
How Resilient are Distributed f Fault/Intrusion-Tolerant Systems?∗

Paulo Sousa, Nuno Ferreira Neves and Paulo Verı́ssimo
University of Lisboa, Portugal
{pjsousa, nuno, pjv}@di.fc.ul.pt

Abstract

Fault-tolerant protocols, asynchronous and synchronous
alike, make stationary fault assumptions: only a fraction f

of the total n nodes may fail. Whilst a synchronous proto-
col is expected to have a bounded execution time, an asyn-
chronous one may execute for an arbitrary amount of time,
possibly sufficient for f + 1 nodes to fail. This can com-
promise the safety of the protocol and ultimately the safety
of the system. Recent papers propose asynchronous proto-
cols that can tolerate any number of faults over the lifetime
of the system, provided that at most f nodes become faulty
during a given interval. This is achieved through the so-
called proactive recovery, which consists of periodically re-
juvenating the system. Proactive recovery in asynchronous
systems, though a major breakthrough, has some limita-
tions which had not been identified before. In this paper,
we introduce a system model expressive enough to repre-
sent these problems which remained in oblivion with the
classical models. We introduce the predicate exhaustion-
safe, meaning freedom from exhaustion-failures. Based on
it, we predict the extent to which fault/intrusion-tolerant
distributed systems (synchronous and asynchronous) can
be made to work correctly. Namely, our model predicts
the impossibility of guaranteeing correct behavior of asyn-
chronous proactive recovery systems as exist today. To
prove our point, we give an example of how these problems
impact an existing fault/intrusion-tolerant distributed sys-
tem, the CODEX system, and having identified the problem,
we suggest one (certainly not the only) way to tackle it.

1 Introduction

Nowadays, and more than ever before, system de-
pendability is an important subject because computers are
pervading our lives and environment, creating an ever-
increasing dependence on their correct operation. All else

∗This work was partially supported by the FCT, through the Large-
Scale Informatic Systems Laboratory (LaSIGE).

being equal, the dependability or trustworthiness of a sys-
tem is inversely proportional to the number and strength
of the assumptions made about the environment where the
former executes. This applies to any type of assumptions,
namely timing and fault assumptions.

Synchronous systems make timing assumptions,
whereas asynchronous ones do not. For instance, if a
protocol assumes the timely delivery of messages by the
environment, then its correctness can be compromised by
overload or unexpected delays. These are timing faults, that
is, violations of those assumptions. The absence of timing
assumptions about the operating environment renders the
system immune to timing faults. In reality, timing faults
do not exist in an asynchronous system, and this reduction
in the fault space makes the former potentially more trust-
worthy. For this reason, a large number of researchers have
concentrated their efforts in designing and implementing
systems under the asynchronous model.

Fault assumptions are the postulates underlying the de-
sign of fault-tolerant systems: the type(s) of faults, and
their number (f ). The type of faults influences the archi-
tectural and algorithmic aspects of the design, and there are
known classifications defining different degrees of severity
in distributed systems, according to the way an interaction
is affected (e.g., crash, omission, byzantine, etc.), or to the
way a fault is produced (e.g., accidental or malicious, like
vulnerability, attack, intrusion, etc.). The number estab-
lishes, in abstract, a notion of resilience (to f faults occur-
ring). As such, current fault-tolerant system models feature
a set of synchrony assumptions (or the absence thereof), and
pairs 〈type, number〉 of fault assumptions (e.g., f omission
faults; f compromised/failed hosts).

However, a fundamental goal when conceiving a depend-
able system is to guarantee that during system execution the
actual number of faults never exceeds the maximum num-
ber f of tolerated ones. In practical terms, one would like
to anticipate the maximum number of faults bound to occur
during the system execution, call it Nf , so that it is designed
to tolerate f ≥ Nf faults. As we will show, the difficulty
of achieving this objective varies not only with the type of
faults but also with the synchrony assumptions. Moreover,



the system models in current use obscure part of these diffi-
culties, because they are not expressive enough.

Before delving into the formal embodiment of our the-
ory, we give the intuition of the problem. Consider a sys-
tem where only accidental faults are assumed to exist. If it
is synchronous, then one can bound its execution. In conse-
quence, one can forecast the maximum possible number of
accidents (faults) that can occur during the bounded execu-
tion time, say Nf . That is, given an abstract f fault-tolerant
design, there is a justifiable expectation that, in a real sys-
tem based on it, the maximum number of tolerated faults is
never exceeded. This can be done by providing the system
with enough redundancy to meet f ≥ Nf

1. If the system
is asynchronous, then its execution time has not a known
bound – it can have an arbitrary finite value. Then, given
an abstract f fault-tolerant design, it becomes mathemati-
cally infeasible to justify the expectation that the maximum
number of tolerated faults is never exceeded, since the max-
imum possible number of faults that can occur during the
unbounded execution time is also unbounded. One can at
best work under a partially-synchronous framework where
an execution time bound can be predicted with some high
probability, and forecast the maximum possible number of
faults that can occur during that estimated execution time.

Consider now a system where arbitrary faults of mali-
cious nature can happen. One of the biggest differences
between malicious and accidental faults is related with their
probability distribution. Although one can calculate with
great accuracy the probability of accidents happening, the
same calculation is much more complex and/or less accu-
rate for intentional actions perpetrated by malicious intelli-
gence. In the case of a synchronous system with bounded
execution time, the same strategy applied to accidental
faults can be followed here, except that: care must be taken
to ensure an adequate coverage of the estimation of the
number of faults during the execution time. If the system
is asynchronous, the already difficult problem of prediction
of the distribution of malicious faults is amplified by the ab-
sence of an execution time bound, which again, renders the
problem unsolvable, in theory.

