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Abstract 

This paper presents an experimental evaluation of a 
prototype jet engine controller intended for Unmanned 
Aerial Vehicles (UAVs). The controller is implemented 
with commercial off-the-shelf (COTS) hardware based on 
the Motorola MPC565 microcontroller. We investigate the 
impact of single event upsets (SEUs) by injecting single 
bit-flip faults into main memory and CPU registers via the 
Nexus on-chip debug interface of the MPC565. To avoid 
the injection of non-effective faults, automated pre-
injection analysis of the assembly code was utilized. Due to 
the inherent robustness of the software, most injected 
faults were still non-effective (69.4%) or caused bounded 
failures having only minor effect on the jet engine (7.0%), 
while 20.1% of the errors were detected by hardware 
exceptions and 1.9% were detected by executable 
assertions in the software. The remaining 1.6% is 
classified as critical failures. A majority of the critical 
failures were caused by erroneous booleans or type 
conversions involving booleans. 

1. Introduction 

Important development issues for future aircraft are to 
combine high safety requirements with low maintenance, 
development and production costs. This is especially true 
for applications such as Unmanned Aerial Vehicles 
(UAVs). The market for military UAVs is growing and 
civil and commercial UAV applications are also emerging 
[1]. Revolutionary systems and new technologies are 
needed to meet the demands of future aircraft, requiring 
increasingly advanced electronic equipment and software. 
One of the major challenges is to build cost-effective 
computer systems for execution of safety-critical functions. 
This challenge provides the impetus for two important 
development trends. One is the development of generic 
distributed safety-critical systems that can be used for a 
wide range of air vehicles and engines. The other is the use 

of commercial off-the-shelf (COTS) components. 
In this paper, we evaluate the fault-tolerance properties 

of a prototype FADEC (Full Authority Digital Engine 
Control) controller based on a COTS microcontroller, the 
Motorola PowerPC MPC565. The controller is developed 
for the Volvo Aero RM12 turbofan engine. This engine is 
suitable for large UAVs comparable to the Boeing X45 
variants B and C [2], which use a similar engine (F404-GE-
102D).  

The controller is implemented on a single computer 
node intended to be part of a distributed control system. 
The controller is designed to exhibit fail-bounded or fail-
stop failures in the presence of internal errors. Executable 
assertions in the FADEC software and the hardware error 
detection mechanisms included in the microcontroller are 
used to enforce the failure mode assumptions. 

Our aim is to investigate the validity of the failure mode 
assumptions with respect to single event upsets. We do so 
by injecting single bit-flip faults into CPU-registers and the 
main memory, while carefully monitoring the behavior of a 
very accurate simulation model of the jet-engine.  

Particle radiation induced single event upsets have 
become an increasingly important source of failure in 
electronic systems as the feature sizes of VLSI circuits 
have decreased. Previously, such upsets mainly occurred in 
electronic equipment in space because of heavy-ions. The 
physical properties of new circuit technologies make 
circuits sensitive also to neutrons caused by cosmic 
radiation which are frequent at flight altitudes and also 
appear at ground level [3, 4]. Thus, SEUs are no longer 
negligible for critical equipment and must be carefully 
considered in flight applications. 

The next section briefly describes the jet engine and the 
failure model of the FADEC controller. The experimental 
setup used for the dependability evaluation is described in 
Section 3, and the results of the evaluation are presented 
and discussed in Section 4. Finally, the conclusions are 
given in Section 5. 



2. Jet engine control and failure model 

2.1. Jet engine description 

The RM12 engine is a turbofan engine with afterburner 
designed for vehicles traveling at supersonic speed. 

 
Figure 1.  Schematic view of a turbofan engine 

with afterburner (RM12). 
 
The engine is controlled by five actuators denoted, 

FVG, CVG, WFM, WFR and A8, see Figure 1. By 
positioning the variable stator guide vanes FVG (Fan 
Variable Geometry) and CVG (Compressor Variable 
Geometry), the RM12 fan and compressor are controlled to 
an optimal working point to achieve good engine 
performance. The fuel flow to the core engine is denoted 
WFM, and the afterburner fuel flow WFR. The rotational 
speed for the fan is denoted NL and for the compressor 
NH, where N stands for rotational speed while L and H 
identify the Low- and High-pressure parts respectively. The 
compressor outlet pressure is denoted PS3. The exhaust 
nozzle area, denoted A8, is controlled so that the pressure 
ratio over the complete engine is optimized to obtain 
maximum thrust. 

