Filtering Failure Logs for a BlueGene/L Prototype

Yinglung LiangT
tECE Dept.
Rutgers University
{ylliang,yyzhang } @ece.rutgers.edu

1CSE Dept.

Abstract

The growing computational and storage needs of several
scientific applications mandate the deployment of extreme-
scale parallel machines, such as IBM’s BlueGene/L which
can accommodate as many as 128K processors. In this pa-
per, we present our experiences in collecting and filtering
error event logs from a 8192 processor BlueGene/L pro-
totype at IBM Rochester, which is currently ranked #8 in
the Top-500 list. We analyze the logs collected from this
machine over a period of 84 days starting from August 26,
2004. We perform a three-step filtering algorithm on these
logs: extracting and categorizing failure events; temporal
filtering to remove duplicate reports from the same loca-
tion; and finally coalescing failure reports of the same er-
ror across different locations. Using this approach, we can
substantially compress these logs, removing over 99.96% of
the 828,387 original entries, and more accurately portray
the failure occurrences on this system.

1 Introduction

The growing computational and storage demands of
applications continue to fuel the research and develop-
ment of high-end computer systems, whose capabilities
and scale far exceed those available in the market today.
Many of these applications play critical roles in impacting
economies of enterprizes and even countries, health and hu-
man development, military/security, and in enhancing the
overall quality of life. It is widely recognized that par-
allelism in processing and storage is essential to meet the
immense demands imposed by many of these applications
(e.g. protein folding, drug discovery, weather modeling, na-
tional infrastructure simulations, etc.), and there is a press-
ing need to accelerate the deployment of large scale paral-
lel systems with several thousand processors. IBM’s Blue-
Gene/L [3, 15, 6, 5] is a recent commercial offering to meet
these demands, with two deployments of this system (on a
smaller scale than the maximum 128K processors allowed
by this architecture) already making it to the top 10 of the
Top 500 Supercomputers list [2].

While performance, and the usability issues (such as pro-
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gramming/tuning tools) to some extent, have been the pri-
mary targets of investigation traditionally, there is a growing
problem - the occurrence of failures - which is demanding
equal attention [17, 18, 20, 29, 22, 4, 13, 7, 21, 27, 11, 25,
23, 28].  Although fault-aware design has gained impor-
tance for uniprocessor and small-scale systems, the prob-
lem escalates to a much higher magnitude when we move
to the large scale parallel systems. In addition to the multi-
plicative factor in the error occurrences, the complex inter-
dependencies between the processors (e.g. in the way the
applications communicate, in the way the processors are al-
located to jobs, etc.) exacerbate the error rates of these sys-
tems [11, 25, 23, 28] containing thousands of processors.
Rather than treat errors/failures as an exception, we need to
recognize that they are commonplace on these systems.

Understanding the failure behavior of large scale paral-
lel systems is crucial towards alleviating these problems.
This requires continual online monitoring and analysis of
events/failures on these systems over extended periods of
time. The data obtained from such analysis can be useful in
several ways. The failure data can be used by hardware and
system software designers during early stages of machine
deployment in order to get feedback about system fail-
ures and performance from the field (for hardware/software
revisions). It can help system administrators for main-
tenance, diagnosis, and enhancing the overall health (up-
time). They can isolate where problems occur, and take ap-
propriate remedial actions (replace the node-card, replace
the disks/switches, reboot a node, select points for software
rejuvenation, schedule down-times, etc.). Finally, it can be
useful in fine-tuning the runtime system for checkpointing
(e.g. modulating the frequency of checkpointing based on
error rates), job scheduling (e.g. allocating nodes which are
less failure prone), network stack optimizations (e.g. em-
ploying different protocols and routes based on error condi-
tions), etc.

Even if there have been production environments collect-
ing these system events/failures, there are no published re-
sults to date on such data in the context of large scale par-
allel machines. More importantly, the monitoring and log-
ging of these events need to be continuously done over ex-
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tended periods of time, spanning several months/years. The
consequence of such monitoring is the voluminous amount
of information that can accumulate because of the tempo-
ral (over long periods of time) and spatial (on each of the
thousands of nodes) dimensions that are involved. Further,
there are (i) several extraneous (and non-critical) events that
can get recorded, (ii) the same event could get recorded in
multiple ways at a node, and (iii) the same event could be
detected in different ways across the nodes. Consequently,
it becomes imperative to filter this evolving data and isolate
the specific events that are needed for subsequent analysis.
Without such filtering, the analysis can lead to wrong con-
clusions. For instance, the same software error can materi-
alize on all nodes that an application is running on, and can
reduce the MTBF than what is really the case.

