of voltage swing slows down at 
longer clock cycle time. This shape correctly maps the 
change of actual signals on-chip with time. Any signal at a 
circuit node rises quickly at the beginning and as the signal 
reaches close to the full swing value it takes longer time for 
a certain change. The curve in Figure 1 has been produced 
by simulating a chain of gates driven by an inverter at 
different frequencies with constant supply voltage Vdd.

Figure 3. A simple D Flip-Flop 

Figure 4. Noise immunity curves of a D flip-flop at various voltage 
swings

With a reduced signal level, a circuit node is more likely to 
suffer from logic failure due to a certain level of noise. 
Therefore, increasing frequency leads to higher probability 
of logic failure at a circuit node due to reduced voltage 
swing. The main advantage of static logic over dynamic 
logic is its robustness under the influence of noise. But 
static logic may suffer from logic failure if there is a 
feedback loop. A static D flip-flop (as in Figure 3), which 
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is common in registers, has a feedback loop that cannot 
recover from noise-induced errors. In these types of 
circuits there are three possible points where noise can be 
injected: the input, the clock and the feedback loop. The 
feedback loop is the most sensitive to noise. Even a small 
noise pulse on the feedback loop when the clock is falling 
or inactive will be propagated repeatedly through the loop 
and may ultimately destroy the logic information stored in 
the flip-flop. A set of noise immunity curves for the D flip-
flop in Figure 3 is presented in Figure 4, which plots the 
relative noise duration (Dr) against the relative noise 
amplitude (Ar) at various voltage swings. Noise pulses of 
various amplitudes and durations have been injected into 
the feedback loop of a D flip-flop at different voltage 
swings, while keeping Vdd constant. SPICE simulations 
were used to determine the set of noise amplitudes and 
durations that cause a logic failure for different voltage 
swing levels. The area above each curve in Figure 4 
represents the amplitudes and durations of a noise pulse 
that can cause logic failure. Hence, the lower the voltage 
swing the larger the area of noise amplitudes and durations 
that can cause an error. The relative noise amplitude is 
defined as Ar = A/Vfs, where A is the amplitude of the 
noise pulse, and the relative duration of noise Dr = D/Cfs,
where D is the duration of the noise pulse. The highest 
curve is for the full voltage swing Vfs (swing from zero to 
Vdd). The lower curves illustrate noise immunity at voltage 
swings smaller than the full swing. It is important to note 
that the noise amplitudes and durations are not equally 
probable. The probability of smaller noise amplitudes and 
noise durations are higher than larger amplitude pulses 
with longer duration.

Figure 5. Noise amplitude at various switching combination of 
neighboring lines of a victim line 

Consider a victim line, which has n neighbors significantly 
coupling to it. For noise injection into the victim line the 
total number of switching combinations of the neighboring 
lines is 22n. Only one switching combination results in the 
worst-case noise amplitude, which occurs when all the 
neighboring lines switch in the same direction. However, 
the number of cases where the effects of most of the 
neighboring lines cancel each other resulting in small 
amplitude of noise is large. We have found the number of 
switching cases between these two limiting cases, which 
result in a certain noise amplitude range. The results are 

plotted in Figure 5. This distribution can be approximated 
by an exponential as in (1). 

Number of cases = 
AKeK 21 (1)

The exact constants K1 and K2 depend on the number of 
lines (n) coupling to the victim line. For large n (greater 
than 16) this curve saturates to continuous probability 
distribution of the form  

rAerAP 8.28*8.28)(  where rA0 (2)

10)( rDP   for 1.00 rD

0)( rDP   for rD1.0
(3)

The probability distribution of noise duration can be given 
by (3). The reason why Dr is uniformly distributed between 
0 and 0.1 is that this is the range of rise time on chip as a 
ratio of the cycle time. Note that the noise duration is 
limited by these rise times, since noise occurs due to 
capacitive and/or inductive coupling of switching line to a 
victim line.  

