

Improving TCP Performance for Multihop Wireless Networks*

Sherif M. ElRakabawy, Christoph Lindemann
University of Dortmund

Department of Computer Science
August-Schmidt-Str. 12

44227 Dortmund Germany
http://mobicom.cs.uni-dortmund.de/

Mary K. Vernon
University of Wisconsin - Madison
Department of Computer Sciences

1210 West Dayton Street
Madison, WI 53706

http://www.cs.wisc.edu/~vernon/

Abstract

In this paper, we present a comprehensive performance
evaluation of TCP NewReno and TCP Vegas with and
without ACK thinning for static multihop wireless IEEE
802.11 networks. Opposed to previous studies, we
consider not only IEEE 802.11 operating in ad hoc mode
with 2 Mbit/s bandwidth, but also with 5.5 Mbit/s and 11
Mbit/s bandwidths. Simulation results using ns-2 show
that TCP Vegas achieves between 15% and 83% more
goodput and between 57% and 99% fewer packet
retransmissions than TCP NewReno. Considering
fairness among multiple TCP flows, we show that using
TCP Vegas results in between 21% and 95% fairness
improvement compared to TCP NewReno. The reduced
amount of packet retransmissions of TCP Vegas also
leads to significant savings of energy consumption. The
paper gives insight on the particular reasons for such
performance advantages of TCP Vegas in comparison to
TCP NewReno.

1 Introduction
Numerous mobile applications for ad hoc networked

PDAs and laptops over IEEE 802.11 wireless technology
require a reliable transport protocol like TCP. Such
multihop wireless networks possess several properties,
which are different to the wired Internet for which widely
deployed TCP implementations like TCP Reno and TCP
NewReno have been optimized. In particular, the
wireless channel is a scarce resource shared among nodes
within their radio range. Thus, TCP segments may not
only be lost due to buffer overflow, but also due to link-
layer contention caused by hidden terminals [5]. A
hidden terminal is a potential sending node in the
receiver’s neighborhood, which cannot detect the sender
and may disrupt an ongoing transmission of a TCP
segment. In fact, as mentioned in [5] and further verified
by our simulation, for multihop wireless networks using
IEEE 802.11 most losses experienced by TCP are due to
packet drops at the link layer incurred by hidden terminal
effects and not due to buffer overflow.

* The research in this paper was partially supported by the German
Research Council (DFG) under Grant Li-645/12-2 and by the U.S.
National Science Foundation under Grant ANI-0117810.

TCP Vegas was introduced by Brakmo et al. [3] as an
alternative TCP variant with innovative features for
congestion control and packet retransmission. Opposed to
the widely deployed transport protocol TCP NewReno,
TCP Vegas tries to sense incipient congestion by
monitoring the current throughput. It has been shown that
for the Internet, TCP Vegas achieves considerably higher
throughput and fewer losses than TCP Reno [3], [10].
However, little work has been done to investigate the
performance, fairness, and energy efficiency of TCP
Vegas in multi-hop wireless networks over IEEE 802.11.

Recently, commercial products based on the IEEE
802.11g standard have become available providing
bandwidths up to 108 Mbit/s, [8]. As a consequence,
future ad hoc networked PDAs and laptops over IEEE
802.11 wireless technology may well operate with
bandwidths higher than 2 Mbit/s. Thus, opposed to
previous studies [5], [14], we consider not only IEEE
802.11 wireless network technology operating in ad hoc
mode with 2 Mbit/s bandwidth, but also with 5.5 Mbit/s
and with 11 Mbit/s bandwidth.

In this paper, we present a comprehensive
performance evaluation of TCP NewReno and TCP
Vegas for static multihop wireless IEEE 802.11
networks. We consider an h-hop chain without cross
traffic, a grid topology with six competing flows and a
random topology with ten concurrent flows, over IEEE
802.11 wireless network technology. To get intuition on
the optimum achievable goodput over an IEEE 802.11
network with a given bandwidth, we consider an
optimally paced UDP protocol, which exploits
knowledge of the optimal packet transmission rate in a
chain topology. Simulation results obtained by ns-2 [4]
show that TCP Vegas clearly outperforms TCP NewReno
in static multihop wireless networks. In fact, TCP Vegas
achieves between 15% and 83% more goodput and
between 57% and 99% fewer packet retransmissions than
TCP NewReno. Furthermore, the more conservative
window control of TCP Vegas yields between 21% and
95% better fairness than TCP NewReno in multi-flow
environments. The reduced amount of packet
retransmissions of TCP Vegas also results in significant
savings of energy consumption. We further show that
thinning TCP acknowledgements, recently proposed for
TCP NewReno over IEEE 802.11 [1], improves both

fairness and goodput of TCP Vegas and TCP NewReno
for increasing bandwidth, letting TCP Vegas with ACK
thinning achieve the best overall results among all
examined TCP variants.

The remainder of this paper is organized as follows.
Section 2 summarizes related work on TCP for multihop
wireless networks. In Section 3, we recall the congestion
control algorithm of TCP Vegas as well as thinning
acknowledgements for improving TCP performance. A
comprehensive performance study of TCP Vegas versus
TCP NewReno with and without thinning
acknowledgements is presented in Section 4. Finally,
concluding remarks are given.
2 Related Work

Several efforts for improving the performance of TCP
in mobile ad hoc networks based on IEEE 802.11
technology have recently been reported. Fu et al. [5]
pointed out the hidden terminal problem in such
networks and proposed two enhancements: adaptive
pacing on the link-layer and link-layer RED. Using
simulation with ns-2 [4], they showed that these link-
layer enhancements improve throughput by 5% to 30%.
They considered TCP NewReno over IEEE 802.11 with
2 Mbit/s bandwidth. Furthermore, they commented that
TCP NewReno achieves better performance than TCP
Vegas for an h-hop chain topology with h ≥ 9. We are
presenting a comprehensive performance study of TCP
Vegas versus TCP NewReno. Consistent with [5], we
observe that for the h-hop chain the optimum TCP
window size is given by h/4. Opposed to [5], our
simulation results evidently show that TCP Vegas with
parameters α = β = 2 outperforms TCP NewReno in
static multihop wireless networks.