To our knowledge, this is the first paper to present sys-
tem event/failure logs from an actual 8192-processor Blue-
Gene/L system over a period of 84 days, and describes
our experiences in filtering these events towards identify-
ing the specific failures to be useful in subsequent analy-
sis. In the raw event logs from this system, we have over
828,387 events with 211,997 fatal failures. We first per-
form a temporal filtering step by eliminating event records
at a node which are within 2 minutes of each other. This
step brings down the fatal failures to 9,150. However, when
we closely examine the log after the temporal filtering, we
still find that not all events are independent/unique. We
break down the events based on the system components -
the memory hierarchy, the torus network, the node cards,
the service cards, and the midplane switches - impacted by
these failures. We then show how the event records for each
of these components can further be filtered by a closer ex-
amination of the nature of the errors and how the errors get
reported/propagated. At the end of all such filtering, we iso-
late the number of actual errors over this 84 day period to
311, which represents a reduction of 99.96% of the fatal
failures reported in the original logs. Such filtering is ex-
tremely important when accumulating and processing the
failures in a continuous fashion for online decision making.

The rest of this paper is organized as follows. The next
section briefly summarizes related work. Subsequently, we
give an overview of the BG/L architecture, together with
specifics on the system where the logs were collected in
Section 3. The details on the filtering steps are given in sec-
tion 4. Finally, section 5 provides the concluding remarks.

2 Related Work

Though there has been previous interest in monitoring
and filtering system events/failures (e.g. [16, 8, 25, 23]),

LPlease note that these numbers do not reflect the MTBF of actual Blue-
Gene machine [1] because the prototype is not as mature as the actual de-
ployment in terms of both hardware and software.

there has been no prior published work on failures in large
scale parallel systems spanning thousands of nodes. Collec-
tion and filtering of failure logs has been examined in the
context of much smaller scale systems. Lin and Siewiorek
[16] found that error logs usually consist of more than one
failure process, making it imperative to collect these logs
over extended periods of time. In [8], the authors make rec-
ommendations about how to monitor events and create logs.
It has been recognized [26, 9, 14, 12] that it is critical to co-
alesce related events since failures propagate in the time and
error detection domain. The tupling concept developed by
Tsao [26], groups closely related events, and is a method
of organizing the information in the log into a hierarchical
structure to possibly compress failure logs [9].

Tang [25, 23] studied the error/failure log collected from
a VAX cluster system consisting of seven machines and four
storage controllers. Using a semi-Markov failure model,
they further pointed out that failure distributions on differ-
ent machines are correlated rather than independent. In their
subsequent work [24], Tang and Iyer pointed out that many
failures in a multicomputer environment are correlated with
each other, and they studied the impact of correlated failures
on such systems. Xu [28] performed a study of error logs
collected from a heterogeneous distributed system consist-
ing of 503 PC servers. They showed that failures on a ma-
chine tend to occur in bursts, possibly because common so-
lutions such as reboots cannot completely remove the prob-
lem causing the failure. They also observed a strong indi-
cation of error propagation across the network, which leads
to the correlation between failures of different nodes. In our
previous study [19], we reported failure data for a large-
scale heterogenous AIX cluster involving 400 nodes over a
1.5 year period and studied their statistical properties.

3 BG/L Architecture and Error Logs

In this section, we give an overview of the BG/L pro-
totype on which the event logging has been performed, to-
gether with details on the logs themselves.

3.1 BG/L Architecture

In this study, we use event/failure logs collected from a
8192-processor BlueGene/L DD1 prototype, housed at IBM
Rochester, which currently stands at number 8 in the Top
500 list of supercomputers [2]. The machine has been up
since May, 2004, and has been primarily running parallel
scientific applications. This prototype has 4096 compute
chips, with each chip containing two processors.

Each compute chip consists of two PPC 440 cores (pro-
cessors), with a 32KB L1 cache and a 2 KB L2 (for
prefetching) for each core. The cores share a 4MB EDRAM
L3 cache. In addition, a shared fast SRAM array is used
for communication between the two cores. L1 caches in
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the cores are parity protected, and so are most of the in-
ternal buses. The L2 caches and EDRAM are ECC pro-
tected. Each chip has the following network interfaces: (i)
a 3-dimensional torus interface that supports point-to-point
communication, (ii) a tree interface that supports global op-
erations (barriers, reductions, etc.), (iii) a gigabit ethernet
interface that supports file I/O and host interfaces, and (iv)
a control network that supports booting, monitoring and di-
agnostics through JTAG access.

A compute card contains two such chips, and also houses
a 256MB or 512MB DRAM for each chip on the card. In
this paper, we use the term compute card and compute node
interchangeably. A node card contains 16 such compute
cards, and a midplane holds 16 node cards (a total of 512
compute chips or 1K processors). The BG/L prototype has
2048 compute cards, 128 node cards, and 8 midplanes, that
are housed in 4 racks. I/O cards, each containing two chips
and some amount of memory (usually larger than that of
compute nodes), are also housed on each midplane. There
are 4 such I/O cards (i.e., 8 I/O chips) for each midplane on
the prototype, i.e. 1 I/O chip for every 64 compute chips.
All compute nodes go through the gigabit ethernet interface
to these I/O chips for their I/O needs.