2.2. Failure model 

A fail-bounded failure model [5, 6] is assumed for the 
FADEC controller. This means that the system (controller 
and jet engine) is allowed to produce wrong outputs as long 
as the system stays within defined bounds. When an error 
is detected, e.g. when jet engine parameters exceed 
predefined or run-time calculated bounds, the FADEC 
controller decides if the error is manageable or if a backup 
system has to be switched in to prevent an accident. If the 
FADEC decides that a backup system must be activated (or 
if a hardware exception is triggered) it has to stop 
producing outputs. If not (or if the error is undetected) the 
system may deliver erroneous outputs as long as the system 
stays bounded. Thus, the engine control system is fail-
bounded with a fail-safe mode. The bounds used in this 
study are presented in Section 3.3. 

3. Experimental setup 

3.1. The experimental platform 

A dynamic model of the RM12 engine controlled by a 
model of a FADEC prototype developed for an UAV 
application study are used for the evaluation. Both the 
engine model and FADEC prototype have been developed 
in MATRIXx which is a graphical simulation and analysis 
tool that has the capability to auto generate code from 
dynamic simulation models. The generated code can then 
be compiled, linked and downloaded to a target system. 
The advantages of using a dynamic simulation model is 
that we can study how transient errors in the FADEC affect 
the RM12 engine operation, we can feed the result from 
experiments back to the MATRIXx environment, make 
improvements to error detection and error handling and 
verify that the improvements are effective. 

A FADEC evaluation platform relying on COTS 
hardware has been developed (see Figure 2).  

 
Figure 2. The experimental platform. 

 
The hardware consists of two development boards 

featuring the Motorola PowerPC MPC565 microcontroller 
executing at a clock frequency of 40 MHz, equipped with 2 
MB external SRAM, 1 MB external Flash memory and 1 
MB on chip Flash memory.  MPC565 is one of the first 
microcontrollers to implement the Nexus standard [7] 
enabling on-chip debugging with advanced features such as 
real-time trace of program and data flow. The platform 
relies on a commercial Nexus debug environment from 
iSYSTEM which takes advantage of the features defined 
by the Nexus standard (another Nexus-based fault injection 
environment targeting the MPC565 can be found in [8]).  
The debug environment consists of an iC3000 active 
emulator and the winIDEA debug software. 

The GOOFI [9] fault injection tool has been extended to 
control the Nexus debug environment in order to simplify 
and automate the injection of faults into MPC565 [10]. The 
GOOFI and winIDEA software runs on a PC connected to 
the emulator via a USB connection. The iC3000 emulator 
communicates with the Nexus port on the MPC565 target 
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system. The target system executes the FADEC control 
software (272 kB) and communicates with the jet engine 
software (308 kB) on the second board via a CAN bus 
which closes the control loop. The software is compiled 
with the Tasking PowerPC C/C++ compiler tool suite, 
release 2.1 while the open source GDB software is used to 
debug and download the jet engine software via a BDM 
(Background Debug Mode) on-chip debug interface of the 
MPC565. For each experiment, the FADEC software is 
first downloaded to the external SRAM of the target system 
which then is restarted. 

3.2. Experiment and software setup 

The single bit-flip fault model is widely accepted as  a 
reasonably accurate representation of SEUs [11]. Single 
bit-flip faults were injected in two separate campaigns 
targeting the MPC565 CPU registers included in the 
PowerPC User Instruction Set Architecture (UISA) [12] 
and the data segments (stack, data and read-only data) of 
the memory respectively. The code segments of the 
memory were not targeted as they are assumed to be 
located in ROM in the actual FADEC implementation. 
Both campaigns were carried out using a pre-injection 
analysis of the assembly code which enabled only effective 
faults to be injected. The technique optimizes the fault-
space by utilizing assembly-level knowledge of the target 
system in order to place single bit-flips in registers and 
memory locations only immediately before these are read 
by the executed instructions. This way, we avoid injecting 
faults that are overwritten before they affect the program 
execution. Experimental results obtained by random 
sampling of the optimized fault-space and the complete 
(non-optimized) fault-space were compared for two 
different workloads running on the MPC565 
microcontroller in [13]. The study showed that the pre-
injection analysis yields an increase of one order of 
magnitude in the effectiveness of faults, a reduction of the 
fault-space of two orders of magnitude in the case of CPU-
registers and four to five orders of magnitude in the case of 
memory locations, while preserving a similar estimation of 
the error detection coverage.  