Altman and Jiménez [1] proposed an adaptive scheme
for delaying TCP acknowledgements (subsequently
denoted as ACK thinning) in order to improve TCP
throughput in multihop wireless networks. They also
considered TCP NewReno over IEEE 802.11 with 2
Mbit/s bandwidth. Using simulation with ns-2, they
showed that for an h-hop chain, ACK thinning yields
around 50% more throughput. Building upon their
results, we are also considering ACK thinning, though,
not only for TCP NewReno, but also for TCP Vegas.
Beyond [1], [5], we are comparing TCP NewReno and
TCP Vegas with and without ACK thinning against a
paced UDP in order to get intuition how an optimum
transport protocol over IEEE 802.11 may perform.
Furthermore, we are not only considering 2 Mbit/s
bandwidth, but also 5.5 Mbit/s and 11 Mbit/s bandwidths.

In [15], Saadawi and Xu investigated the performance
of TCP Vegas in multihop wireless networks among four
further TCP variants, reporting 15% to 20% more
goodput for TCP Vegas. However, the results of the
study were based on a chain topology with a maximum
of 7 hops and a single TCP flow. Opposed to [15], we
investigate the performance of TCP Vegas in more
complex, multi-flow environments while regarding a
further key performance aspect, namely TCP fairness.
Moreover, using simulation, we determine the best values

for the Vegas specific parameters α and β in order to
achieve the best performance for TCP Vegas. Opposed to
[15], our simulation study shows that TCP Vegas
achieves up to 83% more goodput than TCP NewReno.

Several authors introduced TCP enhancements for
coping with mobility in ad hoc wireless networks over
IEEE 802.11. Holland and Vaidya [7] introduced explicit
link failure notification (ELFN) as a feedback mechanism
from the network in order to help TCP to distinguish
between congestion losses and losses induced by link
failures due to mobility. To help TCP coping with
mobility, Wang and Zhang [13] proposed detection and
out-of-order response (DOOR) as a new way to make
TCP adapt to frequent route changes without relaying on
feedback from the network. We focus on TCP
performance in static wireless networks instead, though,
our results may well be utilized together with the findings
of either [7] or [13] in order to optimize TCP
performance in mobile ad hoc networks based on IEEE
802.11.

Numerous performance studies of TCP Vegas have
been reported for the Internet e.g., [3], [10]. Furthermore,
several analytical performance models for TCP Vegas
have been introduced e.g., [10], [12]. Our simulation
study considers multihop IEEE 802.11 wireless networks
possessing substantially different properties than the
wired Internet, though, confirms the result that TCP
Vegas outperforms TCP NewReno both in terms of
goodput and percentage of packet losses. To get more
intuition on the performance of TCP Vegas with and
without ACK thinning over IEEE 802.11 multihop
wireless networks, it will be helpful to extend one of
these analytical performance models.

3 Background
3.1 TCP Vegas

 We assume that the reader is familiar with basic
mechanisms of TCP such as slow start and congestion
avoidance algorithms, the two methods for loss detection:
duplicate ACKs and timeouts, etc. Currently, Reno (and
NewReno) constitute the most widely known and
deployed congestion control algorithm for TCP. While
TCP NewReno has proven to be well suited for the
Internet, TCP NewReno incorporates a quite aggressive
method for predicting the available bandwidth by
provoking packet losses. TCP Vegas constitute an
alternative TCP variant with innovative features for
congestion control and packet retransmission. A source
in TCP Vegas anticipates the onset of congestion by
monitoring the difference between the throughput it is
expecting to see and the actually realizing throughput.
Compared to TCP NewReno, TCP Vegas includes a
modified retransmission strategy as well as new methods
for congestion detection during slow start and congestion
avoidance.

To keep the paper self-contained, the following
outlines the main innovation of TCP Vegas with respect
to NewReno. The congestion control mechanism of TCP
NewReno uses packet loss as indication of congestion.

Table 1: Base parameter setting for TCP NewReno
and TCP Vegas

Variable Meaning Value

Wmax
Maximum window advertised by
the receiver Wmax = 64

Winit
Initial window used in slow start
and after a timeout Winit = 1

α
Vegas throughput threshold
measured in packets α = 2

γ
Vegas thresholds measured for
exiting slow start γ = α

Thus, TCP NewReno cannot detect the incipient signs

of network congestion before losses occur and, thus,
cannot prevent losses. TCP NewReno constitutes a
reactive protocol, as it requires losses to determine the
available bandwidth of the connection. Opposed to that,
TCP Vegas tries to proactively detect congestion in its
incipient stages, and subsequently reduces the TCP
window in an attempt to prevent packet loss. To detect
congestion, once every round trip time (RTT), TCP
Vegas utilizes the current window size (W), the most
recent RTT, and the minimum RTT observed so far
(baseRTT) for computing the difference between the
expected throughput, given by W/baseRTT and the actual
throughput, estimated by W/RTT. That is, [3], [12]:

()diff W baseRTT W RTT baseRTT= −
The goal of the TCP Vegas congestion avoidance

algorithm lies in keeping diff between specific lower and
upper thresholds, denoted by α and β. Throughout this
paper, we set α = β because it has been shown that this
parameter setting improves fairness [6]. Thus, once every
RTT while not in slow start mode, TCP Vegas adjusts the
window size:

1

1

W if diff
W W if diff

W if diff

α
α
α

+ <⎧
⎪= =⎨
⎪ − >⎩

1

 Furthermore, TCP Vegas contains a more
conservative slow start behavior as TCP NewReno as
well as four innovative mechanisms for congestion
recovery. Due to space limitations, we omit their
descriptions and refer to [3] and [10]. Table 1
summarizes the parameters of TCP NewReno and Vegas
considered in the simulation study presented in Section 4.
3.2 Thinning the ACK Stream in TCP

In this section, we briefly describe the dynamic ACK
thinning approach introduced in [1], which aims to
decrease contention on the MAC layer by thinning the
ACK stream that competes with the TCP packet flow.
Dynamic ACK thinning operates as follows: A parameter
d defines the number of packets received by the TCP sink
before an acknowledgment is generated. This parameter
is set dynamically according to the sequence numbers of
the TCP packets received and increases gradually from 1
to 4 using three defined thresholds S1, S2 and S3.
Specifically, for a received TCP packet with a sequence

• •
1 Note that this case rarely occurs, since diff takes positive real values
whereas α is a natural number.