An intuition about these problems motivated the ground-
breaking research of recent years around proactive recovery
which made possible the appearance of asynchronous pro-
tocols and systems [3, 20, 2, 13] that allegedly can tolerate
any number of faults over the lifetime of the system, pro-
vided that fewer than a subset of the nodes become faulty
within a supposedly bounded small window of vulnerabil-
ity. This is achieved through the use of proactive recovery
protocols that regularly rejuvenate the system.

However, having presented our conjecture that the prob-

1Just for the sake of example: in an algorithm design where f = N−1

3
,

for N processes, then in the system design, given Nf , N would have to be
N ≥ 3Nf + 1.

lem of guaranteeing that the actual number of faults in a
system never exceeds the maximum number f of toler-
ated ones, has a certain hardness for synchronous systems
subjected to malicious faults, and is unsolvable for asyn-
chronous systems, we may ask: How would this be possible
with ‘asynchronous’ proactive recovery?

This is what we are going to discuss in the remainder of
the paper. Firstly, in Section 2, we recall a concept well-
known in classical fault-tolerant hardware design, spare ex-
haustion, and generalize it to resource exhaustion, the situ-
ation when a system no longer has the necessary resources
to execute correctly (computing power, bandwidth, repli-
cas, etc.). We propose to augment system models with the
notion of the evolution of environmental resources along
the timeline of system execution. Furthermore, we intro-
duce the predicate exhaustion-safe, meaning freedom from
exhaustion-failures. Based on it, in Section 3, we in-
troduce precise criteria to describe the resilience of fault
and/or intrusion-tolerant distributed systems under diverse
synchrony assumptions, and we discuss the extent to which
systems (synchronous and asynchronous) can be made to
work correctly.

Our findings reveal problems that remained in oblivion
with the classical models, leading to potentially incorrect
behavior of systems otherwise apparently correct. Proac-
tive recovery, though a major breakthrough, has some lim-
itations when used in the context of asynchronous systems.
Namely, some proactive recovery protocols depend on hid-
den timing assumptions which are not represented in the
models used. In fact, our model predicts the impossibil-
ity of guaranteeing correct behavior of asynchronous proac-
tive recovery systems as exist today. To prove our point, in
Section 4, we give an example of how these problems im-
pact an existing fault/intrusion-tolerant distributed system,
the CODEX system, and having identified the problem, we
suggest one (certainly not the only) way to tackle it. Sec-
tion 5 concludes the paper and presents future work.

2 Physical System Model

2.1 Additional insight into system correctness

Distributed systems are usually dependent on a set of
protocols. Protocol correctness is thus vital to guarantee
system correctness. The process of building correct proto-
cols is composed by many steps, from the algorithmic spec-
ification until its implementation and testing. We highlight
the following:

1. assessing, at algorithm design time, if the algorithm
underpinning the protocol is correct in an abstract
computational system;



2. assessing, at system design time, if the protocol will
execute correctly in a concrete computational system;

3. assessing, at implementation time, if the protocol is
correctly implemented and then verifying at run time,
if the protocol executes according to its specification.

This paper is a contribution to steps 1 and 2. Typically, a
computational system is defined by a set of assumptions re-
garding aspects like the processing power, the type of faults
that can happen, the synchrony of the execution, etc. These
assumptions are in fact an abstraction of the actual resources
the protocol needs to work correctly (e.g., when a protocol
assumes that messages are delivered within a known bound,
it is in fact assuming that the network will have certain char-
acteristics such as bandwidth and latency). The violation of
these resource assumptions may affect the safety or live-
ness of the protocols and hence of the system. We propose
to augment system models with the notion of the evolution
of environmental resources along the timeline of system ex-
ecution and its consequent impact on system assumptions.

In this paper we are precisely concerned with the event
of ‘violation of any of the resource assumptions’, which
we call resource exhaustion, and on the conditions for its
avoidance. We start by giving a name to failures caused by
resource exhaustion.

Definition 2.1. An exhaustion-failure is a failure that re-
sults from accidental or provoked resource exhaustion.

Our goal is to prevent exhaustion-failures from happen-
ing. Therefore, we define exhaustion-safety in the following
manner.

Definition 2.2. Exhaustion-safety is the ability of a system
to ensure that exhaustion-failures do not happen.

Consequently, an exhaustion-safe system is defined in
the following way.

Definition 2.3. A system is said to be exhaustion-safe if it
satisfies the exhaustion-safety property.

We argue that a system, namely a distributed system, in
order to be dependable, has to satisfy the exhaustion-safety
property. In other words, a dependable distributed system
must be exhaustion-safe.

In the remainder of the paper, we are going to assess
how an f fault/intrusion-tolerant distributed system be-
haves with regard to exhaustion-safety, for different combi-
nations of synchronous/asynchronous timing and acciden-
tal/malicious faults. We will consider schemes where the
system starts with a number of components, and continues
to provide correct responses as long as sufficient compo-
nents exist.

2.2 The model

Our main goal is to formally reason about how
exhaustion-safety may be affected by different combina-
tions of timing and fault assumptions. So, we need to con-
ceive a model in which exhaustion-safety can be formally
defined. This model has to take in account the relevant sys-
tem resources and their evolution with time. For this reason,
and short of a better name, we called it a Physical System
Model (PSM , for short).