Once an aggressor signal settles, the noise pulse ends. 
Using equation (2) and (3), the probabilities (PE) of logic 
failure for a D flip-flop at different voltage swings have 
been obtained by the integration of the probabilities of 
noise pulse above each curve of Figure 6. Figure 6 plots 
the probabilities of logic failure against the relative voltage 
swings (Vrs). The probability number at full voltage swing 
are consistent with industrial and test data [23].  

Figure 6. Probability of error at different cycle time 

Figure 7. Probability of error at various voltage swings 

(1) 
number of cases 

0.05*22n

0
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The probability of error versus cycle time in Figure 7 has 
been obtained by the voltage swing variable from the two 
relations: cycle time versus voltage swing (Figure 2) and 
probability of error versus voltage swing (Figure 6). The 
relative cycle time Cr is always less than 1 for lower 
voltage swings. Similarly we can define relative frequency 
Fr = f/ffs = 1/Cr, where f is the frequency and ffs is the 
frequency at full voltage swing. PE is a single bit 
probability of error and is a function of how fast a circuit is 
driven by allowing the voltage swing to decrease. The 
formula below shows the relation between PE and Cr and 
Fr.
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1

*710*2

rF

erCeEP
(4)

These formulae have been found by curve fitting for the 
data of the above curves. The curves in Figure 7, showing 
the data and the curve fitted formula, illustrate the accuracy 
of the formula. Note that if the circuit is pushed enough not 
to allow any voltage swing, the error probability will be 1. 
However, the circuit is never pushed to these limits. Note 
that, this particular fault model is applicable for a specific 
circuit element, register file in current work. The other 
parts of the circuit won’t follow the same fault model. 
However, using similar procedure, it is possible to come up 
with accurate fault models for other parts of the processor. 
In our earlier studies we have developed a fault model 
which predicts the fault occurrence probability in the data 
cache [11].

The overclocking of the register file can be implemented 
either statically or dynamically. For static implementation, 
the clock rate would be decided at the design time. This 
will be performed by setting the clock period higher than 
the estimated delay. This scheme won’t require a separate 
clock for the register file. Dynamic implementation, on the 
other hand, would adjust the clock of the system to a 
higher (lower) value as the amount of error is below 
(above) a predetermined threshold value. However, this 
dynamic adjustment has a high hardware overhead. Hence, 
in our work we utilize a static overclocking scheme. 

Figure 8. System overview of error detection and correction. 
Straddled area and dotted lines indicate the enhancements.

3. ERROR TYPES AND DETECTION
Since we are going to change the voltage swing (i.e. 
overclock the register file), errors can occur during the 

writing of a register value or during the reading. In either 
case, the error(s) should be detected. So, all of the schemes 
we will discuss requires a detection mechanism. Figure 8 
presents the register file and function unit segment of the 
architecture enhanced with the error detection and 
correction. The Error Detection & Correction (EDC) 
hardware stores the extra data bits and logic needed to 
perform the error detection and correction. During reading, 
the value from the register file is provided to the function 
units before it is checked. While the function units are 
operating, the error detection is performed. If an error is 
detected, the output of the function unit is omitted, the 
instruction is marked as corrupted and it is “replayed”. 
Since the output of this instruction will not be written to 
the register file, all the dependent instructions will be 
replayed automatically. The original instruction that caused 
the error itself will be checked at the flags stage of the 
pipeline and replayed, because of the “corrupted” mark. 
Replay mechanisms have become an essential part of 
deeply-pipelined processors. In this scheme, the re-
execution is initiated by the replay mechanism, which 
detects the instructions that do not receive correct input 
values (incorrect value can be caused by a cache miss) and 
re-executes them by informing the issue queue. As 
described above, we utilize the same hardware structures to 
re-execute the instructions that receive incorrect input 
values due to read or write errors. This way we can overlap 
the error detection with function unit computation and 
therefore push the detection circuit out of the critical path 
of the processor. Note that several processor architectures 
employ error detection and recovery schemes in their 
register files, e.g. IBM G5 uses an ECC-based scheme 
[20]. Therefore, the error detection required in our scheme 
would not incur an additional penalty.