In addition, a midplane also contains 24 midplane
switches (“link chips”) to connect with other midplanes.
When crossing a midplane boundary, BG/L’s torus, global
combining tree and global interrupt signals pass through
these link chips. The BG/L prototype, thus, has 192 link
chips totally. A midplane also has 1 service card that per-
forms system management services such as verifying the
heart beat of the nodes, and monitoring errors. This card
has much more powerful computing abilities, and runs a
full-fledged IBM DB?2 database engine for event logging.

In most cases, a midplane is the granularity of job allo-
cation, i.e., a job is assigned to an integral number of mid-
planes. Though rare, it is also possible to subdivide a mid-
plane, and allocate part of it (an integral number of node
cards) to a job. However, in this case, a job cannot run
on node cards across different midplanes. Compute cards
are normally shut down when they are not running any job.
When a job is assigned, the card is reset and the network is
configured before execution begins.

3.2 System Error Logs

Error events are logged through the Machine Monitoring
and Control System (MMCS). There is one MMCS process
per midplane, running on the service node. However, there
is a polling agent that runs on each compute chip. Errors
detected by a chip are recorded in its local SRAM via an in-
terrupt. The polling agent at some later point would pick up
the error records from this SRAM and ship them to the ser-
vice node using a JTAG-mailbox protocol. The frequency
of the polling needs to be tuned based on the SRAM ca-

pacity, and speeds of the network and the compute nodes.
The failure logs that we have obtained are collected at the
frequency of less than a millisecond.

After procuring the events from the individual chips of
that midplane, the service node records them through a DB2
database engine. These events include both hardware and
software errors at individual chips/compute-nodes, errors
occurring within one of the networks for inter-processor
communication, and even errors such as temperature emer-
gencies and fan speed problems that are reported through
an environmental monitoring process in the backplane. Job
related information is also recorded in job logs.

We have been collecting failure logs since August 26,
2004 until the present. The raw logs contain all the events
that occur within different components of the machine. In-
formation about scheduled maintenances, reboots, and re-
pairs is not included. Each record of the logs describes an
event using several attributes as described below:

e Record ID is the sequence number for an error entry,
which is incremented upon each new entry being ap-
pended to the logs.

e FEvent time is the time stamp associated with that event.

e Event type specifies the mechanism through which the
event is recorded, with most of them being through
RAS [10].

e Event Severity can be one of the following levels -
INFO, WARNING, SEVERE, ERROR, FATAL, or
FAILURE - which also denotes the increasing order
of severity. INFO events are more informative in na-
ture on overall system reliability, such as “a torus prob-
lem has been detected and corrected”, “the card status
has changed”, “the kernel is generating the core”, etc.
WARNING events are usually associated with node-
card/link-card/service-card not being functional. SE-
VERE events give more details on why these cards
may not be functional (e.g.“link-card is not acces-
sible”, “problem while initializing link/node/service
card”, “error getting assembly information from the
node card”, etc.). ERROR events report problems that
are more persistent and further pin-point their causes
(“Fan module serial number appears to be invalid”,
“cable x is present but the corresponding reverse ca-
ble is missing”, “Bad cables going into the linkcard”,
etc.). All of these above events are either informative
in nature, or are related more to initial configuration
errors, and are thus relatively transparent to the ap-
plications/runtime environment. However, FATAL or
FAILURE events (such as “uncorrectable torus error”,
“memory error’, etc.) are more severe, and usually
lead to application/software crashes. Our primary fo-
cus in this study is consequently on FATAL and FAIL-
URE events.
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e Facility attribute denotes the component where the
event is flagged, which can be one of the following:
LINKCARD, APP, KERNEL, DISCOVERY, MMCS,
or MONITOR. LINKCARD events report problems
with midplane switches, which is related to commu-
nication between midplanes. APP events are those
flagged in the application domain of the compute
chips. Many of these are due to the application be-
ing killed by certain signals from the console. In addi-
tion, APP events also include network problems cap-
tured in the application code. Events with KERNEL
facility are those reported by the OS kernel domain
of the compute chips, which are usually in the mem-
ory and network subsystems. These could include
memory parity/ECC errors in the hardware, bus errors
due to wrong addresses being generated by the soft-
ware, torus errors due to links failing, etc. Events
with DISCOVERY facility are usually related to re-
source discovery and initial configurations within the
machine (e.g. “service card is not fully functional”,
“fan module is missing”, etc), with most of these be-
ing at the INFO or WARNING severity levels. MMCS
facility errors are again mostly at the INFO level,
which report events in the operation of the MMCS. Fi-
nally, events with MONITOR facility are usually re-
lated to the power/temperature/wiring issues of link-
card/node-card/service-card. Nearly all MONITOR
events are in the FATAL or FAILURE severity levels.

e Location of an event
(i.e., which chip/node-card/service-card/link-card ex-
periences the error), can be specified in two ways. It
can either be specified as (i) a combination of job ID,
processor, node, and block, or (ii) through a separate
location field. We mainly use the latter approach (loca-
tion attribute) to determine where an error takes place.