number n, d = 1 if n ≤ S1, d = 2 if S1 ≤ n < S2, d = 3
if S2 ≤ n < S3 and d = 4 if n ≥ S3. According to [1],
appropriate values for the thresholds are S1 = 2, S2 = 5
and S3 = 9. The reason for setting d dynamically
according to the sequence numbers of the received
packets is to prevent the TCP sink from experiencing a
lack of TCP packets and freezing for a timeout of 100ms
as a default value. This would be the case if the
parameter d becomes larger than the current TCP
window size. Since d is only being set dynamically at the
beginning of the TCP connection, such case cannot be
prevented if the TCP window size decreases below d
during the remainder of the TCP connection, for instance
at the initial phase of each time TCP enters slow start.
4 Comparative Performance Study
4.1 The Simulation Environment and the

considered Performance Measures
To evaluate the performance of TCP NewReno and

TCP Vegas with and without ACK thinning as well as
paced UDP over IEEE 802.11 wireless networks, we
conduct simulation experiments using the network
simulator ns-2 [4]. We employ the implementations of
TCP NewReno and TCP Vegas2 as well as the MAC
layer according to the IEEE 802.11 standard for wireless
communication provided by ns-2. Consistent with the
case in reality where the transmission range of a node
would be smaller than its interference range, all MAC
layer parameters of IEEE 802.11 are configured to
provide a transmission range of 250m and a carrier
sensing range as well as an interference range of 550m.
The transmission of each data packet on the MAC layer
is preceded by a Request-To-Send/Clear-To-Send
(RTS/CTS) handshake. We consider not only bandwidths
of 2 Mbit/s, but also 5.5 and 11 Mbit/s. The higher
bandwidths are already provided by the standard IEEE
802.11b and may well be utilized in ad hoc mode in the
new standard IEEE 802.11g. Furthermore, we developed
ns-2 transport agents implementing the ACK thinning
mechanism and the paced UDP tailored to the considered
scenarios. We assume that all TCP packets are of size
1460 bytes. For all nodes, we assume a buffer size of 50
packets. We use AODV [11] as an ad hoc routing
protocol. Through our simulations we show that the
behavior of AODV has a significant impact on the
performance of TCP dependent on the intensity of the
existing hidden terminal effects.

In all experiments, we conduct steady-state
simulation starting with an initially idle system. In each
run, we simulate continues FTP flows until 110.000
packets are successfully transmitted and split the
simulation output in batches of size 10.000 packets. The
first batch is discarded as initial transient. The considered
performance measures are derived from the remaining 10
batches with 95% confidence intervals by the batch
means method. For almost all data points, the width of
the confidence intervals is below 5% of the measure’s

2 As already noted in [12], the TCP Vegas implementation provided by
ns-2 contains several subtle bugs, which we fixed.

value. As performance measure, we consider the goodput
given by the number of bytes successfully transmitted
divided by the length of each batch, the average number
of packet retransmissions on the transport layer per flow,
the average window size per flow, and the overall link
layer dropping probability per flow. In the grid and
random scenarios, we consider the measures aggregate
goodput given by the sum of the goodput of individual
flows as well as the individual goodput achieved by each
flow.

As in [5], we consider Jain’s fairness index given by:
2

2

1 1

n n

i i
i i

x n x
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ ,

where n is the number of flows and xi denotes the
goodput of the i-th flow.

Consistent with [5], in the simulation experiments
conducted, all packet losses are due to link layer
contention caused by hidden terminal effects. We do not
observe buffer overflows in any performance experiment.
Opposed to [5], our simulation study evidently shows
that TCP Vegas with appropriately chosen parameters
clearly outperforms TCP NewReno both for a short and a
large number of hops.
4.2 Optimally Paced UDP over IEEE 802.11

In order to get intuition on the optimum achievable
goodput over an IEEE 802.11 network for the chain
topology and a given bandwidth, we consider an
optimally paced UDP protocol as a transport agent. To
define the packet transmission rate, we use a constant bit
rate (CBR) traffic generator while setting the UDP packet
size to 1460 bytes, equal to the TCP packet size we use
through all of our simulations. Subsequently, we denote
this transport protocols as paced UDP. Paced UDP shed
also some light on the impact of link layer contention of
IEEE 802.11 to a transport protocol for the chain
topology.

To determine the optimum packet transmission rate
for which paced UDP achieves the best channel
utilization, we determine the minimal link layer
propagation delay for 4 hops in a h-hop chain topology
with a single flow as shown in Figure 1 of Section 4.3.
That is, we calculate the 4-hop propagation delay for the
first packet assuming a zero queuing delay. In order to
keep the hidden terminal effects minimal, node i may
only transmit packet pj if packet pj-1 has been already
forwarded by node i+3, where i = 1,2,..,h-4. Table 2
shows the 4-hop propagation delay for different
bandwidths. Subsequently, we take the 4-hop
propagation delay as an initial value for the time t
between two successive packet transmissions for
determining the optimum packet transmission rate. In an
off-line simulation experiment, we increase t gradually
until we observe the maximum goodput. No TCP variant
can achieve as much goodput as paced UDP for the
following two reasons: (1) the entire traffic and MAC
overhead caused by the ACK flow is neglected in paced
UDP; (2) paced UDP transmits packets with the optimal

Table 2: 4-hop propagation delay for different
bandwidths

2 Mbit/s 5 Mbit/s 11 Mbit/s
29 ms 12 ms 8 ms

rate for each hop number, while TCP is window-based
and has to probe for the available bandwidth.
Furthermore, in paced UDP, we neglect packet
retransmissions and determine the actual number of
packets received by the UDP sink in terms of goodput.
4.3 TCP Performance for h-hop Chain with a