Our model considers systems that have a certain mission.
Thus, the execution of this type of systems is composed
of various processing steps needed for fulfilling the system
mission (e.g., protocol executions). We define three events
regarding the system execution: start, termination and ex-
haustion. Only the start event is mandatory to happen: we
cannot talk of a system execution if the system does not
start executing. The termination and exhaustion events may
or may not happen. More importantly, the causal relation
between them is crucial to assess system exhaustion-safety.

We now formally define PSM .

Definition 2.4. Let A be a system. An A execution is de-
fined by a triple:

A = 〈Atstart
, Atend

, Atexhaust
〉, where

• Atstart
∈ <+

0

represents the real time start instant.

• Atend
∈ [Atstart

,+∞[

represents the real time termination instant.

• Atexhaust
∈ [Atstart

,+∞[

represents the real time instant when resource exhaus-
tion occurs. If Atexhaust

≤ Atend
, system correctness

may be corrupted through exhaustion-failures.

So, under PSM , a system is defined by a set of triples
A, one for each of its executions. Next, we formally define
what is an exhaustion-safe system under PSM .

Definition 2.5. A system A is exhaustion-safe if and only if
Atend

< Atexhaust
,∀A.

Definition 2.5 states that a system is exhaustion-safe if
and only if resource exhaustion does not occur during any
execution. This does not mean that the system fails im-
mediately after resource exhaustion. In fact, a system may
even present a correct behavior between the exhaustion and
the termination events. Thus, a non exhaustion-safe system
may execute correctly during its entirely lifetime. How-
ever, after resource exhaustion there is no guarantee that
an exhaustion-failure will not happen. Figure 1 illustrates
the differences between an execution of an exhaustion-safe



and a non exhaustion-safe system. An exhaustion-safe sys-
tem is always guaranteedly immune to exhaustion-failures.
A non exhaustion-safe system has at least one execution
with a period or periods (see Section 3.3) of vulnerability
to exhaustion-failures where resources are exhausted and
where correctness may be compromised.

not executing

immune to exhaustion-failures

vulnerable to exhaustion-failures

(a)
tAtstart

Atend
Atexhaust

(b)

tAtstart
Atexhaust

Atend

Figure 1. (a) Exhaustion-safe system; (b) non
exhaustion-safe system.

As we will show, the main advantage of this more ex-
pressive model is that condition Atend

< Atexhaust
can be

evaluated, that is, we can determine whether it is main-
tained, or not, depending on the type of system assump-
tions. Note that the idea is not to know the exact values
of Atstart

, Atend
and Atexhaust

, but rather to reason about
constraints imposed on them derived from environment as-
sumptions. With this goal in mind, we start by defining two
crucial properties of the model, which follow immediately
from the above definitions.

Property 2.6. If Atend
has a bounded value Tend

(i.e., Atend
≤ Tend,∀A), then A is exhaustion-safe if

Atexhaust
> Tend,∀A.

It is easy to see that Atexhaust
> Tend ⇒ Atexhaust

>

Atend
⇒ A is exhaustion-safe.

Property 2.7. If Atexhaust
has a bounded value Texhaust

(i.e., Atexhaust
≤ Texhaust,∀A), then A is exhaustion-safe

only if Atend
< Texhaust,∀A.

It is also easy to see that A is exhaustion-safe ⇒ Atend
<

Atexhaust
⇒ Atend

< Texhaust.

3 Dependability under PSM

In the next sections we analyze and evaluate both worlds
of synchronous and asynchronous systems, according to
PSM . We will also consider that systems may suffer ei-
ther from accidental or malicious failures.

3.1 Synchronous systems

Systems developed under the synchronous model are
relatively straightforward to reason about and to describe.
This model has three distinguishing properties that help us
understand better the system behavior: there is a known
time bound for the local processing of any operation, mes-
sage deliveries are performed within a well-known delay,
and components have access to local clocks with a known
bounded drift rate with respect to real time [9, 19].

If one considers a synchronous system A with a bounded
lifetime under PSM , then we can use the worst-case
bounds defined during the design phase to assess the con-
ditions of exhaustion-safety.

Corollary 3.1. If A is a synchronous system with a bounded
lifetime (i.e., ∃Tend : Atend

≤ Tend,∀A), then A is
exhaustion-safe if Atexhaust

> Tend,∀A.

Proof. See Property 2.6.

Therefore, if one wants to design an exhaustion-safe syn-
chronous system with a bounded lifetime, then one has to
guarantee that no resource exhaustion occurs during the
limited period of time delimited by Tend.

Note that Corollary 3.1 only applies to synchronous sys-
tems with a bounded lifetime. If the system lifespan is un-
bounded (e.g., server), then we can prove the following.

Corollary 3.2. If A is a synchronous system with an un-
bounded lifetime (i.e., @Tend : Atend

≤ Tend,∀A), and
Atexhaust

has a bounded value Texhaust (i.e., Atexhaust
≤

Texhaust,∀A), then A is not exhaustion-safe.

Proof. If Atend
does not have a known bound, it is impossi-

ble to guarantee that Atend
< Texhaust,∀A, and therefore,

by Property 2.7, A is not exhaustion-safe.

In fact, synchronous systems may suffer accidental or
malicious faults. These faults may have two bad effects:
provoking timing failures that increase Atend

; causing re-
source degradation which decreases Atexhaust

. Thus, in a
synchronous system, an adversary can not only perform at-
tacks to either crash or control some resources, but also vi-
olate the timing assumptions, even if during a limited inter-
val. For this reason, there is currently among the research
community a common belief that synchronous systems are
fragile, and that secure systems should be built under the
asynchronous model.