Between August 26, 2004 and November 17, 2004 (84
days), there are totally 828,387 events in the raw log.

4 Filtering and Preprocessing Techniques

While event logs can help one understand the failure
properties of a machine to enhance the hardware and sys-
tems software for better failure resilience/tolerance, it has
been recognized [26, 9, 14, 12] that such logs must be care-
fully filtered and preprocessed before being used in decision
making since they usually contain a large amount of redun-
dant information. As today’s machines keep boosting their
logging granularity, filtering is becoming even more critical.
Further, the need to continuously gather these logs over ex-
tended periods of time (temporal) and across the thousands
of hardware resources/processors (spatial) on these paral-
lel machines, exacerbates the volume of data collected. For
example, the logging tool employed by the BG/L prototype

has generated 828,387 entries over a period of 84 days. The
large volume of the raw data sets, however, should not be
simply interpreted as a high system failure rate. Instead, it
calls for an effective filtering tool to parse the logs and iso-
late unique failure records. In this section, we present our
filtering algorithm, which involves three steps: first extract-
ing and categorizing failure events from the raw logs, then
performing a temporal filtering step to remove duplicate re-
ports from the same location, and finally coalescing failure
reports across multiple locations. Using these techniques,
we can substantially compress the generated error logs and
more accurately portray the failure occurrences on the BG/L
prototype for subsequent analysis.

4.1 Step I: Extracting and Categorizing Failure
Events

While informational warnings and other non-critical er-
rors may be useful for system diagnostics and other issues,
our main focus is on isolating and studying the more se-
rious hardware and software failures that actually lead to
application crashes since those are what are needed for soft-
ware/hardware revisions and designing more effective fail-
ure resilience/tolerance mechanisms. Consequently, we are
mainly interested in events at severity level of either FA-
TAL or FAILURE, which are referred to as failures in this
paper. As a result, we first screen out events with lower
severity levels. This step removes 616,390 error records
from 828,387 total entries, leaving only 211,997 failures,
which constitute 14.7% of the total error records. Next,
we remove those application level events due to applica-
tions being killed by signals from the console (these en-
tries usually have APP facility and their event descriptions
start with “Applications killed by signal x”), since these are
not failures caused by the underlying system (hardware or
software). This step further brings down the log size from
211,997 to 190,775 entries.

Instead of lumping together failures from different com-
ponents of the machine, we categorize them into five
classes: (i) memory failures, denoting failures in any part
of the memory hierarchy on all the compute nodes; (ii) net-
work failures, denoting exceptions within the torus when
application processes running on the compute nodes ex-
change messages; (iii) node card failures, denoting prob-
lems with the operations of node cards; (iv) service
card failures, denoting errors with service cards; and (v)
midplane switch failures denoting failures with midplane
switches or their links. These five classes cover all the major
components of the BG/L hardware, or at least those compo-
nents that are included in the error events. It is to be noted
that our original plan was to include compute nodes as one
of BG/L’s components instead of memory, but we use mem-
ory in this paper because nearly all the failures we have ob-
served so far on a compute node are within the memory hi-
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Figure 1. A typical cluster of failure records that can be
coalesced into a single memory failure. For each entry, the
following attributes are shown: id, type, facility, severity,
timestamp, and description.

erarchy. In later sections, we will show that different classes
of failures have different properties. Among 190,775 total
failures, we have 16,544 memory events, 157,162 network
events, 10,500 node card events, 6,195 service card events,
and 374 midplane switch events.

4.2 Step II: Compressing Event Clusters at a Sin-
gle Location

When we focus on a specific location/component (i.e., a
specific chip/node-card/service-card/midplane-switch), we
notice that events tend to occur in bursts, with one occur-
ring within a short time window (e.g., a few seconds) after
another. We call these an event cluster. It is to be noted that
the entire span of a cluster could be large, e.g., a couple of
days, because of a large cluster size. The event descriptions
within a cluster can be identical, or completely different. It
is quite likely that all events in the cluster are referring to
the same failure, and this can arise because of the follow-
ing reasons. First, the logging interval can be smaller than
the duration of a failure, leading to multiple recordings of
the same event. Second, a failure can quickly propagate in
the problem domain, causing other events to occur within
a short time interval. Third, the logging mechanism some-
times records diagnosis information as well, which can lead
to a large number of entries for the same failure event.