Single Flow
We consider an equally spaced chain comprising of

h+1 nodes (h hops) with a single flow. Each node is 200
meters apart from each of its adjacent nodes. TCP
packets travel along the chain from the leftmost node
(i.e., the sender) to the rightmost node (i.e., the receiver).
Figure 1 shows the h-hop chain topology with a single
FTP flow without cross traffic. As observed in [5],
successive packet transmissions of the single flow
interfere with each other as they move along the chain. In
fact, a potential sending node i constitutes a hidden
terminal to an ongoing transmission from node (i-3) to
(i-2) where i = 4,5,..,h+1. Node i cannot sense the
ongoing transmission from (i-3) to (i-2) and thus starts
transmitting, causing collisions with the ongoing
transmission. Such hidden terminal effects result from
the fact that the interference range of each node is much
larger than its transmission range, and since the IEEE
802.11 protocol cannot achieve global packet scheduling
between all nodes, such effects are inevitable with the
standard IEEE 802.11 specifications. In the first
experiment, we consider TCP Vegas with different
values of the parameter α. The goal of this study lies in
determining an optimal value of α for TCP Vegas
without ACK thinning. Figures 2 to 4 show performance
curves for TCP Vegas with α = 2, 3, 4. In Figure 2, we
observe that TCP Vegas with α = 2 achieves the highest
goodput for a chain length between 4 and 20 hops. For
longer chains, the goodput of TCP is almost equal for all
α values. Figure 3 shows that the average TCP window
size increases for increasing α. Thus, TCP Vegas with α
= 2 has the smallest average window size. Figure 4 plots
the goodput in a 7-hop chain for different bandwidths.
We observe that for 2 Mbit/s bandwidth TCP Vegas with
α = 2 achieves the highest goodput. For 5.5 Mbit/s
bandwidth TCP Vegas with α = 2 yields only slightly
higher goodput than the two other variants whereas for
11 Mbit/s bandwidth, all three TCP variants yield an
equal goodput. Note that we observe a sub-linear growth
of goodput with increasing bandwidth. This is because
according to the IEEE 802.11 specifications, RTS, CTS
and ACK control packets are sent at 1 Mbit/s regardless
of the bandwidth used for data packets to achieve
compatibility between different IEEE 802.11 versions.
Thus, the relative overhead for sending control packets
on the MAC layer increases with increasing data rate.

Fig. 1: 7-hop chain topology with a single flow

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas α = 2
Vegas α = 3
Vegas α = 4

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas α = 2
Vegas α = 3
Vegas α = 4

Fig 2: h-hop chain with 2 Mbit/s: TCP Vegas goodput

vs. number of hops

0

5

10

15

20

2 4 8 16 32 64

A
ve

ra
ge

 W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Number of Hops

Vegas α = 2
Vegas α = 3
Vegas α = 4

0

5

10

15

20

2 4 8 16 32 64

A
ve

ra
ge

 W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Number of Hops

Vegas α = 2
Vegas α = 3
Vegas α = 4

Fig 3: h-hop chain with 2 Mbit/s: TCP Vegas average

window size vs. number of hops

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas α = 2
Vegas α = 3
Vegas α = 4

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas α = 2
Vegas α = 3
Vegas α = 4

Fig 4: 7-hop chain: TCP Vegas goodput for different

bandwidths

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas α = 2
Vegas α = 2 ACK Thinning
Vegas α = 3 ACK Thinning
Vegas α = 4 ACK Thinning

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas α = 2
Vegas α = 2 ACK Thinning
Vegas α = 3 ACK Thinning
Vegas α = 4 ACK Thinning

Fig 5: h-hop chain with 2 Mbit/s: TCP Vegas with ACK

thinning: Goodput vs. number of hops

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas
NewReno

NewReno ACK Thinning
Paced UDP

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

G
oo

dp
ut

[K
bi

t/s
]

Number of Hops

Vegas
NewReno

NewReno ACK Thinning
Paced UDP

Fig 6: h-hop chain with 2 Mbit/s: Goodput vs. number

of hops

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 4 8 16 32 64

A
ve

ra
ge

 N
um

be
r o

f R
et

ra
ns

m
is

si
on

s

Number of Hops

Vegas
NewReno

NewReno ACK Thinning

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 4 8 16 32 64

A
ve

ra
ge

 N
um

be
r o

f R
et

ra
ns

m
is

si
on

s

Number of Hops

Vegas
NewReno

NewReno ACK Thinning

Fig 7: h-hop chain with 2 Mbit/s: Retransmissions vs.

number of hops

0

5

10

15

20

2 4 8 16 32 64

Av
er

ag
e

W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Number of Hops

Vegas
NewReno

NewReno ACK Thinning

0

5

10

15

20

2 4 8 16 32 64

Av
er

ag
e

W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Number of Hops

Vegas
NewReno

NewReno ACK Thinning

Fig 8: h-hop chain with 2 Mbit/s: Window size vs.

number of hops
300

0

50

100

150

200

250

2 4 8 16 32 64

N
um

be
ro

ff
al

se
R

ou
te

Fa
ilu

re
s

Number of Hops

Vegas
NewReno

NewReno ACK Thinning
Paced UDP

300

0

50

100

150

200

250

2 4 8 16 32 64

N
um

be
ro

ff
al

se
R

ou
te

Fa
ilu

re
s

Number of Hops

Vegas
NewReno

NewReno ACK Thinning
Paced UDP

Fig 9: h-hop chain with 2 Mbit/s: Number of false

route failures vs. number of hops

In the second experiment, we consider TCP Vegas
with ACK thinning for different values of the parameter
α. Again, the goal of this study lies in determining the
optimal value of the parameter α. Figure 5 shows the
goodput of TCP Vegas without ACK thinning with α = 2
as well as for TCP Vegas with ACK thinning
for different values of α. We observe that except for h =
4, TCP Vegas with α = 2 performs slightly better than all
other variants along all hops. Specifically, we notice that
TCP Vegas with α = 2 and ACK thinning performs
slightly worse than TCP Vegas with α = 2 for h > 6.

The reason for this performance difference is that the
TCP window for TCP Vegas with α = 2 and ACK
thinning often decreases to 3, leading to a lack of
acknowledgments at the TCP receiver which only
acknowledges every fourth TCP packet for all packets
with a sequence number greater than 8, as described in
Section 3.2.

From the previous two experiments, we conclude that
TCP Vegas with α = 2 performs best for most number of
hops and a bandwidth of 2 Mbit/s. Although increasing
the bandwidth improves the performance of TCP Vegas
with larger values of α due to the decreased contention
on the MAC layer, TCP Vegas with α = 2 remains the
best choice.

In the third experiment, we consider TCP NewReno,
TCP Vegas, TCP NewReno with ACK thinning, and
paced UDP for the h-hop chain with varying hop count.
As measures, we consider goodput, average number of
retransmissions, average window size of the flow and
number of false route failures as a function of chain
length. The bandwidth is kept fixed to 2 Mbit/s. Figures 6
to 9 plot performance curves derived from this
experiment. In Figure 6, we observe that TCP Vegas has
up to 83% higher goodput than TCP NewReno (i.e.,
about 75% for 8 hops). Furthermore, for most number of
hops, even TCP NewReno with ACK thinning performs
slightly worse than TCP Vegas without ACK thinning.
For both TCP Vegas and TCP NewReno with ACK
thinning, the goodput decreases much slower with
increasing number of hops than for TCP NewReno,
indicating that both TCP Vegas and TCP NewReno with
ACK thinning are significantly less sensitive to hidden
terminal effects. From Figure 6, we also conclude that the
goodput of TCP Vegas lies between 23% for 4 hops and
52% for 32 hops below the optimal goodput achieved by
paced UDP, whereas the goodput of TCP NewReno lies
between 28% for 4 hops and 63% for 32 hops below the
goodput of paced UDP. Such big gap between both TCP
variants and paced UDP outlines the significant impact of
link layer interactions on the performance of TCP.