An error detected during the reading will initiate an error 
check for the register value, because a read error might be 
caused by a write error (i.e. if the value written is 
incorrectly). During writes, we have to generate the 
detection bits in the EDC circuit. If the same register is 
accessed in the next cycle after write, we do not start the 
detection until the value is placed into the output. This 
gives us a one-cycle window after the write is completed. 
Therefore, the generation of the detection bits can be 
performed on the background in two cycles. However, the 
detection should be done in a single cycle (there can be 
single-cycle function units). Particularly, the detection 
should be done in the time the slowest function unit 
operation completes. Although this overlapping allows us 
to use EDC mechanisms off the critical path, we still 
cannot implement very complicated EDC mechanisms. 

The errors during writes will be detected during reads as 
explained above. If an error is detected and can be 
corrected, the instruction will be replayed. If the error 
cannot be corrected, we use check-pointing techniques to 
restore the state of the processor to a correct one. We must, 
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however, note that in the experiments in Section 5, the 
probability of a rollback when the error correction schemes 
were utilized was always less than the probability of a 
rollback with the base architecture that do not utilize error 
recovery but allows full voltage swing. Hence, in practice 
we reduce the probability of system failures and rollbacks 
due to errors even if we increase the frequency.

4. ERROR CORRECTION SCHEMES
We propose different error correction schemes to be used 
to increase the reliability of register files in the processors. 
First, we discuss the applicability of existing error 
correction/detection techniques in Section 4.1. Then, we 
propose redundancy-based schemes. We present a 
replication-based scheme (RP) in Section 4.3.  

4.1 ECC-BASED SCHEMES
There is a large space of possible implementations for error 
correction. Our framework can utilize any of these 
techniques. However, these techniques (such as Reed-
Solomon or Hamming codes [6]) are usually 
computationally complex. Hence, they would not be able to 
capture the errors in the required time. As we have 
discussed in the last section, errors should be detected in a 
single processor cycle. For a 4 GHz processor, this 
corresponds to 0.25ns. To our best knowledge, none of the 
existing ECC techniques would be able to meet this time 
constraint. In the cases where the errors occur randomly, 
Hamming codes have been shown to be efficient to recover 
from the errors. Therefore, we consider them as an 
alternative error correction scheme. In our simulations, we 
use a code for detecting 2-bit errors and correcting single-
bit errors. Since we simulate 64-bit registers, this requires 8 
additional bits for each register. 

Parity and ECC are two common alternatives for protecting 
register files against transient errors. Although a parity-
based protection is not expensive to accommodate (from 
both performance and energy perspectives), it is limited 
since no error correction is provided. ECC schemes, on the 
other hand, can correct single or multiple bit errors. 
However, they incur high power consumption and latency 
overheads. Even a simple ECC scheme can take up to three 
times the delay of a simple ALU operation [25]. More 
importantly, the energy consumption of an ECC-based 
scheme can be as high as an order of magnitude larger than 
the energy consumed during a register access [15]. 
Therefore, a scheme that provides correction with small 
energy and delay overhead is desirable. 

4.2 REDUNDANCY-BASED SCHEMES
High performance processors aim to execute multiple 
instructions per cycle. One important obstacle to achieve 
this is the dependencies between instructions. Although 
RAW (reading a value after it has written) dependencies 
cannot be eliminated, register renaming is used to eliminate 
WAW (write after write) and WAR (write after read) 

dependencies. To perform register renaming, processors 
implement more physical registers than architectural 
registers. For example, Pentium 4 has 128 integer registers 
for 8 architectural (i.e. logical) registers [8]. Similarly, 
Alpha 21264 has 80 integer physical registers for 32 
architectural register [10]. Then, for practically each 
destination register, register renaming maps the 
architectural destination register to one of the available 
physical registers. Thereby, if two instructions write to the 
same architectural register, they can still be executed in 
parallel because they will write their results to different 
physical registers. Regardless of the implementation for 
each instruction two tasks have to be performed to 
complete renaming. First a new register has to be allocated 
for destination register(s). Second, the source register(s) 
should be renamed such that they will be mapped to the 
correct physical registers. Figure 9 presents the register 
renaming implementation that is used in our experiments.  