We give below some example clusters that we find in the
BG/L logs:

e Failures in the memory hierarchy (e.g. parity for I/D-
L1, ECC for EDRAM L3) typically lead to event clus-
ters. Figure 1 illustrates such a cluster for a specific
compute card. In this figure, each entry is represented
by the following attributes: id, type, facility, severity,
timestamp, and description. Examining these entries
carefully, we find that they are all diagnostic informa-
tion for the same fatal memory event, namely, an L2
I-cache data parity error in this example. In fact, as
soon as a memory error is detected upon the reference

to a specific address, the OS kernel performs a thor-
ough machine check by taking a snapshot of the rel-
evant registers. It records the instruction address that
incurred the failure(s), information on which hardware
resources incurred the failure(s) - the processor local
bus (plb), the TLB, etc. - and a dump of status regis-
ters. In our examination, we have found 10 such typi-
cal memory failure clusters, and we need to record just
a single failure for each occurrence of a cluster.

e A node card failure cluster usually comprises of mul-
tiple temperature errors as well as power errors, with
one power error almost immediately following a tem-
perature error. This is because whenever a temperature
exception (e.g., temperature being above a threshold)
is detected on a node, the node card will shut down
its power, resulting in the report of a power failure as
well. This sequence gets recorded many times until it
is finally resolved. The cluster size varies significantly
throughout the log, ranging from a few entries to a few
thousand entries, depending on how soon the problem
is fixed in the system. Clearly, we can use a single
temperature error (e.g. due to a broken fan) to replace
such a cluster.

e Failures in the other three components, i.e., network,
service card and midplane switches, exhibit clusters as
well. Events within these clusters usually have iden-
tical descriptions. For example, the description “Ser-
vice Card Power Error” appears 3162 times between
timestamp 2004-09-14 14:05:05.440647 and times-
tamp 2004-09-15 17:18:29.862598 for the same ser-
vice card, with an average time-stamp interval between
records of 30 seconds. This is because the same failure
is continuously recorded until the cause of the problem
is fixed. Similar trends are also observed with network
failures and midplane switch failures, though each fail-
ure type may have different cluster sizes. For instance,
midplane switch failure clusters are usually very small,
with many comprising a single entry.

In order to capture these clusters and coalesce them into
a single failure, we have used a simple threshold-based
scheme. We first group all the entries from the same lo-
cation, and sort them based on their timestamps. Next,
for each entry, we compare its timestamp with the previ-
ous record’s timestamp, and only keep the entry if the gap
is above the clustering threshold 7;,. We would like to em-
phasize that, as discussed above, an event cluster contains
failures of the same type; for instance, a network failure
and a memory failure should not belong to the same cluster.
Hence, when we form clusters, if two subsequent events are
of different types, no matter how temporally close they are,
we put them into different clusters. Note that this scheme is
different from the one employed in our earlier work [19] in
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that the earlier scheme only filters out entries with identical
descriptions, which is insufficient in our case.

If a data set has n entries before filtering, and m entries
after filtering, then the ratio o ”:Lm, referred to as com-
pression ratio, denotes how much the data set can be re-
duced by the filtering algorithm. The compression ratios
are governed by the distributions of clusters for that data
set and the choice of the threshold T;,. With a specific
Tin, a data set with larger clusters has a higher compres-
sion ratio. At the same time, a larger 7}, also leads to
a larger compression ratio. Table 1 summarizes the num-
ber of remaining failure entries after applying this filtering
technique with different T3, values. Specifically, T3, = 0
corresponds to the number of events before filtering. From
the table, we have the following observations. First, even
a small T3, can significantly reduce the log size, resulting
in a large compression ratio. Second, different components
have different compression ratios. For example, midplane
switch failures have a small compression ratio, e.g., 13%
with a 5-minute threshold, because they usually have small
cluster sizes. Third, when the threshold reaches a certain
point, though the compression ratio still keeps increasing,
the improvement is not that significant, especially because
we ensure an event cluster only contains failures of the same
type. At the same time, a threshold larger than 5 minutes is
undesirable because the logging interval of BG/L prototype
is significantly smaller than that, and it may cause unrelated
events to fall in a cluster. As a result, we choose 2 min-
utes as the threshold to coalesce event clusters. Note that
such coalescing is done only for the events at the same lo-
cation/component.

After compressing all the event clusters, we have 10
types of memory failures, 13 types of torus failures, 2 types
of node card failures, 2 types of service card failures, and
8 types of midplane switch failures. At the end of this fil-
tering step, we have brought down the number of failures
to 9150, with the individual breakdown for each component
given by the entry for 7};= 2 minutes in Table 1.