The FADEC software is divided into procedures which 
execute at different frequencies, determined by a static 
cyclic scheduler. The procedures with the highest 
frequency (200Hz) execute at each control loop and the 
procedures with the lowest frequency (10Hz) execute once 
in an interval of 20 control loops. Thus, 20 control loops 
(loop 21 to 40) are targeted as the temporal trigger for the 
experiments to ensure that all procedures are executed at 
least once. During this time interval (0.1 to 0.2 seconds), 
the thrust demand to the jet engine increases from 35% to 
51% of the maximal thrust, see Figure 3. 

 
Figure 3. Thrust demand vs fault-free response. 

 
The thrust demand and the observed engine parameters 

for a reference run of the nominal (fault-free) system are 
shown in Figure 3. The values of the engine parameters are 
used as reference and are compared to the engine 
parameters logged during fault injection experiments to 
identify any violations of the system failure bounds defined 
in Section 3.3. The thrust command in Figure 3  makes the 
core engine fuel flow WFM increase. When fuel flow 
increases, the high pressure and low pressure rotor speeds 
NH and NL and the compressor outlet pressure PS3 also 
increase. The variable guide vanes CVG and FVG opens 
(decrease) to maintain an adequate pressure ratio across the 
fan and compressor. The exhaust nozzle area A8 is initially 
open for minimum thrust and closes when the engine 
accelerates. Afterburner fuel flow is zero (minimum 
measured WFR is 6%) until it is engaged at 4 s. After 5 s, 
when both WFR and WFM are constant, the engine thrust 
is at maximum. Note that the exhaust nozzle area, A8, 
opens with the same rate as WFR increases to obtain the 
correct engine pressures. 

3.3. Undetected bounded failures and mission or 
flight critical failures 

We define a divergence from the reference run of at 
least 20% for one or more of the parameters shown in 
Figure 3 as a mission- or flight critical failure. Otherwise, 
the failure is considered as an undetected bounded failure. 
A mission critical failure may interrupt the mission since 
the UAV should return to the base for engine diagnosis. A 
flight critical failure may lead to a lost engine and a crash. 
The assumptions for our classification are based on 
previous experience of the engine. 

4. Results 

Table 1 summarizes the results of the fault injection 
experiments. Despite the use of the pre-injection analysis 
technique described in Section 3.2, a significant percentage 
of non-effective errors are produced. The main causes for 



this are i) booleans which are True if the numerical value is 
non-zero will not change state due to most single bit-flips, 
ii) many software statements may mask errors (e.g., errors 
in the variable a of the statement [if a > 10 then …] will be 
masked if a is larger than 10 before the bit-flip and 
assumes an even higher value after the bit-flip), and iii) 
some variables in the FADEC prototype are periodically 
initialized to their default values and that errors may 
therefore be overwritten.  
 

Table 1. Error and failure classification. 

Target 
(# exp) 

Non- 
effective 
errors 

Detected by 
MPC565 
hardware 
exceptions 

Detected by 
FADEC 

executable 
assertions 

Undetected 
bounded 
failures 

Mission 
critical 
failures 

Flight 
critical 
failures 

Registers 
(2873) 

61.9% 
(1778) 

31.5% 
(904) 

1.5% 
(44) 

4.8% 
(137) 

0.3% 
(9) 

<0.1% 
(1) 

Memory 
(2402) 

78.6% 
(1888) 

6.4% 
(154) 

2.2% 
(54) 

9.8% 
(235) 

2.0% 
(47) 

1.0% 
(24) 

TOTAL 
(5275) 

69.4% 
(3666) 

20.1% 
(1058) 

1.9% 
(98) 

7.0% 
(372) 

1.1% 
(56) 

0.5% 
(25) 