Figure 9. Physical structures associated with register renaming. 
Mapping table stores the architectural to physical register 

mappings.

The renaming scheme in our research is similar to the one 
used in Alpha and Pentium 4 (earlier Pentium architectures 
were implementing a Reorder Buffer). In this 
implementation, a mapping table keeps track of the 
physical registers that correspond to architectural registers. 
For example, if the architectural register r1 is mapped to 
physical register p5, the entry in mapping table that 
corresponds to r1 contains the number 5. In addition, 
mapping table keeps track of the states of the physical 
registers. During the renaming stage, only physical 
registers that are “free” should be allocated.

Figure 10. The fraction of active registers over the simulation of 
the 123.applu application.
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A physical register can be in one of the three states: 
available (AV) state, which indicates that they are not 
used; architectural register (AR) state, which indicates that 
the register is mapped to an architectural register; 
allocated, but not valid (AL) state, which indicates that the 
physical register is mapped to an architectural register, 
however the instruction that is generating the value is not 
completed yet. Once the instruction completes, the state is 
changed to AR. The registers in the AV state are free and 
can be mapped to architectural registers. In our techniques, 
we utilize these registers for copying the values of the 
active register (the ones in the AR and AL states). 

4.2.1 OPPORTUNITY

Due to the nature of the applications and the limits on the 
Instruction-level parallelism (ILP) achieved, some of the 
physical registers may remain in the AV state for long 
periods of the execution. Our goal is to capture such 
periods and use these physical registers to store the copies 
of the active registers. Then, if an error is captured on the 
active register, we will use this copy value to restore the 
state of the processor. We first studied different 
applications for register usage, i.e. we studied the fraction 
of registers that are active during time epochs of execution 
of representative applications. The detailed simulation 
environment is explained in Section 5.1. Figure 10 presents 
the fraction of active registers over the simulation of a 
representative application. During several long periods of 
the simulation, more than half of the registers are not used. 
This indicates that a redundancy-based scheme can 
efficiently use these registers to store copies of active 
registers. We must note that the results presented here are 
for a representative application. Although a large fraction 
of the physical registers are not used during the execution 
of this application, the register file needs to be kept large 
enough for other applications, which might need all the 
available registers. 

4.2.2 REDUNDANCY-BASE SCHEME (RB) 
Redundancy-based (RB) scheme tries to allocate the free 
registers for copying the values of the active registers. 
Then, if an error is detected in the original value, this copy 
is used to restore the correct value. If the copy value is also 
corrupted, the error cannot be recovered. In RB, this 
allocation is performed during the register renaming stage. 
Specifically, during the register renaming, the register 
renaming logic additionally allocates a register that will be 
used for copying the register value. The copy register name 
is placed into the RUU (or the Reservation Station) along 
with the operation code and source and destination 
registers. At the completion of the instruction (i.e., when 
the value is written to the register file), the copy register is 
written.

We have to make three modifications to the traditional 
register renaming structures (depicted in Figure 9) to 
implement the RB. First, the mapping table is enhanced to 

select a copy register and store the selected copy register 
name. In addition to that, each physical register can be in 
an additional state called copy, which indicates that it is 
used as a copy register. Second, the Reservation Station (or 
RUU) is enhanced to store the name of this copy register to 
enforce the copy operation during the execution of the 
instruction. Therefore, the path between the register file 
and the Reservation Station should be modified to contain 
this information. Finally, we need to make a modification 
to the register file as well. It should be enhanced to 
perform the copy operation. Among the possible 
implementations, the simplest is to add a “copy” port for 
each write port in the register file. We only need to input 
the name of the copy register. The value of the copy 
register will be read from the corresponding data input for 
the write port and be written into the register name given in 
the copy port. Addition of the copy ports in the register file 
is likely to increase the latency of the register file. 
However, the copy port is easier to implement than a write 
port, because it does not require any additional data input. 