4.3 Step III: Failure-Specific Filtering Across Lo-
cations

Let us now take a closer look at the results from the pre-
vious filtering step. The time-series dataset contains periods
with multiple events per second and other periods with no

[ Tn () ][ memory |

network [ node card [ service card [ midplane switch |

Table 1. The impact of T}, on compressing different fail-
ures. T3, = 0 denotes the log before any compression.

events over many consecutive seconds. Hence, our analy-
sis considers two different but related views of these time-
series datasets, i.e., the number of failure records per time
unit, or rate process, and the time between failures, or in-
crement process, for the sequences of failure entries. Note
that these two processes are inverse to each other.
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Figure 2. Rate processes of failure entries after applying
filtering step II. T, = 2 minutes.

Statistics for the raw rate processes (i.e., number of
failure records within each subsystem, average number of
records per hour, variance and maximum number of records
per hour) and raw increment processes (i.e., the average,
variance, and maximum number of hours between failure
records within each subsystem) are provided in Tables 2
(a) and (b). We observe that despite removing event clus-
ters (Step II) from the same location, the number of fail-
ure records (9150 across all components) is still quite large.
This is particularly true of failures in the torus/tree net-
works, which constitute around 88% of the total failures,
where Step Il is less effective than for the other components.

In order to study this more closely, we plot the time se-
ries data for three of the components (the network, mem-
ory system, and midplane switches) in Figures 2(a)-(c) at
an hourly granularity. We see that the failure occurrences
are still (despite doing the time threshold based filtering in
step II) highly skewed, i.e. some intervals contain consid-

0 16,544 | 157,162 10,500 6,195 374 erably more records than others. For example, 26% of the
T 9442 32,152 3,361 5455 374 : :

5 S 3038 e = P total torus .fallures (2076 out of 8063) are reported during
60 764 11,193 3 7 358 one hour (i.e., the 878th hour) out of the entire 1921-hour
120 714 8,063 8 4 351 : : : :

o = A - = 7 period. Besides, we also notice that an interval of 6 hours,

starting from hour 877 and ending at hour 883, has 49.5%
of the total failure records. Turning our attention to Fig-
ure 2(b), we find that memory failures are also reported

(b) memory failure records
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entire system network | memory | nodecard | servicecard | midplane switch
Total number of failure records 9150 8063 714 8 14 351
Average number of failure records per hour 4.7631 4.1973 0.3717 .0042 .0073 1827
Variance of number of failure records per hour 3816 3791 22.5816 0114 .0114 0.8359
Maximum number of failure records per hour 2077 2076 128 4 2 10
(a) rate process
entire system network memory node card | service card | midplane switch
MTBEF (hours) 0.2075 0.2355 2.5892 147.0024 92.5513 5.3143
Variance of times between failure records (hours) 34997 99405 2.4426e6 2.8165e8 1.5197e8 1.1920e6
Maximum time between failure records (hours) 141.5822 190.5575 560.8161 765.5364 703.4128 160.1083

(b) increment process

Table 2. General statistics about failure logs after applying step II.
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Figure 4. A closer look at memory failures.

old to filter out all of them since it is possible that they may
be detecting different failures. It is important to dig deeper
into the records for the different components to filter the
events if they are indeed duplicates, and we discuss these
issues for each component below.

10° 10° 10°
Inter-Failure Time (Seconds)

(c) Midplane switch failure records

Figure 3. CDF of inter-failure times after applying filter-
ing step II. T;, = 2 minutes. The x-axes are plotted using
log scale.

4.3.1 Memory Failures
Note that the BG/L prototype contains 4,096 compute chips
spread over 128 node cards, of which only chips of 22 node

in bursts. For example, 93% of total memory failure en- cards ever report memory failures (Figure 4(a)). Among

tries fall in the interval between 299th hour and 570th hour.
Compared to the other two components, midplane switch
failures are more evenly distributed temporally.

Figures 3(a)-(c) reiterate the above observations by plot-
ting the cumulative distribution function (CDF) of the inter-
record times of the network, memory and midplane switch
failures. Note that the x-axes are in log scale because the
inter-failure times show wide variances. For both network
and memory subsystems, 90% of the failure records are
within 1 second of the preceding entry, with the midplane
switch failures being more spaced out.

One may wonder why these failures are occurring in
bursts, given that we have already used a temporal thresh-
old of 2 minutes to filter out event clusters in Step II.
Note that Step II only eliminates duplicate records that
occur at the same location. It is possible that multiple
locations/compute-chips could be detecting and recording
the same errors. One cannot simply use a temporal thresh-

these 22 node cards, chips within node card 40 report 90%
of the failures. In addition, from Figure 4(b), we find that
all 32 chips from node card 40 often report failures at al-
most the same time (with a few seconds apart of each other).
Since it is extremely unlikely for 32 chips to encounter the
same hardware failure at the same time - especially because
these chips do not share memory, this strongly suggests
that some of these memory failures may be caused by soft-
ware bugs, e.g. de-referencing a null pointer, jumping to an
invalid location, accessing out-of-bounds, etc., instead of
hardware failures. The same bug in the software is causing
a manifestation of this error on the different nodes running
this application, and should thus be reported only once.
The challenge, however, lies in that it is difficult to tell
whether an event is caused by a hardware failure or a soft-
ware bug by just looking at its description. For example,
an instruction TLB error can occur either because there is a
hardware problem (similar to the i-L2 parity error that we
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illustrated in Figure 1) or because the program is trying to
jump to an invalid instruction address. We take the view-
point that a failure is more likely to be caused by software
bugs if the following two conditions are true: (1) many com-
pute chips (that are running the same program) report the
same problem within a short interval, and (2) the instruc-
tion/data address at which the failure occurs should be the
same across different chips (the probability of these two oc-
curring in the case of a hardware error is extremely low).