This section showed that it is possible to have
exhaustion-safe f fault/intrusion-tolerant synchronous sys-
tems as long as they have a bounded lifetime. However, care
must be taken that timing assumptions are not violated dur-
ing system execution, namely in the presence of malicious
faults.



3.2 Asynchronous systems

The distinguishing feature of an asynchronous system is
the absence of timing assumptions, which means arbitrary
delays for the execution of operations and message deliver-
ies, and unbounded drift rates for the local clocks [7, 12, 6].
This model is quite attractive because it leads to the design
of programs and components that are easier to port or in-
clude in different environments.

If one considers an asynchronous system A under PSM ,
then A can be built in such a way that termination is even-
tually guaranteed (sometimes only if certain conditions be-
come true). However, it is impossible to determine exactly
when termination will occur. In other words, the termina-
tion instant Atend

is unbounded. Therefore, it is necessary
to analyze the relation between Atend

and Atexhaust
, in or-

der to assess if A is exhaustion-safe.
Can an asynchronous system A be exhaustion-safe? De-

spite the arbitrariness of Atend
, the condition Atend

<

Atexhaust
must always be maintained. This can only be

guaranteed in two situations: if Atexhaust
has an infinite

value or if Atexhaust
is correlated with Atend

in a way that
verifies the condition. Whereas the former condition would
mean the impossibility of a failure occurring in the system,
which common sense indicates as a very difficult or impos-
sible goal to attain, the latter is very hard to achieve as well.
We give a solution through an adequate system architecture,
as we will explain later in the paper.

Traditionally, dependable asynchronous systems resort
to some form of redundancy, to be able to handle compo-
nent failures. A usual assumption in the design of these
systems is to impose a limit on maximum number of com-
ponents that can fail during execution. For instance, a reli-
able broadcast protocol requires that at most bn−1

3
c out of

n components can fail maliciously [1].
In a system that starts with a certain level of redundancy,

the assumption that a fixed number of f components may
fail results in a (not necessarily known) bounded value for
Atexhaust

: the time necessary to crash/corrupt f + 1 com-
ponents. Notice that this sort of “doom’s timer” is started
at system boot and tends to decrease as the system evolves.
Many systems naively assume that all components are cor-
rect when each execution of a protocol is initiated. Un-
less a protocol begins to run at system boot, or the system
is completely re-constructed just before the protocol starts,
this assumption is not plausible. Although asynchronous al-
gorithms are designed without timing considerations, once
cast into a system design they gain an indirect relation with
time through the inexorable path of resource exhaustion.
Our enriched distributed system model captures this rela-
tion through A and allows one to reason formally about it.

Given that Atend
does not have a known bound in asyn-

chronous systems, one can prove the following corollary of

Property 2.7, similar to Corollary 3.2:

Corollary 3.3. If A is an asynchronous system (i.e., @Tend :
Atend

≤ Tend,∀A), and Atexhaust
has a bounded value

Texhaust (i.e., Atexhaust
≤ Texhaust,∀A), then A is not

exhaustion-safe.

Proof. See Corollary 3.2.

Even though real systems working under the asyn-
chronous model have a bounded Atexhaust

, they have been
used with success for many years. This happens because,
until recently, only accidental faults (e.g., crash or omis-
sion) were a threat to systems. This type of faults, being
accidental by nature, occur in a random manner. There-
fore, by studying the environment in detail and by appro-
priately conceiving the system, one can achieve an asyn-
chronous system that behaves as if it were exhaustion-safe,
with a high probability. That is, despite having the failure
syndrome as we have proved, it would be very difficult to
observe it in practice.

However, when we start considering malicious faults, a
different reasoning must be made. This type of faults is in-
tentional (not accidental) and therefore their distribution is
not random: the actual distribution may be shaped at will by
an adversary whose main purpose is to break the system. In
these conditions, having a bounded Atexhaust

(e.g., station-
ary maximum bound for node failures) in an asynchronous
system A may turn out to be catastrophic for the safety of
the system. That is, our moderating comments above do
not apply to intrusion-tolerant systems working under the
asynchronous model.

Consequently, Atexhaust
should not have a bounded

value if A is an asynchronous system operating in a environ-
ment prone to anything more severe than accidental faults.
The goal should then be to somehow unbound Atexhaust

and
maintain it always above Atend

.
This section showed that it is impossible to have

exhaustion-safe f fault/intrusion-tolerant asynchronous
systems, namely in the presence of malicious faults.