4.1. Errors detected by MPC565 exceptions  

As shown in Table 1, 31.5% and 6.4% of all faults 
injected in registers and memory respectively are detected 
by MPC565 hardware exceptions [12]. When an exception 
is triggered, the experiment is stopped and a new 
experiment is started. In an actual system implementation, 
the FADEC node should stop producing results and leave 
the control to a backup when an exception is triggered. The 
processor was configured to enter the Checkstop State 
(CHSTP) instead of taking the Machine Check Exception 
(MCE) itself when MCE occurs. CHSTP occurred for 
52.4% and 26.6% of the hardware exceptions observed for 
faults injected in registers and memory respectively while 
the corresponding figures for Floating-Point Assist 
Exceptions (FPASE) are 19.0% and 50.6%. Software 
Emulation Exceptions (SEE) occurred for 15.2% and 7.8% 
of the exceptions observed for faults injected in registers 
and memory respectively while External Breakpoint 
Exceptions (EBRK) occurred for 3.3% and 13.0%. For 
Alignment Exceptions (ALE), the corresponding figures 
are 9.5% and 1.9%. The remaining 13 exceptions of the 
MPC565 were seldom or never triggered. 

4.2. Errors detected by executable assertions 

When an error is detected by the FADEC control 
software, e.g. when engine parameters exceed fixed or 
dynamic bounds, the controller decides if the error is 
negligible or if it should resign control to a backup system 
to prevent a critical event. The FADEC prototype software 
provides several mechanisms for detecting errors and 
collecting status information. Detected errors considered as 
severe will trigger at least one of the 17 final executable 
assertions visualized in Figure 4, denoted EA1 to EA17 

(see also Table 2). The FADEC node gives up control if 
one or several of them are executed (evaluated true). The 
assertion that has been activated most frequently is EA14 
which means that an error affecting the Compressor 
Variable Geometry (CVG) functionality has been detected 
(28.9% for register faults and 26.5% for memory faults). 

 
 

 
 
 
 
 
 
 
Figure 4. FADEC executable assertions triggered. 
 

Table 2. Executable assertions. 
Acronym Description 

EA1, EA2 Engine operating over limits 
EA3 - EA5 Erroneous temperature input  
EA6, EA7 Erroneous speed input 
EA8 Erroneous pressure input 
EA9, EA10 Erroneous position measurement 
EA11 - EA15 Erroneous servo system 
EA16, EA17 Erroneous discrete output 

4.3. Critical failures due to faults in memory 

Errors in the stack area, the data area and the read-only 
data (rodata) area of the SRAM memory were either i) 
detected by hardware exceptions or executable assertions 
(208 errors), ii) undetected bounded failures (235 errors) or 
iii) mission or flight critical failures (71 errors). 65.3% of 
the critical failures are due to faults injected into the data 
area and the remaining 34.7% of critical failures are due to 
faults injected into the read-only data area. No critical 
failures were observed for faults injected in the stack area. 

A majority of the 71 critical failures observed for faults 
injected in memory could be sorted into three groups. A 
representative plot of the engine parameters observed for 
each group and their causes are presented in the following 
paragraphs. 

 
Group 1 - Errors resulting in a lost afterburner. Over 
59% (42 experiments) of the observed critical failures 
showed a behavior similar to that shown in Figure 5. For at 
least 35 of those, a unique boolean used for initialization of 
the software changed state and a re-initialization was 
performed. The errors in this group resulted in lost 
afterburner control, but the control of the core engine was 
normal. Afterburner failures are considered mission critical 
and not flight critical. As long as the exhaust nozzle area 
(A8) is correctly controlled (closed position for operation 
at maximum speed) without afterburner, thrust level is 
sufficiently high. 



 
Figure 5. Error in a boolean resulting in a disabled 

afterburner. 
 

Group 2 - Error in read-only data for type conversion. 
The source code for the FADEC model prototype is mainly 
generated from MATRIXx but an additional software 
module is also required. For each control loop, data are 
exchanged between the two software modules. Different 
data types are currently used in the FADEC model 
compared to the additional software module and during 
exchange of data between the modules, type conversions 
are performed. Type conversions involve using a read-only 
converter mask. When it assumes a faulty value due to a 
bit-flip, the mask will be permanently corrupted. Thus, this 
fault will affect all subsequent boolean-to-float conversions 
in the software. In 12 experiments (16.9% of all critical 
failures) the converter mask was the target for fault 
injection and since all subsequent conversions were 
affected, the state of the system experienced erroneous 
behavior almost identical to that shown in Figure 6. 