Filtering such events caused by the same error requires
clustering the events that occur on different chips, within a
short interval, and with the same event descriptions. Our
filtering algorithm represents each failure record by a three-
attribute tuple <timestamp, location, description>, and it
outputs a table containing failure clusters in the form of
<timestamp, description, cluster size>, where the cluster
size field denotes how many different chips report this fail-
ure within a time threshold 7},..,,. When a new entry is
scanned, we first use a hash structure to determine whether
or not the description has appeared before. If this is the first
time we see this description, it becomes the cluster head,
and we insert its timestamp and description in the table,
with the corresponding cluster size field set to 1. If the de-
scription has appeared before, we check if it falls into any
cluster by comparing its timestamp with the cluster head
which has the latest timestamp amongst all those having the
same description. If the gap between these two timestamps
is less than the threshold, it belongs to that cluster, and we
will not add this entry to the table, only incrementing the
cluster size by 1. If the gap is larger than the threshold, then
this entry becomes a new cluster head, and we record its in-
formation in the result table. After applying this technique,
we show portions of the resulting clusters for the memory
failures with T,,.,, = 60 seconds in Table 3.

Next, we need to decide whether a cluster in Table 3
is a software failure or a hardware failure, by evaluating
the two conditions mentioned above. Our algorithm marks
those clusters having sizes larger than 1 as those caused
by program bugs because the instruction addresses or data
addresses at which the failures occur are exactly the same
across the reporting chips.

Our discussions with the BG/L logging experts confirm
the validity of this approach. Some of the common clusters
(which are also shown in Table 3) that we have found in
the logs include: instruction storage interrupts and instruc-

[ID ] Failure description [ Cluster size |
2 PPC440 instruction TLB error interrupt 32
5 PPC440 instruction storage interrupt 32
8 PPC440 data storage interrupt 32
12 PPC440 program interrupt 32
17 L3 major internal error 19

Table 3. Clusters of Memory failures.
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Figure 5. A closer look at network failures.

tion TLB errors which can be caused by programs trying to
jump to an instruction address that does not exist; data stor-
age interrupts which can be caused by programs trying to
de-reference an invalid address; program interrupts which
can be caused by programs trying to execute an illegal in-
struction; and bus errors (denoted as L3 major error in the
table) due to illegal addresses going out on the bus. After
coalescing the software failures, we have totally 55 hard-
ware failures, and 21 software failures over 84 days.

4.3.2 Network Failures

Figure 5(a) shows how network failures are distributed
across all 128 node cards. Note that these 128 node cards
reside on 8 different midplanes, with node cards 1-16 on
midplane 1, node cards 17-32 on midplane 2, and so on.
In Figure 5(a), the midplane boundaries are marked by the
eight vertical lines. An interesting observation is that the
failure count statistics are correlated to the midplanes where
they occur. This suggests that chips within the same mid-
plane may be recording the same network problems, and we
need to filter our multiple records of the same error. A more
direct indication of this behavior is presented in Figure 5(b),
which shows the time (on the x axis) and location (on the y
axis) of all the network failures. It is clear that many chips
report failures roughly at the same time and these chips are
usually from the same midplane. In this figure, the mid-
plane boundary is marked by the 8 horizontal lines.

Unlike the memory hierarchy (which is not shared)
where the probability is extremely remote that the same
hardware error simultaneously manifests on multiple chips,
it is quite possible for the different compute chips to detect
and report the same hardware failure in the (shared) net-
work. If there exists a hardware problem in the network,
such as a bad link, or a bad switch, this problem can be de-
tected by any host that tries to access those shared resources.
In order to accurately portray the number of network fail-

YF]',F.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05) COMPUTER
0-7695-2282-3/05 $20.00 © 2005 IEEE

SOCIETY



ures within the system, instead of counting one failure for
each record, we need to coalesce them into one single fail-
ure. As a result, we use the same clustering technique as
discussed in the context of memory failures to locate the re-
dundant records generated by multiple chips. Partial results
after applying this technique are shown in Table 4. In this
table, the threshold that is used to form clusters is T},e; =
15 minutes. Please note that this threshold is larger than
the one used for the memory subsystem (i.e., 1 minute) be-
cause some network failures take a long time before they
are fixed. Further, the same failures can be reported several
times from the same midplane within a few minutes apart
of each other possibly by different applications (the appli-
cation crashes when encountering these failures), while in
the memory subsystem, as soon as the application crashes
due to a program bug, the same failure is unlikely to repeat
within a short time frame.