During certain periods of the execution, the fraction of the 
active registers goes above 50%. This means that some 
registers will have no copies. If during the allocation of a 
copy register, there are no free registers (all the registers 
are in AR, AL, or copy states), the RB randomly selects 
one copy register and overwrites it with the new copy 
value. If there are no copy registers (all registers are in AR 
and AL states), the replication fails, i.e. no copy will be 
generated for the current destination register.

4.2.3 REDUNDANCY-ENHANCED SCHEME (RE) 
The RB scheme has a significant drawback. In many cases, 
it might happen that a register can lose its copy before it is 
read. If there was an error during the write operation, the 
value cannot be recovered if the copy is overwritten. To 
address this shortcoming of RB, we implemented the 
Redundancy-Enhanced (RE) scheme.  

RE scheme guarantees that if a copy value is overwritten, 
the corresponding active register does not have an error. To 
achieve this, the register renaming circuit introduces a 
dummy instruction to the pipeline that reads the value from 
the active register. For example, assume register p9 is 
storing the copy of the active register p3. Assume that p9 
will be used to store copy of another register. The register 
renaming circuit puts a dummy instruction that reads the 
value of p3 into the pipeline. If during this dummy read 
operation an error is detected, the error detection and 
correction will be performed as usual. Hence, if there was 
an error during the write of p3, the error will be corrected. 
As we will show in Section 5, RE improves the 
performance of RB significantly. However, it can still not 
achieve 100% recovery because of failed copy attempts 
(~2%). Although this seems to be a small fraction, we have 
seen that it can have a significant impact on the recovery 
success.
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4.3 REPLICATION-BASED SCHEME (RP)
The last alternative we consider is called replication-based 
scheme (RP). In this scheme, we employ a second register 
file which snoops the writes to the primary register file and 
replicates all the values written to the primary register file. 
Specifically, the replica register file will store a value 
whenever a write operation to the primary register file 
occurs. Then, if during an access to a register, an error is 
detected, the replica register file will be accessed to 
retrieve the correct value. This correct value will be stored 
in the primary register file for further accesses to the data. 
The replica register file has a corresponding write port for 
each write port in the primary register file. On the other 
hand, the read ports of the replica file are only accessed 
when an error is captured in the primary register file. 
Hence, in our experiments we set the number of read ports 
in the replica file to 2. Note that, the area of the register file 
is dictated by the number of ports in it. Since in the replica 
file, the number of read ports is going to be smaller, the 
size of the replica register file will be smaller than the 
original register file. We believe that the overall 
complexity is tolerable because the register files usually 
consume a small fraction of the overall chip area. Note that 
the reads from the replica register file can be performed in 
multiple cycles. Therefore, the error rates during reads can 
be reduced. However, writes to the replica register file has 
to be completed in the same duration as the writes to the 
primary register file. Therefore, the probability of write 
errors remains the same for the replica file. This can be 
improved by having multiple replica files. However, such 
schemes are out of the scope of this paper.  

We must note that an alternative scheme where we double 
the width of the register and write two copies at the same 
time can also provide a solution to the problem discussed 
in this paper. Then instead of using ECC or Parity, errors 
can be captured by comparing the two values. However, 
this requires a change in the main register file, which might 
degrade the overall performance. In the RP scheme, on the 
other hand, the duplicate register file occupies less space 
because of the smaller number of ports.  

4.4 ALTERNATIVE IMPLEMENTATIONS
In our detection scheme, we assumed that any error is 
detected before the result of the operation is written back to 
the register file. If we allow the result to be written and 
“terminate” the instruction at a later stage in the pipeline 
(such as flags stage), we can utilize even more complicated 
schemes for detection. However, in such schemes, the 
rollback policy must be complicated to detect the 
instructions that have used this incorrect value, which will 
require significant modifications to the overall datapath 
design. Alternatively, the pipeline can be flushed to rid of 
all possible dependant instructions. However, in many 
configurations, the number of errors can be fairly high and 

flushing reduces the performance. Therefore, we do not 
consider such schemes.  

One can imagine a scheme where only the values of the 
architectural registers are stored. Then, when an error is 
detected, the processor state is restored using this 
architectural register file. Similar to flushing, this 
technique has large impact on the performance and hence 
is not considered in this work.