Figure 7 shows that TCP Vegas causes up to 99% less
retransmissions than TCP NewReno. In fact, the number
of retransmissions stays very low for TCP Vegas for any
number of hops. Note that a reduction of retransmitted
packets directly translates in a reduction of power
consumption, which is a critical factor for resource
constrained mobile devices. Opposed to that, the average
number of retransmissions of TCP NewReno almost

doubles from 6 to 8 hops reaching its peak and,
subsequently, decreases gradually. This results from the
fact that in a chain of seven and more hops, two hidden
terminals may simultaneously disrupt the transmission of
a single node, as it is the case for node 4 in a 7-hop chain.
In contrast, a chain of up to six hops can produce at most
a single hidden terminal effect for a single node. For TCP
NewReno with ACK thinning, the average number of
retransmissions is considerably lower than without ACK
thinning. This is because ACK thinning results for TCP
NewReno a smaller average window size as observed in
Figure 8. Recall that during the slow start phase, TCP
NewReno increases the window size dependent on the
receipt of acknowledgments, specifically by one packet
for each received ACK. In our simulations we have
noticed that for h ≥ 7, TCP NewReno operates during
more than 40% of the connection in slow start. Since
ACK thinning reduces the number of ACKs, this results
in a less aggressive growth in the window size for TCP
NewReno, and, thus, a smaller average window size.
Figure 8 also shows that the average window size of TCP
Vegas lies in the range 3.5 to 5.5 for increasing number
of hops between 4 and 40, providing an explanation for
the low number of retransmissions investigated in Figure
7. Comparing the average window size for longer chains
to the optimum of h/4 [5], we find that TCP Vegas is
close to the optimum for 32 hops, while it keeps the
window size too small for longer chains. Recall that the
parameter α determines the window size.

In order to get further insight in the impact of routing
on the acquired results, we investigate the influence of
false route failures on the performance of the examined
TCP variants. False route failures result in case the link
layer fails to deliver a packet to the next hop, either after
seven unsuccessful transmissions for RTS control
packets or after four unsuccessful transmissions for data
packets. After the link layer notifies the routing layer
about the transmission failure, the routing layer assumes
that the route to the next hop is broken and thus deletes it
from its routing table before broadcasting a route error
message. In most such cases, the TCP sender times out
and tries to retransmit the lost packet, initiating a new
route discovery procedure, which causes additional
traffic overhead. Figure 9 shows the number of false
route failures for varying hop number. Consistent with
the previous results, we observe that TCP NewReno
causes significantly more false route failures than TCP
Vegas, specifically 93% to 100%. That indicates that the
larger average window size of TCP NewReno results in
more packet drops on the link layer and thus more false
route failures. For TCP NewReno with ACK thinning,
we notice that it causes no false route failures for h < 8,
then the curve increases sharply at h = 8. This effect is
similar to what we have observed in Figure 7 for TCP
NewReno at h = 8 and is due to the same reason that we
have already mentioned at that point. Generally, all TCP
variants, except for TCP NewReno with ACK Thinning
at h < 8, experience less false route failures with
increasing hop number. This is because the link layer
contention decreases with increasing hop number since

packets in flight distribute more evenly among the nodes
[5], leading to less packet drops and thus, to less false
route failures. We conclude from Figures 6 to 9 that both
TCP NewReno with ACK thinning and TCP Vegas are
protocols of choice for improving TCP goodput in
multihop chains and a bandwidth of 2 Mbit/s.
Furthermore, in environments with limited power
resources, TCP Vegas gains advantages over TCP
NewReno with ACK thinning, since it reduces power
consumption by avoiding unnecessary packet
retransmissions and false route failures by using a
smaller average TCP window size.

In the fourth experiment, we consider TCP NewReno,
TCP Vegas, TCP NewReno with ACK thinning, TCP
Vegas with ACK thinning, and paced UDP for a chain
with 7 hops. We consider bandwidths of 2, 5.5, and 11
Mbit/s. Furthermore, we consider TCP NewReno, for
which we bound the TCP window size artificially as
proposed in [5]. The maximum window allowed,
MaxWin, is optimized for a chain topology with 7 hops.
Consistent with [5], we found MaxWin = 3 for all
bandwidths, i.e., with MaxWin = 3, TCP NewReno
reaches the highest goodput for h = 7. Again, goodput
increases sub-linearly with increasing bandwidth. To
determine the optimal transmission rate for paced UDP,
Figure 10 shows the goodput of paced UDP for different
times t between two successive packet transmissions. The
experiments show that paced UDP achieves optimal
goodput for topt = 35.7ms. Consistent with [9], we find
that goodput drops rapidly when t gets smaller than topt,
while it degrades graciously when t exceeds topt. That is,
for t < topt the transmission rate is too high causing
increased link layer contention due to hidden terminal
effects. For t > topt, link layer contention is minimal, but
the rate decreases linearly causing such gracious goodput
decrease. We conclude from Figure 10 that the optimal
pacing rate is extremely sensitive to network conditions.
Thus, each effective rate-based transport protocol will
require a low-latency algorithm for quickly adapting the
transmission rate to changing network conditions.