There are three typical types of network failures that are
usually reported by a large number of chips at the same
time: (1) rts tree/torus link training failed, (2) BIDI Train
Failure, and (3) external input interrupt:uncorrectable torus
error. Among these three, both (1) and (2) occur when the
chips that are assigned to an application cannot configure
the torus by themselves. There could be many causes of
this problem, such as link failure, network interface fail-
ure, wrong configuration parameters, to name just a few. In
such scenarios, the application will not even get launched.
Failure (3) occurs when an uncorrectable torus error is en-
countered, making the applications crash again.

After the filteration with this clustering, the location of
a network failure is no longer denoted by a chip ID, but by
the midplane ID because a network failure can be encoun-
tered by any chip within that midplane. For those clusters
that involve two midplanes (because the corresponding ap-
plication is spread over two midplanes), we assume that the
failure occurs within both midplanes. At the end of this fil-
tering, we have 69 network failures over the 84 day period.

4.3.3 Midplane Switch Failures

Midplane switches inter-connect midplanes, and are pro-
grammed by the control logic of the machine. These
events usually report certain ports cannot be connected to
or cleared. Whenever the control programs encounter such
problems, it indicates there is a problem with the hard-
ware - either the switch itself, or the link connecting the

[ Failure description [ cluster size |

BIC_NCRIT interrupt (unit=0x02 bit=0x00) 1
rts tree/torus link training failed 297
(RAS) BiDi Train Failure 2071
external input interrupt:uncorrectable torus error 342
rts tree/torus link training failed 32

Table 4. Network failure clusters.

ry

Py

Number of Fatal Failures
»
T
Number of Fatal Failures
Py

i
i
3
i
:
i

H
3

500 1000
Hours

0 500 1000 1500

Hours

1500

E

(a) Network failures

~

(b) Hardware memory failures

2000

Ey

@
Py
t

Y

w
Number of Fatal Failures
N
3
'

Number of Fatal Failures

N
8
8

H
¢
.
H
i

2

1500 2000 ] 500 1000

Hours

] 500 1000 1500

Hours

(c) Software memory failures

2000

(d) Midplane switch failures

Number of Fatal Failures
Y @

Number of Fatal Failures
4

1500 (] 500 1000

Hours

0 500 1000 1500

Hours

(e) Node card failures (f) Service card failures

Figure 6. Time series of the failure datasets.

switches. If the switch has problems, then only the program
that runs on the switch will report the failure; otherwise,
several switches will be affected. As a result, we can use
the same clustering algorithm (as descried in Section 4.3.1)
to form the clusters, and coalesce a failure cluster into a
single failure. However, as shown in Figure 2(c) and Fig-
ure 3(c), midplane switch failures are usually not clustered,
with most cluster sizes being 1 or 2, and only very few go-
ing up to cluster sizes of 5 or 6. We would like to emphasize
that Figure 2(c) shows the number of records per hour, but
the threshold we use to determine the clusters is T}, = 15
minutes, similar to the one used in the network subsystem.
After coalescing these clustered events, we still have 152
midplane switch failures.

4.4 Applying the 3-step Filtering Algorithm

After discussing the 3-step filtering technique, we have
61 network failures, 76 memory failures (among which 55
are hardware failures, and 21 software failures), 152 mid-
plane switch failures, 8 node card failures, and 14 service
card failures over the period of 1921 hours. Figures 6(a)-(f)
present the time series of failures at an hourly granularity.
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5 Concluding Remarks

Parallel system event/failure logging in production en-
vironments has widespread applicability. It can be used to
obtain valuable information from the field on hardware and
software failures, which can help designers make hardware
and software revisions. With fine-grain event logging, the
volume of data that is accumulated can become unwieldy
over extended periods of time (months/years), and across
thousands of nodes. Further, the idiosyncracies of logging
mechanisms can lead to multiple records of the same events,
and these need to be cleaned up in order to be accurate
for subsequent analysis. In this paper, we have embarked
on a study of the failures on a 8192 processor BlueGene/L
prototype at IBM Rochester, which current stands at #8 in
the Top-500 list. We have presented a 3-step filtering algo-
rithm: first extracting and categorizing failure events from
the raw logs, then performing a temporal filtering to remove
duplicate reports from the same location, and finally coa-
lescing failure reports across different locations. Using this
approach, we can considerably compress error logs by re-
moving 99.96% of the 828,387 entries recorded between
August 26, 2004 and November 17, 2004 on this system.
Such filtering is being performed on a weekly basis.
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