5. EXPERIMENTS 

5.1 EXPERIMENTAL SETUP
The SimpleScalar [4] version 3.0 simulator is used to 
evaluate the proposed techniques. The necessary 
modifications have been implemented to perform register 
renaming, error probabilities during read and write 
operations, and the proposed error correction strategies. 
We use parity detection for RB, RE, and RP schemes. As 
we have discussed in previous sections, the techniques 
make use the selective replay capabilities that exist in 
modern microprocessors. Therefore, we have made 
changes to SimpleScalar to simulate a realistically sized 
issue queue, to model the events in the issue queue in 
detail, and to simulate a realistic scheduler under selective 
replay.

Table 1. Simulated applications and important statistic: the 
number of write errors and read errors occurred when the cycle 
time is reduced to 20% of full voltage swing.

Appln cycle
[M] 

DL1
acc.
[M] 

Reg.
reads
[M] 

Reg.
writes
[M] 

Write 
Errors

[K] 

Read
Errors

[K] 

168.wupwise 260.1 93.4 550.82 284.55 40.9 43.7
171.swim 837.5 97.5 344.10 127.46 52.4 116.2
172.mgrid 492.9 109.8 285.96 48.28 58.8 62.3
173.applu 661.9 114.2 284.64 41.53 87.1 93.5
177.mesa 147.8 109.8 339.7 192.92 10.2 21.9
179.art 1845.7 102.8 309.8 125.65 87.1 218.4
183.equake 1407.6 127.2 436.50 183.93 145.7 189.3
188.ammp 762.8 116.2 501.86 195.35 37.8 91.7
189.lucas 567.2 72.0 338.17 154.46 60.7 78.3
301.apsi 308.6 111.8 571.27 230.48 34.2 41.1
FP. Average 729.2 105.5 396.28 158.46 61.5 95.6
164.gzip 200.8 71.8 480.1 309.7 27.3 44.5
175.vpr 682.3 118.8 428.2 248.9 72.8 99.4
176.gcc 376.0 126.7 459.7 270.5 17.4 43.9
181.mcf 2151.6 20.3 260.4 185.3 92.7 316.6
186.crafty 308.8 119.5 450.8 280.5 15.8 35.2
197.parser 576.8 89.2 498.1 289.8 38.1 73.2
253.perlbmk 261.5 108.3 419.3 240.4 19.4 41.0
254.gap 230.4 115.1 459.4 297.9 19.4 36.0
255.vortex 314.2 124.8 317.9 185.1 25.5 51.1
300.twolf 802.7 100.1 518.2 300.5 79.8 132.5
Int. Average 590.5 99.5 429.2 260.9 40.8 87.3
Average 659.9 102.5 329.9 178.0 51.2 91.5
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We simulate an 8-way processor with a 16K, 4-way 
associative level 1 data cache, 16K, 2-way associative level 
1 instruction cache, and 256K, 4-way associative level 2 
cache. Level 1 caches have 2 cycle latencies and level 2 
cache has 18 cycle latency. We simulate a register file 
similar to that of Alpha 21264 [10] with 80 floating point 
and 80 integer registers. Note that Alpha has 32 
architectural floating point and integer registers. We used a 
bimodal branch predictor of size 4K. Our base processor 
has 20 pipeline stages with 7-cycle load loop (similar to the 
Pentium 4). Errors that cannot be recovered empties the 
pipeline and induces a 1000 cycle extra latency.

We simulate 10 floating-point and 10 integer benchmarks 
from the SPEC2000 benchmarking suite. The remaining 
benchmarks are not simulated due to the simulation 
problems we have encountered. We simulate 300 Million 
instructions after fast-forwarding an application-specific 
number of instructions as proposed by Sherwood et al. 
[22]. Detailed characteristics of the applications are 
presented in Table 1. However, in the rest of the paper, we 
do not present results for individual applications because 
their behavior is similar with respect to different 
configurations. Instead, we present the average results for 
all the simulated applications. 