3.3 Proactive recovery in asynchronous systems

One of the most interesting approaches to avoid resource
exhaustion due to malicious compromise of components is
through proactive recovery [14] (which can be seen as a
form of dynamic replication [15]). The aim of this mech-
anism is conceptually simple – components are periodi-
cally rejuvenated to remove the effects of malicious at-
tacks/failures. If the rejuvenation if performed frequently
often, then an adversary is unable to corrupt enough re-
sources to break the system. Proactive recovery has been
suggested in several contexts. For instance, it can be used
to refresh cryptographic keys in order to prevent the dis-
closure of too many secrets [11, 10, 8, 21, 2, 20, 13]. It



may also be utilized to restore the system code from a se-
cure source to eliminate potential transformation carried out
by the adversary [14, 3]. Moreover, it may include sub-
stituting the programs to remove vulnerabilities existent in
previous versions (e.g., software bugs that could crash the
system or software errors exploitable by outside attackers).
Thus, by using a well-planned strategy of proactive recov-
ery, Atexhaust

can be constantly postponed in order that re-
source exhaustion never happens before Atend

. This intu-
ition is illustrated in Figure 2, featuring a system A with a
proactive recovery subsystem A′. In Figure 2a we can see
that as execution approaches Atexhaust

, the system may risk
exhaustion-failures. However (Figure 2b), the execution of
a proactive recovery procedure by A′ – triggered at instant
prtstart

and terminated at instant prtend
– causes the post-

poning of Atexhaust
.

t

t

Atexhaust

A

A’

t

t

Atexhaust

prtstart
prtend

A

A’

(a)

(b)

1

2

immune to exhaustion-failures

vulnerable to exhaustion-failures

Figure 2. (a) Before proactive recovery being
executed, A exhaustion-safety is in risk of be-
ing violated; (b) after the execution of proac-
tive recovery (1), Atexhaust

is postponed (2).

The following theorem states a necessary condition for
the behavior illustrated in Figure 2b.

Theorem 3.4. Consider a system A enhanced with a
proactive recovery subsystem A′, which rejuvenates2 sys-
tem A. Consider that after a rejuvenation i, Atexhaust

is bounded by T i
exhaust, and that the time of comple-

tion of the (next) rejuvenation i + 1 is bounded by
T i

rejuvenation,∀A, i. If Atend
has an unbounded value (i.e.,

2For instance, the rejuvenation may be periodic.

@Tend : Atend
≤ Tend,∀A), then A is exhaustion-safe only

if T i
rejuvenation < T i

exhaust,∀A, i.

Proof. In order to prove by contradiction, let us assume that
∃A, i : T i

exhaust ≤ T i
rejuvenation and A is exhaustion-safe.

T i
exhaust ≤ T i

rejuvenation ⇒ Atexhaust
≤ T i

rejuvenation ≤
Atend

. Therefore, A is not exhaustion-safe. This contradicts
the hypothesis.

Observe that this theorem applies to any type of system
A and A′, independently of their synchrony assumptions.

Let us now focus on asynchronous proactive recovery.
An asynchronous system with proactive recovery is repre-
sented as in Figure 3. The asynchronous system A is en-
hanced with a subsystem A′ responsible for the proactive
recovery operations. As expected, A′ is also asynchronous
because it is part of A.

asynchronous

A

A’

Figure 3. A system A enhanced with a proac-
tive recovery subsystem A′. Both A and A′

run asynchronously.

Some proactive recovery protocols for asynchronous
systems have been proposed in the literature [21, 2, 3]. De-
spite having different goals, their effectiveness depends on
the same assumption: regular execution. They assume that
the proactive subsystem is regularly executed, and that the
rejuvenation operation does not take a very long period to
complete. Now suppose that a proactive recovery system
makes timing assumptions (implicit or explicit) about the
environment, which by definition, can be violated in an
asynchronous setting. Figure 4 shows an example of how
an adversary can deploy an exploit that takes advantage of
these timing assumptions and consequently compromise A

exhaustion-safety. Firstly, the adversary forces the viola-
tion of the timing assumptions by slowing the system down
through more or less visible actions (e.g., by compromis-
ing the clock behavior) and in this way delays the trigger-
ing of the proactive recovery procedure. In consequence,
the rejuvenation is not completed in time to avoid A’s re-
source exhaustion. Between resources being exhausted at
Atexhaust

and resources being rejuvenated at prtend
, there

is an interval of time where A’s correctness may be com-
promised. Although A immunity to exhaustion-failures is
reestablished after prtend

, its correctness may already have



been corrupted if some of its safety properties were violated
in the interval [Atexhaust

, prtend
] through some exhaustion-

failure. Notice that although we consider A′ as a subsystem
that is inside A, Figure 4 represents A′ as being immune
to exhaustion-failures during the period [Atexhaust

, prtend
]

when A is vulnerable. Our intention was simply to ease the
understanding of this figure. For the interested reader, the
insight about this problem concerns coverage of timing as-
sumptions and contamination by timing failures, and was
equated in [17].

immune to exhaustion-failures

vulnerable to exhaustion-failures

A
tAtexhaust

tprtstart
prtend

timing

failure!
1

A’

prtstart
2

Figure 4. The violation of A′’s timing assump-
tions (1), causes the delay of proactive recov-
ery execution (2), which thus fails to guaran-
tee A exhaustion-safety.

So, the asynchronous proactive recovery subsystem A′

effectiveness depends on timing assumptions that can be vi-
olated, and for that reason A′ cannot permanently guarantee
the exhaustion-safety of the asynchronous system A. More
formally:

Corollary 3.5. Consider an asynchronous system A (i.e.,
@Tend : Atend

≤ Tend,∀A) enhanced with an asyn-
chronous proactive recovery subsystem A′, which rejuve-
nates system A. Consider that after a rejuvenation i,
Atexhaust

is bounded by T i
exhaust and that the time of

completion of the (next) rejuvenation i + 1 is bounded by
T i

rejuvenation,∀A, i. Then, A is not exhaustion-safe.

Proof. Theorem 3.4 states that if Atend
has an unbounded

value, then A is exhaustion-safe only if T i
rejuvenation <

T i
exhaust,∀A, i. Given that A is asynchronous, Atend

has
an unbounded value and the asynchrony of A′ implies
that it cannot guarantee the condition T i

rejuvenation <

T i
exhaust,∀A, i. Therefore, A is not exhaustion-safe.