As primary performance measures, we consider the
goodput, which is shown for different bandwidths in
Figure 11. To get deeper insight in how goodput is
achieved by the individual TCP variants, we furthermore
investigate the average number of retransmissions, the
average window size of the flow as well as the overall
link layer dropping probability (averaged over all
intermediate node), which are shown in Figures 12 to 14.
Recall that the bars for 2 Mbit/s exactly represent the
results for the 7-hop chain in Figures 6 to 8. Extending
the findings of Figures 6 to 8, we find that applying ACK
thinning in TCP Vegas does not improve goodput at 2
Mbit/s, but reduces drops on the link layer, as shown in
Figure 14. However, reduction of link layer drops does
not translate in increased goodput, since link layer drops
are not visible to TCP Vegas on the transport layer, as
shown in Figure 12. This indicates that the load on the
link layer is moderate, so that all packets can be sent after
a few retries. In fact, applying ACK thinning in Vegas
will even result in an increased number of packet

retransmissions on the transport layer, since a missing
ACK may result in the retransmission of multiple
packets. With increasing network bandwidth, packet

0

50

100

150

200

250

300

350

400

28 30 32 34 36 38 40 42 44

G
oo

dp
ut

[K
bi

t/s
]

Time between successive packet transmissions [ms]

0

50

100

150

200

250

300

350

400

28 30 32 34 36 38 40 42 44

G
oo

dp
ut

[K
bi

t/s
]

Time between successive packet transmissions [ms]
Fig 10: 7-hop-chain with 2 Mbit/s: Goodput vs.

packet inter-sending time

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

Fig 11: 7-hop chain: Goodput for different

bandwidths

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

115.52

Av
er

ag
e

N
um

be
r o

f R
et

ra
ns

m
is

si
on

s

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

115.52

Av
er

ag
e

N
um

be
r o

f R
et

ra
ns

m
is

si
on

s

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window

Fig 12: 7-hop chain: Retransmissions for different

bandwidths

0

5

10

15

20

115.52

A
ve

ra
ge

 W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window

0

5

10

15

20

115.52

A
ve

ra
ge

 W
in

do
w

 S
iz

e
[#

 p
ac

ke
ts

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window

Fig 13: 7-hop chain: Window size for different

bandwidths

0

0.02

0.04

0.06

0.08

0.1

115.52

O
ve

ra
ll

Pa
ck

et
 D

ro
pp

in
g

P
ro

ba
bi

lit
y

at
 L

in
k

La
ye

r

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

0

0.02

0.04

0.06

0.08

0.1

115.52

O
ve

ra
ll

Pa
ck

et
 D

ro
pp

in
g

P
ro

ba
bi

lit
y

at
 L

in
k

La
ye

r

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

 Fig 14: 7-hop chain: Packet dropping probability for

different bandwidths
retransmissions on the transport and packet drop
probability on the link layer decrease, since data packets
can be transmitted in shorter time, reducing the
probability for packet collisions. Furthermore, the
improvement achieved by ACK thinning increases for
both TCP NewReno and TCP Vegas, since fewer
collisions of data packets with ACK packets enable better
utilization of available bandwidth. Comparing TCP
Vegas to the other TCP variants, we find that it performs
significantly better than TCP NewReno, and as good as
TCP NewReno with optimal window for all bandwidths.
Nevertheless, TCP Vegas is outperformed by both TCP
Vegas with ACK thinning and TCP NewReno with ACK
thinning for increasing bandwidth availability, with a gap
of about 20% in goodput for 11 Mbit/s. Comparing both
TCP Vegas with ACK thinning and TCP NewReno with
ACK thinning to the optimal goodput achieved by paced
UDP, we find that both are close to the optimum with a
goodput gap of at most 32% at 2 Mbit/s, and only 23% at
11 Mbit/s. Considering power consumption, we find that
both TCP Vegas and TCP Vegas with ACK thinning are
superior to the TCP NewReno variants, since they reduce
packet retransmissions on the transport layer.
Furthermore, TCP Vegas with ACK thinning has the
least link layer drops among all variants. We conclude
from Figures 11 to 14 that both TCP Vegas with ACK
thinning and TCP NewReno with ACK thinning are the
protocols of choice for improving TCP goodput in a
chain scenario. In environments with limited energy,
TCP Vegas with ACK thinning gains advantages over
TCP NewReno with ACK thinning, since it reduces
power consumption by avoiding unnecessary packet
retransmissions on the one hand and conserves the shared
radio resources by using a smaller TCP window size on
the other hand.
4.4 TCP Performance in more complex

Topologies with several concurrent Flows
In this section, we evaluate the examined TCP

variants in more complex scenarios with multiple
concurrent flows.
4.4.1 Grid Topology

Figure 15 shows the node distribution and flow
patterns used for the grid simulation. The grid consists of
21 nodes, whereas all horizontally and vertically adjacent
nodes are 200 meters apart. We consider a total of six

competing FTP flows, three horizontal and three vertical.
In such topology, all flows interfere with each other,
increasing contention on the link layer. In this simulation,
we do not only consider the aggregate goodput over all
flows, but also the achieved goodput of each flow as well
as the fairness degree for each of the examined TCP
variants. Figure 16 plots the aggregate goodput of TCP
Vegas and TCP NewReno for different bandwidths, both
with and without ACK thinning. We observe that for 2
Mbit/s, TCP NewReno slightly outperforms TCP Vegas,
whereas for 5.5 and 11 Mbit/s, both variants have almost
equal aggregate goodput. Figure 16 further shows that
applying ACK thinning for TCP Vegas does not yield
any performance improvement for 2 Mbit/s, which is
consistent with the results of the chain simulation.
However, as bandwidth availability increases, the
performance of TCP Vegas with ACK thinning improves
over the performance of TCP Vegas. As for TCP
NewReno with ACK thinning, its goodput also increases
with increasing bandwidth, achieving higher values.
However, as we are regarding a topology with multiple
flows, the fairness factor plays a significant role in
specifying the performance of a TCP variant. Due to the
absence of global scheduling of IEEE 802.11, there exists
a trade-off between the fairness between TCP flows and
the aggregate goodput over all flows. That is, the more
fairness is achieved, the more suffers the aggregate
goodput, since the available bandwidth is not optimally
used due to the increased contention between the TCP
flows. Similar observations regarding such trade-off
between fairness and aggregate goodput were made in
[14]. In order to investigate the fairness of the examined
TCP variants, we consider the goodput of each flow for a
fixed bandwidth of 11 Mbit/s. Observing the results in
Figure 17, we see that while TCP Vegas and TCP
NewReno achieve almost an identical aggregate goodput,
the flows of TCP Vegas achieve more fairness than the
flows of TCP NewReno. Using TCP NewReno, flows