5.2 FIT MEASUREMENT
We analyzed the FIT behavior resulting from our schemes 
on the SPEC benchmark programs. We introduced faults in 
the register file guided by the fault occurrence probability 
obtained in equation (4). If the fault is not detected by the 
protection scheme (parity or ECC) it causes an application 
error.

Figure 11. Increase in the FIT number while increasing the 
frequency.

Figure 11 presents the average relative FIT values under 
different relative clock frequency for parity and ecc-
protected register file. The FIT value observed for ECC 
based system running in 100% clock frequency is 
considered as the baseline case. The relative FIT value is 
defined as the change in FIT in the corresponding case 
with respect to the FIT of the baseline processor. We see 
that reducing the cycle time by 25% (i.e., changing it from 
100% to 75% relative clock cycle) has only a minor impact 
on the error behavior. Running the system in twice the 
original frequency (50% clock cycle time) causes the FIT 

numbers to increase by approximately 40% and 20% for 
ECC and parity protection schemes, respectively. Note 
that, executing a process with 25% relative clock cycle 
(increasing the clock frequency by four times) increases 
the FIT of the systems by approximately 200%. Our results 
are a good indication that the total number of failures due 
to our optimizations will be limited even for very 
aggressive overclocking of the register file. 

5.3 PERFORMANCE OPTIMIZATION 
We have performed two sets of experiments. In the first 
set, the designer is given a delay constraint for the register 
file. In these experiments, we are trying to measure the 
effects of introduced errors on the overall performance of a 
given architecture (the number of execution cycles). 
Hence, architectural parameters such as pipeline depth are 
kept constant. In the second set of experiments, we are 
given pipeline properties of a processor. We reduce the 
register file access times to reduce the corresponding 
number of pipeline stages.  

Figure 12 summarizes the results for a fixed architecture. 
Each point in the figure corresponds to the average 
increase in execution cycles of 20 SPEC applications for 
the simulated scheme/frequency. We see that even with the 
simplest scheme (RB) we can reduce the cycle time by 
more than 60% while keeping the penalty under 1%. For 
ECC and RP, we can increase the frequency by 5 times 
while having 0.14% and 0.12% penalties. 

Figure 12. Increase in the execution cycles while increasing the 
frequency. Note that the y-axis is in logarithmic scale.

Figure 13. Reduction in average execution cycles for applications 
when varying the register file access latency between 4 and 1. 
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Figure 14. Reduction in average execution cycles for applications 
when varying the register file access latency between 8 and 1.

The second set of experiments is conducted for finding the 
optimal operation frequency given that the number of 
register file access pipeline stages varies with the 
frequency. As we reduce the access latency, the number of 
stages in the critical loops decreases. This increases the 
performance of the processor. However, since we 
introduce additional replays due to register read/write 
errors, there can be an increase in the execution cycles 
additionally. We performed simulations for the base 
architecture, a base architecture with 4-cycle register file 
access, and a base architecture with 8-cycle register file 
access2. Reducing the latency to 1 cycle from 2 results in 
7.4%, 6.5%, 6.8%, and 7.5% reduction in execution cycles 
for the ECC, RB, RE, and RP schemes. The results for the 
processor with 4-cycle register access latency are 
summarized in Figure 13. Although processors such as 
Pentium 4 dedicate 2 pipeline stages for the register file 
access, this is likely to increase in the near future with the 
increase in the register file size and the overall number of 
pipeline stages. Figure 133 presents the average reduction 
in the execution cycles for 20 SPEC applications as we 
change the cycle time of the register file. We see that 
reducing the latency to 50% (i.e. to 2 cycles) has a positive 
effect for all recovery schemes. Reducing beyond this 
point, on the other hand, reduces the advantages seen by 
RB and RE schemes, where the number of rollbacks 
increases due to errors that cannot be recovered. RP and 
ECC, on the other hand, can recover from most errors. 
Therefore, they give their best performance for an access 
latency of 1. Specifically, ECC and RP reduce the number 
of execution cycles by 8.7% and 8.9%, respectively. The 
results for a processor with 8-cycle register access latency 
are presented in Figure 14. Similarly, as we reduce the 
latency, we generally see an increase in performance. 
However, when the access latency is set to 1, all techniques 
significantly increase the execution cycles: ECC, RB, RE, 

                                                     

2 Note that 2 pipeline stages are dedicated to register file access in 
Pentium 4. If the total number of pipeline stages is increased, 
the number of stages dedicated to register file accesses is likely 
to increase as well.

and RP increase the execution cycles by 26, 77, 69, and 24 
times respectively. 