Regarding adversary models, some authors [21] distin-
guish between the adversary being an agent whose ability
to compromise the system depends on the time available
for attacks, and it relying on intrinsic aspects of the sys-
tem, such as the operating system or application software.

In reality these are false alternatives since both facets must
be present: following [18], for there to be an intrusion,
there must be a vulnerability (e.g., “an intrinsic aspect of
the system”), which is attacked successfully (and that re-
quires some time). From the discussion above, it should be
evident that we follow this composite adversary model.

This section showed that even using asynchronous
proactive recovery, it is impossible to have exhaustion-safe
f fault/intrusion-tolerant asynchronous systems, namely in
the presence of malicious faults.

To illustrate these conclusions in a real system, we
will describe in the next section a possible attack to
CODEX [13] that is based on the time-related vulnerabil-
ity of the proactive recovery protocols it uses, predicted by
our results under PSM and exhaustion-safety.

4 An attack to the proactive recovery scheme
of CODEX

CODEX (COrnell Data EXchange) is a recent dis-
tributed service for storage and dissemination of se-
crets [13]. It binds secrets to unique names and allows sub-
sequent access to these secrets by authorized clients. Clients
can call three different operations that allow them to manip-
ulate and retrieve bindings: create to introduce a new name;
write to associate a (presumably secret) value with a name;
and read to retrieve the value associated with a name.

The service makes relatively weak assumptions about
the environment and the adversaries. It assumes an asyn-
chronous model where operations and messages can suf-
fer unbounded delays. Moreover, messages while in transit
may be modified, deleted or disclosed. An adversary can
also insert new messages in the network. Nevertheless, it is
assumed fair links, which means that if a message is trans-
mitted a number of times from one node to another, then it
will eventually be received.

CODEX enforces three security properties. Availability
is provided by replicating the values in a set of n servers. It
is assumed that at most f servers can (maliciously) fail at
the same time, and that n ≥ 3f + 1. Cryptographic oper-
ations such as digital signatures and encryption/decryption
are employed to achieve confidentiality and integrity of both
the communication and stored values. These operations
are based on public key and threshold cryptography. Each
client has a public/private key pair and has the CODEX
public key. In the same way, CODEX has a public/private
key pair and knows the public keys of the clients. The pri-
vate key of CODEX however is shared by the n CODEX
servers using an (n, f + 1) secret sharing scheme3, which

3In a (n, f + 1) secrete sharing scheme, there are n shares and any
subset of size f + 1 of these shares is sufficient to recover the secret.
However, nothing is learnt about the secret if the subset is smaller than
f + 1.



means that no CODEX server is trusted with that private
key. Therefore, even if an adversary controls a subset of f

or less replicas, she or he will be unable to sign as CODEX
or to decrypt data encrypted with the CODEX public key.

In CODEX, both requests and confirmations are signed
with the private key of, respectively, the clients or CODEX
(which requires the cooperation of at least f + 1 replicas).
Values are stored encrypted with the public key of CODEX,
which prevents disclosure while transit through the network
or by malicious replicas. The details of the CODEX client
interface, namely the message formats for each operation,
can be found in [13]. At this moment, we just want to point
out that by knowing the CODEX private key, one can vio-
late the confidentiality property in different ways.

4.1 Overview of the proactive recovery scheme

An adversary must know at least f + 1 shares in or-
der to construct the CODEX private key. CODEX assumes
that a maximum of f nodes running CODEX servers are
compromised at any time, with f = n−1

3
. This assump-

tion excludes the possibility of an adversary controlling
f + 1 servers, but as the CODEX paper points out, “it
does not rule out the adversary compromising one server
and learning the CODEX private key share stored there, be-
ing evicted, compromising another, and ultimately learning
f+1 shares”. To defend against these so called mobile virus
attacks [14], CODEX employs the APSS proactive secret
sharing protocol [21]. “This protocol is periodically exe-
cuted, each time generating a new sharing of the private key
but without ever materializing the private key at any server”.
Because older secret shares cannot be combined with new
shares, the CODEX paper concludes that “a mobile virus
attack would succeed only if it is completed in the interval
between successive executions of APSS”. This scenario can
be prevented from occurring by running APSS regularly, in
intervals that “can be as short as a few minutes”.

4.2 An example attack

We now describe an attack that explores the asynchrony
of APSS with the goal of increasing its execution interval,
to allow the retrieval of f+1 shares and the disclosure of the
CODEX private key. Once this key is obtained, it is trivial
to breach the confidentiality of the service.

The intrusion campaign is carried out by two adversaries,
ADV1 and ADV2. ADV1’s attack takes the system into a
state where the final attack can be performed by the second
adversary. As expected, both adversaries will execute the
attacks without violating any of the assumptions presented
in the CODEX paper. ADV1 basically delays some parts
of the system – it slows down some nodes and postpones
the delivery of messages between two parts of the system

(or temporally partitions the network). The reader should
notice that after this first attack the system will exhibit a
behavior that could have occurred in any fault-free asyn-
chronous system. Therefore, this attack simply forces the
system to act in a manner convenient for ADV2, instead of
having her wait for the system to naturally behave in such
way.