FTP1

FTP3

FTP2

FTP6FTP5FTP4

FTP1

FTP3

FTP2

FTP6FTP5FTP4

Fig 15: 21-node grid topology with 6 competing flows

0

200

400

600

800

1000

1200

1400

1600

115.52

A
gg

re
ga

te
G

oo
dp

ut
[K

bi
t/s

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

0

200

400

600

800

1000

1200

1400

1600

115.52

A
gg

re
ga

te
G

oo
dp

ut
[K

bi
t/s

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

Fig 16: Grid topology: Aggregate goodput for

different bandwiths

0

200

400

600

800

1000

1200

1400

1600

NewReno
ACK Thinning

Vegas
ACK Thinning

NewRenoVegas

G
oo

dp
ut

[K
bi

t/s
]

FTP 1
FTP 2
FTP 3
FTP 4
FTP 5
FTP 6

Aggregate Goodput

0

200

400

600

800

1000

1200

1400

1600

NewReno
ACK Thinning

Vegas
ACK Thinning

NewRenoVegas

G
oo

dp
ut

[K
bi

t/s
]

FTP 1
FTP 2
FTP 3
FTP 4
FTP 5
FTP 6

Aggregate Goodput

Fig 17: Grid topology: Single goodput of each flow
and aggregate goodput over all flows for different

TCP variants at 11 Mbit/s

Table 3: Grid topology: Jain’s fairness index

TCP Vegas TCP NewReno
TCP Vegas w/
ACK Thinning

 TCP NewReno w/
ACK Thinning

2 Mbit/s
0.54

[0.53 : 0.55]
0.32

[0.31 : 0.33]
0.69

[0.68 : 0.70]
0.40

[0.38 : 0.42]

5.5 Mbit/s
0.64

[0.60 : 0.68]
0.43

[0.40 : 0.46]
0.87

[0.84 : 0.90]
0.56

[0.52 : 0.60]

11 Mbit/s
0.73

[0.69 : 0.77]
0.52

[0.48 : 0.56]
0.94

[0.90 : 0.98]
0.63

[0.60 : 0.66]

one and six achieve the highest goodput on cost of the
remaining flows, which basically starve. However, using
TCP Vegas, flows one and six achieve less goodput,
sacrificing more bandwidth for the remaining flows, and
thus achieving more fairness. Regarding TCP NewReno
with ACK thinning and TCP Vegas with ACK thinning,
we observe similar effects. Although TCP NewReno with
ACK thinning outperforms all other variants in terms of
aggregate goodput, it achieves less fairness than TCP
Vegas with ACK thinning. In fact, TCP Vegas with ACK
thinning achieves the best fairness of all variants with
only 10% less aggregate goodput than TCP NewReno
with ACK thinning. Previous studies [14] have reported
up to 42% less aggregate goodput in order to achieve
near-optimal fairness. To formally investigate the
fairness among all six TCP flows, we calculate Jain’s
fairness index for each variant and bandwidth as defined
in Section 4.1. The results are shown in Table 3. Recall
that a fairness index of 1/n indicates worst fairness
among n flows, while a fairness index of 1 indicates
optimal fairness. The values in the table confirm our
previous findings. Furthermore, we notice that not only
ACK thinning improves the fairness of TCP Vegas and
TCP NewReno, but also increasing the bandwidth, since
both reducing the TCP ACKs as well as increasing the
bandwidth result in less contention on the link layer, and
thus less competition between the flows.

Consistent with the results of Section 4.3, we
conclude from Figures 16 and 17 as well as from Table 3
that TCP Vegas with ACK thinning is the protocol of
choice for achieving the best trade-off between aggregate
goodput and fairness. Among all examined variants, TCP
Vegas with ACK thinning achieves best fairness results
and has only 10% less aggregate goodput than TCP
NewReno with ACK thinning.

4.4.2 Random Topology
As a third topology, we consider a random topology

of 120 nodes uniformly distributed on an area A =
2500x1000 m2. We set 10 FTP connections that run
simultaneously, with all FTP sources and destinations
randomly selected. According to [2], all nodes in the
network can communicate with each other over one or
more hops with probability P = 99.9%.

Figure 18 plots the aggregate goodput for the TCP
variants at different bandwidths. Consistent with the
results for the previous topology, we see that TCP Vegas
and TCP NewReno achieve similar goodput for all
bandwidths, with a maximum of 3% more goodput for
TCP Vegas at 11 Mbit/s. Applying ACK thinning for
both TCP Vegas and TCP NewReno also improves the
goodput for increasing bandwidth. Different from the
cases for 2 Mbit/s and 5.5 Mbit/s where TCP NewReno
with ACK thinning slightly outperforms TCP Vegas with
ACK thinning, both variants achieve identical goodput
for 11 Mbit/s. Figure 19 shows the goodput of each flow
as well as the aggregate goodput over all flows for all
examined TCP variants and a bandwidth of 11 Mbit/s.
Compliant with the results for the grid topology, we
observe that by using TCP NewReno, the fourth flow
gets the highest fraction of the available bandwidth on
cost of the other flows, letting flows three and eight
completely starve. Overall, TCP Vegas achieves more
fairness than TCP NewReno, and applying ACK thinning
further improves fairness, letting TCP Vegas with ACK
thinning achieve the best fairness among all variants.
Extending our findings of Figure 17, we observe that

0

100

200

300

400

500

600

115.52

Ag
gr

eg
at

e
G

oo
dp

ut
[K

bi
t/s

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

0

100

200

300

400

500

600

115.52

Ag
gr

eg
at

e
G

oo
dp

ut
[K

bi
t/s

]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

Fig 18: Random topology: Aggregate goodput for

different bandwiths

0

100

200

300

400

500

600

NewReno
ACK Thinning

Vegas
ACK Thinning

NewRenoVegas

G
oo

dp
ut

[K
bi

t/s
]

FTP 1
FTP 2
FTP 3
FTP 4

FTP 5
FTP 6
FTP 7
FTP 8

FTP 9
FTP 10

Aggregate Goodput

0

100

200

300

400

500

600

NewReno
ACK Thinning

Vegas
ACK Thinning

NewRenoVegas

G
oo

dp
ut

[K
bi

t/s
]

FTP 1
FTP 2
FTP 3
FTP 4

FTP 5
FTP 6
FTP 7
FTP 8

FTP 9
FTP 10

Aggregate Goodput

Fig 19: Random topology: Single goodput of each
flow and aggregate goodput over all flows for

different TCP variants at 11 Mbit/s

Table 4: Random topology: Jain’s fairness

index

TCP Vegas TCP NewReno
TCP Vegas w/
ACK Thinning

 TCP NewReno w/
ACK Thinning

2 Mbit/s
0.43

[0.41 : 0.45]
0.22

[0.20 : 0.24]
0.62

[0.60 : 0.64]
0.40

[0.38 : 0.42]