 
Figure 6. Error in constant used for type 

conversion resulting in faulty boolean states. 
 
During the first 4 - 5 s, the exhaust nozzle area (A8) is 

too wide, the low pressure turbine speed (NL) too high and 
the FVG too closed. In addition to low thrust, the fan is 
outside the operating range with risk for stall or resonance. 
After 4 s, the afterburner fails to light up and the exhaust 
nozzle area (A8) starts to oscillate. All these factors may 

have serious impact on flight safety. Especially during 
critical flight phases such as take-off and landing. This 
failure was not observed for faults in registers since faults 
in the converter mask stored in a register will eventually be 
overwritten.  
 
Group 3 - FADEC produced NaN (Not a Number) 
double precision floats. In eight experiments, the FADEC 
node produced erroneous control outputs which were (or 
resulted in) NaN floats. Since arithmetic with NaN floats 
will produce more NaN floats (e.g., f1 = f2 + NaN � f1 = 
NaN) the error may propagate quickly. Five out of eight 
NaN errors were detected by EAs while the remaining 
three resulted in flight critical failures. Figure 7 shows the 
engine behavior for one of those. Only the Compressor 
Variable Geometry (CVG) value stays within reasonable 
bounds for normal engine operation. The engine would 
probably flame out and important engine parameters such 
as fuel flow and engine speed quickly decrease to levels 
below ground idle, which is critical in all flight phases. 

 
Figure 7. Behavior due to “Not a Number” floats. 

 
Group 4 – Others. The system behavior for the remaining 
14 (19.7%) critical failures can not be visualized by a 
representative plot. Seven experiments converged to 
nominal behavior within the observed time interval while 
seven did not. Eight of these failures are considered flight 
critical. 

4.4. Critical failures due to faults in registers 

Only 0.3% of the faults injected in registers resulted in 
critical failures (compared to 3.0% of the faults injected in 
memory). Nevertheless, nine mission critical and one flight 
critical failure were observed for the register faults. Due to 
a design flaw in the commercial debug environment used 
for fault injection, only the 32 least significant bits of each 
64-bit floating-point register could be reached. This 
corresponds to the 32 least significant bits of the mantissa 
part of the float. Thus, faults in floating-point data only 
cause minor errors which very likely affected the number 
of critical failures observed. Different system behavior 



could be observed for each failure and Figure 8 shows the 
most severe behavior, a transient engine failure. 

 
Figure 8. Register fault directly affecting the core 

engine fuel flow (WFM). 
 
After the error has occured, the core engine fuel flow 

(WFM) is lower than normal, resulting in too low 
compressor outlet pressure (PS3), fan (NL) and compressor 
speed (NH). Accordingly, the guide vanes for the fan 
(FVG) and compressor (CVG) are more closed than in the 
reference run. After nine seconds, the engine has recovered 
and operates correctly. This engine failure is flight critical 
for a few seconds during take-off and landing since the 
engine response is abnormal. 

5. Conclusions 

We have experimentally evaluated a prototype FADEC 
jet engine controller executing on the COTS 
microcontroller Motorola MPC565 intended for UAV 
applications. Transient faults were injected into the 
FADEC prototype to investigate the efficiency of the 
nominal error detection mechanisms. The fault injection 
experiments were carried out using a pre-injection analysis 
of the assembly code to avoid the injection of non-effective 
faults. However, most of the faults were still non-effective 
(69.4%) or caused bounded failures having only minor 
effect on the UAV (7.0%) in our experiments which 
suggests that the FADEC node is to some extent inherently 
robust. The hardware exceptions of MPC565 detected 
20.1% of the errors while the executable assertions in the 
FADEC software detected 1.9%.  

Critical failures, which could potentially lead to the loss 
of the UAV, were observed for 1.6% of the experiments. A 
majority of the critical failures were caused by errors 
affecting boolean states in the software, either directly or 
indirectly through erroneous type conversions. 
Consequently, special care should be taken how to declare 
and use booleans in software. 
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