Attack by adversary ADV1: ADV1 performs a mobile
virus attack against f+1 servers. However, instead of trying
to retrieve the CODEX private key share of each node, it
does a much simpler thing: it adjusts, one after the other,
the rate of each local clock. The adjustment increases the
drift rate to make the clock slower than real time. In other
words, 1 system second becomes λ real time seconds, where
λ � 1.

APSS execution is triggered either by a local timer at
each node or by a notification received from another node4.
This notification is transmitted during the execution of
APSS. The mobile virus attack delays at most f + 1 nodes
from starting their own APSS execution, but it does not pre-
vent the reception of a notification from any of the remain-
der n − (f + 1) nodes. Therefore, various APSS instances
will be run during the attack.

After slowing down the clock of f + 1 nodes, ADV1
attacks the links between these nodes and the rest of the
system. Basically, it either temporally cuts off the links or
removes all messages that could (remotely) initiate APSS.
The links are restored once ADV2 obtains the CODEX pri-
vate key, which means that messages start to be delivered
again and the fair links assumption is never violated.

The reader should notice that the interruption of commu-
nications is not absolutely necessary for the effectiveness of
the ADV2 attack. Alternatively, one could extend the mo-
bile attack to the n nodes and in this way delay APSS exe-
cution in all of them.

Attack by adversary ADV2: ADV2 starts another mo-
bile virus attack against the same f + 1 nodes that were
compromised by ADV1. Contrarily to the previous attack,
this one now has a time constraint: the APSS execution in-
terval. Remember that f + 1 shares are only useful if re-
trieved in the interval between two successive executions of
APSS. However, for all practical considerations, the time
constraint is removed, since the clocks are made as slow as
needed, by a helping accomplice – ADV1. Thus, the actual
APSS interval is much larger than expected.

Without any time constraint, it suffices to implement the
mobile virus attack suggested in the CODEX paper, learn-
ing, one by one, f + 1 CODEX private key shares. The

4These triggering modes were confirmed by the inspection of the
CODEX code, which is available at http://www.umiacs.umd.
edu/˜mmarsh/CODEX/.



CODEX private key is disclosed using these shares. Us-
ing this key, ADV2 can decrypt the secrets stored in the
compromised nodes. Moreover, she can get all new secrets
submitted by clients through write operations.

The described attack explores one flaw on the assump-
tions of CODEX. It implicitly assumes that although em-
bracing the asynchronous model, it can have access to a
clock with a bounded drift rate. But, by definition, in an
asynchronous system no such bounds exist [7, 12, 6]. Typ-
ically, a computer clock has a bounded drift rate ρ guaran-
teed by its manufacturer. However, this bound is mainly
useful in environments with accidental failures. If an ad-
versary gains access to the clock, she or he can arbitrarily
change its progress in relation to real time.

More generally, the concept of proactive recovery has
some compatibility problems with the asynchronous model.
In [21], authors briefly discuss some of these problems, and
conclude that the definition of the window of vulnerabil-
ity in terms of events rather than the passage of time, can
potentially afford attackers leverage. In fact, asynchronous
systems evolve at an arbitrary pace, while proactive recov-
ery has natural timeliness requirements: proactive recov-
ery leverages the defenses of a system by periodically “re-
moving” the work of an attacker. Despite these problems,
we subscribe the discussion about APSS vs a PSS (syn-
chronous proactive secret sharing) protocol in [21]: APSS
will defend against any attack that the PSS protocol does
and will also defend against some attacks that compromise
the PSS protocol, such as attacks that invalidate PSS timing
assumptions. This goes in line with what we say in the fi-
nal of Section 3.1 about the greater fragility of synchronous
systems. However, APSS is still vulnerable to time attacks
such as the one presented above. Therefore, asynchronous
systems enhanced with proactive recovery subsystems are
in fact promising but care must be taken in their design.

4.3 Combining proactive recovery and wormholes

In this section, we propose one solution to the problem
of ensuring exhaustion-safe operation of proactive recovery
systems. The solution is based on the concept of worm-
holes: subsystems capable of providing a small set of ser-
vices, with good properties that are otherwise not available
in the rest of the system [16]. For example, an asynchronous
system can be augmented with a synchronous wormhole
that offers a few and well-defined timely operations. Worm-
holes must be kept small and simple to ensure the feasi-
bility of building them with the expect trustworthy behav-
ior. Moreover, their construction must be carefully planed
to guarantee that they have access to all required resources
when needed. In the past, two incarnations of distributed
wormholes have already been created, one for the secu-
rity domain [5] (the TTCB) and another for the time do-

main [17] (the TCB).
Remember that as explained in Sections 3.2 and 3.3, it is

impossible to guarantee the exhaustion-safety of an asyn-
chronous system A when Atexhaust

has a bounded value
(Corollary 3.3), even with an asynchronous proactive re-
covery scheme (Corollary 3.5). The reader however should
notice that the main difficulty with proactive recovery is not
the concept but its implementation – this mechanism is use-
ful to artificially increase Atexhaust

as long as it has time-
liness guarantees. Therefore, we probably can find a solu-
tion to this problem by revisiting the system and the proac-
tive recovery subsystem under an architecturally hybrid dis-
tributed system model, and using a wormhole to implement
the latter.

asynchronous

synchronous

A

A’

Figure 5. A system A enhanced with a proac-
tive recovery subsystem A′. A runs asyn-
chronously, but A′ runs synchronously in the
context of a secure and timely wormhole.

We could use the TTCB Timely Execution Service to
timely execute proactive recovery protocols. The feasibil-
ity of building such a service in a real system is confirmed
by the already available implementation5 of the TTCB for
the RTAI [4] operating system.