5.5 Mbit/s
0.80

[0.77 : 0.83]
0.68

[0.64 : 0.72]
0.87

[0.85 : 0.89]
0.70

[0.67 : 0.73]

11 Mbit/s
0.87

[0.84 : 0.90]
0.72

[0.70 : 0.74]
0.90

[0.88 : 0.92]
0.74

[0.71 : 0.77]

TCP Vegas with ACK thinning achieves the same
aggregate goodput as TCP NewReno with ACK thinning
in spite of its best fairness results. In this case, TCP
Vegas with ACK thinning achieves the best trade-off
between aggregate goodput and fairness. Equivalent with
the results for the grid topology, Table 4 confirms that
both applying ACK thinning and increasing the
bandwidth availability increases fairness for all variants.
This simulation confirms that TCP Vegas with ACK
thinning is the protocol of choice for all bandwidths and
multi-flow environments. Figure 19 further extends our
findings by showing that TCP Vegas with ACK Thinning
can achieve best fairness results without sacrificing
aggregate goodput in comparison to TCP NewReno with
ACK thinning. From Table 3 and Table 4 we conclude
that TCP Vegas achieves between 21% and 95% more
fairness than TCP NewReno, whereas TCP Vegas with
ACK thinning yields a fairness improvement of 22% to
73% compared to TCP NewReno with ACK thinning.

Conclusions
We showed that in static multihop wireless networks

using IEEE 802.11, TCP Vegas with parameters α = β =
2 clearly outperforms TCP NewReno, which is widely
deployed in wired networks. In fact, TCP Vegas achieves
up to 83% higher goodput and up to 99% less packet
retransmissions. Consistent with [1], we find that ACK
thinning substantially increases the performance for TCP
NewReno for persistent flows over IEEE 802.11 with 2
Mbit/s bandwidth. However, we observe that this
improvement is not due to the reduced number of link-
layer packet collisions triggered by hidden terminal
effects. In fact, the key driver why ACK thinning
improves the performance of TCP NewReno constitutes
the fact that ACK thinning considerably reduces the
average window size and, thus, helps TCP NewReno stay
closer to the optimum window size for multihop wireless
networks. TCP Vegas with appropriately chosen
parameters already keeps its window size close to the
optimum. As a consequence, ACK thinning yields almost
no goodput improvement for TCP Vegas over IEEE
802.11 with 2 Mbit/s bandwidth. For TCP Vegas over
IEEE 802.11 with 5.5 Mbit/s and 11 Mbit/s bandwidths,
ACK thinning yields up to 25% goodput improvement,
because the reduced ACK stream causes better channel
utilization for data packets.

We find that TCP Vegas achieves better fairness than
TCP NewReno and that both applying ACK thinning and
increasing the bandwidth availability yield further
fairness improvement, letting TCP Vegas with ACK
thinning achieve the best fairness results among all

examined variants for all bandwidths, with 24% to 73%
more fairness than TCP NewReno with ACK thinning.

Finally, it is noteworthy that the substantially reduced
amount of packet retransmissions of TCP Vegas and TCP
Vegas with ACK thinning results in significant savings
of energy consumption. Thus, if we consider both
goodput and fairness, the transport protocol of choice for
ad hoc networked PDAs and other mobile devices with
restricted energy resources should be TCP Vegas with
ACK thinning in case of 2, 5.5 and 11 Mbit/s
bandwidths, respectively.
References
[1] E. Altman and T. Jiménez, Novel Delayed ACK

Techniques for Improving TCP Performance in Multihop
Wireless Networks, Proc. Personal Wireless
Communications Conf., Venice Italy, 2003.

[2] C. Bettstetter, On the Minimum Node Degree and
Connectivity of a Wireless Multihop Network, Proc.
ACM MOBIHOC, Lausanne, Switzerland, 2002.

[3] L.S. Brakmo and L.L. Peterson, TCP Vegas: End-to-End
Congestion Avoidance on a Global Internet, IEEE
Journal on Selected Areas in Comm., 13, 1995.

[4] K. Fall and K. Varadhan (Ed.), The ns-2 Manual,
Technical Report, The VINT Project, UC Berkeley, LBL,
and Xerox PARC, 2003.

[5] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla,
The Impact of Multihop Wireless Channel on TCP
Throughput and Loss, Proc. IEEE INFOCOM, San
Francisco CA, 2003.

[6] G. Hasegawa, M. Murata, and H. Miyahara, Fairness and
Stability of Congestion Control Mechanisms, Proc.
GLOBECOM, Rio de Janeiro, Brazil, 1999.

[7] G. Holland and N. Vaidya, Analysis of TCP Performance
over Mobile Ad Hoc Networks, Proc. ACM MOBICOM,
Seattle WA, 1999.

[8] IEEE Standard 802.11g, available at
http://standards.ieee.org/getieee802/802.11.html.

[9] J. Li, C. Blake, D.S. De Couto, H.I. Lee, and R. Morris,
Capacity of Ad Hoc Wireless Networks, Proc. ACM
MOBICOM, Rome, Italy, 2001.

[10] S.H. Low, L.L. Peterson, and L. Wang, Understanding
TCP Vegas: A Duality Model, Proc. ACM
SIGMETRICS/Performance, Cambridge MA, 2001.

[11] C. Perkins, E. Royer, and S. Das, Ad hoc On-Demand
Distance Vector (AODV) Routing, IETF RFC 3561,
2003.

[12] C. Samios and M. Vernon, Modeling the Throughput of
TCP Vegas, Proc. ACM SIGMETRICS, San Diego CA,
2003.

[13] F. Wang and Y. Zhang, Improving TCP Performance
over Mobile Ad-Hoc Networks with Out-of-Order
Detection and Response, Proc. ACM MOBIHOC,
Lausanne, Switzerland, 2002.

[14] K. Xu, M. Gerla, L. Qi and Y. Shu, Enhancing TCP
Fairness in Ad Hoc Wireless Networks using
Neighborhood RED, Proc. ACM MOBICOM, San Diego
CA, 2003.

[15] S. Xu and T. Saadawi, Performance evaluation of TCP
algorithms in multi-hop wireless packet networks,
Wireless Communications and Mobile Computing, pages
85 – 100, 2002.