There are two reasons for this. First, even if all the errors 
can be recovered, the processor spends most of its time 
replaying instructions due to register read errors. In 
addition, many times the errors cannot be recovered. Hence 
the rollbacks constitute a significant overhead. In fact, this 
is the only configuration in our simulations where the 
probability of a rollback is larger than a base architecture 
with full voltage swing. Overall, the RP gives the best 
result by reducing the execution cycles by 11.5% when the 
register file access latency is reduced to 2 cycles. 

6. RELATED WORK
Fault tolerant computing has been studied in detail in the 
context of high radiation environments and outer space 
[17, 26]. Techniques exist to study potential errors in the 
pre-silicon [2] stage and subsequent to the fabrication 
process [14]. More recently, designing computer systems 
for resiliency [12, 18, 19, 21, 27, 28] to transient faults has 
gained greater significance due the combined effect of 
higher integration densities, lower voltages, and faster 
clock frequencies. In comparison to our study, these 
techniques aim to increase the reliability of the processor 
with minimal impact on performance. Nakka [13] proposed 
RSE framework which provided reliability and security 
support. Bower [3] introduced SRAS which masked hard 
faults in microprocessor array structures. Both of these 
approaches have hardware and performance overheads. 
Our work, on the other hand, aims to increase the 
performance without affecting the overall reliability.  

There is a recent trend in computer architecture to design 
processors that can adapt to circuit-level phenomena. 
Examples of this trend include Razor [4], thermal control 
schemes [24], and techniques for reducing inductive noise 
[16] and voltage variation [9]. Among these studies, Razor 
[5] is the closest work to ours. In Razor, the performance 
of the processor is reduced to achieve lower energy 
consumption by reducing the supply voltage in each 
pipeline stage. There are two major differences between 
Razor and our study: our goal is to improve the 
performance, whereas Razor improves the energy-
efficiency while having a negative impact on the 
performance. Second, the particular technique we apply on 
the architecture is different. In short, to our best knowledge 
there is no work that studies the effects of operation 
frequency on reliability and trades off reliability for 
increasing performance, which is the focus of our paper.    

7. CONCLUSIONS
In this paper, we have presented a method for reducing the 
cycle time of register files in high-performance 
microprocessors. We have first established a model for 
estimating the probability of a bit error when the cycle time 
of a register is reduced. When the cycle time is reduced, a 
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circuit node will experience reduced voltage swing, hence 
the probability of an error due to noise and other external 
factors increase. Then, we have presented novel 
architectural techniques to increase the robustness of the 
register file. Our goal is to allow the circuit designer to 
push the frequency higher (hence increase the probability 
of an error) and recover from these errors with the 
architectural techniques developed. We first showed a 
novel system for error detection and correction (EDC), 
which pushes the EDC logic out of the critical path of the 
processor. Then, we showed that a large fraction of 
physical registers are not utilized during certain periods of 
execution in superscalar processors. The redundancy-based 
schemes use these underutilized registers to copy the 
values of active registers. We discussed an Error-
Correction Code (ECC) based on Hamming codes and a 
replication-based scheme, which uses a replica register file 
to store the copies of the active register values and uses 
those copies in case of errors to restore the state. Finally, 
we have presented experimental results showing that using 
the proposed techniques the frequency of the register file 
can be reduced by as much as 80% while having a 0.12% 
penalty in number of execution cycles. In addition, the 
number of pipeline stages in a processor with 4-cycle 
register file access can be reduced by 75%, resulting in a 
reduction of 8.9% in total execution cycles.
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