We let as future work the conception of a wormhole
specifically tailored for proactive recovery. We envisage
that this wormhole will be simpler and will require weaker
environment assumptions than the TTCB. A representation
of a system using a wormhole to execute proactive recovery
procedures is depicted in Figure 5.

Because it makes synchronous assumptions, the worm-
hole is in theory subject to the same kind of problems de-
scribed in Section 3.1. However, in practice, the worm-
hole can be a small and simple component, and thus, as
explained in [5], it can be constructed in order to depend-
ably guarantee secure and timely behavior.

5 Conclusions and future work

This paper has made a discussion about the actual re-
silience of synchronous and asynchronous systems. We

5Available at http://www.navigators.di.fc.ul.pt/
software/tcb/downloads.htm.



proposed a system model that takes in account the environ-
mental resources and their evolution along the timeline of
system execution, and introduced the predicate exhaustion-
safe, meaning freedom from exhaustion-failures.

Based on it, we predicted the extent to which
fault/intrusion-tolerant distributed systems (synchronous
and asynchronous) can be made to work correctly. We
showed that it is possible to have exhaustion-safe f

fault/intrusion-tolerant synchronous systems as long as they
have a bounded lifetime, with the remark that timing as-
sumptions must not be violated. We also showed that
it is impossible to have exhaustion-safe f fault/intrusion-
tolerant asynchronous systems. Even proactive recovery in
asynchronous systems, though a major breakthrough in that
context, has some limitations which had not been identified
before. We explained these limitations and showed them in
practice through an attack to the CODEX system that does
not violate any of the assumptions underlying its operation.
Finally, we proposed the combined use of proactive recov-
ery and wormholes as a possible approach to circumvent
these limitations.

As future work, we intend to study in more detail the
combination of proactive recovery and wormholes. Our
goal is to define a hybrid wormhole-enhanced architecture
that guarantees the safety of the asynchronous (or syn-
chronous) payload part, despite any number of arbitrary
faults, through the wormhole-based timely execution of
proactive recovery protocols.

Acknowledgments

We would like to thank Antónia Lopes, and the anony-
mous referees for their valuable comments on improving
this paper.

References

[1] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM, 32(4):824–840,
Oct. 1985.

[2] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl.
Asynchronous verifiable secret sharing and proactive cryp-
tosystems. In CCS ’02: Proceedings of the 9th ACM con-
ference on Computer and communications security, pages
88–97. ACM Press, 2002.

[3] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Com-
puter Systems, 20(4):398–461, Nov. 2002.

[4] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
S. Hughes, and K. Yaghmour. DIAPM-RTAI position paper.
In Real-Time Linux Workshop, Nov. 2000.

[5] M. Correia, P. Verı́ssimo, and N. F. Neves. The design of a
COTS real-time distributed security kernel. In Proceedings
of the Fourth European Dependable Computing Conference,
pages 234–252, Oct. 2002.

[6] F. Cristian and C. Fetzer. The timed asynchronous system
model. In Proceedings of the 28th IEEE International Sym-
posium on Fault-Tolerant Computing, pages 140–149, 1998.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[8] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure
distributed storage and retrieval. Theor. Comput. Sci., 243(1-
2):363–389, 2000.

[9] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical Report
TR94-1425, Cornell University, Department of Computer
Science, May 1994.

[10] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive public key and signature systems.
In Proceedings of the 4th ACM Conference on Computer
and Communications Security, pages 100–110. ACM Press,
1997.

[11] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage.
In Proceedings of the 15th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 339–352.
Springer-Verlag, 1995.

[12] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[13] M. A. Marsh and F. B. Schneider. CODEX: A robust and
secure secret distribution system. IEEE Transactions on
Dependable and Secure Computing, 1(1):34–47, January–
March 2004.

[14] R. Ostrovsky and M. Yung. How to withstand mobile virus
attacks (extended abstract). In Proceedings of the tenth an-
nual ACM symposium on Principles of distributed comput-
ing, pages 51–59. ACM Press, 1991.

[15] D. P. Siewiorek and R. S. Swarz. Reliable Computer Sys-
tems: Design and Evaluation (2nd Edition). Digital Press,
1992.

[16] P. Verı́ssimo. Uncertainty and predictability: Can they be
reconciled? In Future Directions in Distributed Computing,
volume 2584 of Lecture Notes in Computer Science, pages
108–113. Springer-Verlag, 2003.

[17] P. Verı́ssimo and A. Casimiro. The Timely Computing
Base model and architecture. IEEE Transactions on Com-
puters, 51(8):916–930, Aug. 2002. Preliminary version as
DI/FCUL Technical Report 99–2.

[18] P. Verı́ssimo, N. F. Neves, C. Cachin, J. A. Poritz, D. Powell,
Y. Deswarte, R. J. Stroud, and I. S. Welch. Intrusion-tolerant
middleware: the MAFTIA approach. DI/FCUL TR 04–14,
Department of Informatics, University of Lisbon, November
2004.

[19] P. Verı́ssimo and L. Rodrigues. Distributed Systems for Sys-
tem Architects. Kluwer Academic Publishers, 2001.

[20] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure
distributed on-line certification authority. ACM Transactions
on Computer Systems, 20(4):329–368, Nov. 2002.

[21] L. Zhou, F. B. Schneider, and R. van Renesse. Proactive
secret sharing in asynchronous systems. Technical Report
TR 2002-1877, Cornell University, New York, Oct. 2002.


