
Perturbation-Resistant and Overlay-Independent Resource Discovery

Steven Y. Ko and Indranil Gupta
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, IL 61801

{sko,indy}@cs.uiuc.edu

Abstract

This paper realizes techniques supporting the position
that strategies for resource location and discovery in dis-
tributed systems should be both perturbation-resistant and
overlay-independent. Perturbation-resistance means that
inserts and lookups must be robust to ordinary stresses
such as node perturbation, which may arise out of conges-
tion, competing client applications, or user churn. Overlay-
independence implies that the insert and lookup strategies,
and to an extent their performance, should be indepen-
dent of the actual structure of the underlying overlay. We
first show how a well-known distributed hash table (Pas-
try) may degrade under perturbation. We then present a
new resource location and discovery algorithm called MPIL
(Multi-Path Insertion/Lookup) that is perturbation-resistant
and overlay-independent. MPIL is overlay-independent in
that it effectively provides to the distributed application an
ability to insert and lookup Pastry objects in an overlay with
Pastry IDs, but without the need to have Pastry-style over-
lay maintenance (i.e., the overlay underneath can be arbi-
trary). We quantify, through analysis and simulation results,
the behavior of MPIL over complete, random, and power-
law overlays. We also show how MPIL outperforms regular
Pastry routing when there is perturbation.

1 Introduction

Resource location and discovery in distributed systems
such as the Grid, cooperative web caching, peer to peer
email, etc., all require object insertion and querying mech-
anisms that are scalable and tolerant to node failures. This
paper is motivated by two additional practical concerns that
require far more from such object insertion and querying
strategies (henceforth, together labeled as “lookup” strate-
gies). These practical concerns are overlay-independence
and perturbation-resistance.

Lookup strategies are usually coupled with the mainte-

nance of an appropriately matched application-layer net-
work (“overlay”) among the participating hosts (“nodes”
or “peers”) on top of the Internet. Each node knows a
few other nodes in the overlay according to specific over-
lay rules, and routes overlay messages such as insertion
and querying of files. However, this makes it impossible
to deploy a practical peer to peer application (e.g., coop-
erative web caching) on an already-existing legacy overlay
(e.g., a Grid network) without first deploying the overlay
maintenance protocols associated with the p2p application.
These maintenance protocols might increase the overhead,
or worse inhibit the performance of, other already-existing
protocols in the legacy overlay that already maintain some
kind of structure. This motivates the need to develop lookup
strategies that are independent of the structure of the un-
derlying overlay, and perform well under various arbitrary
overlay topologies.

A second and more important practical concern is
perturbation-resistance. If p2p overlays are to be deployed
successfully for a variety of legal applications, the robust-
ness of their behavior under the ordinary kinds of stress ex-
perienced by nodes will be a minimum requirement. Per-
turbation is one such kind of stress. A node is said to be
perturbed if it is unresponsive for brief periods of time.
Perturbation can be caused by many reasons and can occur
at several granularities. Concurrent competing applications
running on the host, packet buffer overflows, and conges-
tion, can cause short-term perturbation, where the node is
unresponsive for up to a few seconds. Longer-term pertur-
bation with unresponsiveness granularities of several min-
utes or hours can be caused by user churn, i.e. rapid node
departures and arrivals of users, a phenomenon present in
Grid applications and file sharing overlays. In this paper,
we model perturbation by nodes whose availability flaps pe-
riodically, and study the effect of such periodic flapping on
the lookup success rate. Success rate is the fraction of suc-
cessful replies to lookups injected into the overlay.

Currently, overlays are either unstructured or structured.
Unstructured overlays such as Gnutella [1] use flooding to

1

query object replicas. While this strategy is perturbation-
resistant and overlay-independent, it is neither efficient nor
scalable. Structured overlays include Chord [17], Pastry
[15], Tapestry [18], Kelips [7], Viceroy [11]. Also called
DHTs (Distributed Hash Tables), these overlays map both
objects and nodes to keys by using hash functions. Lookups
are then routed within this overlay by using a routing algo-
rithm that selects one next hop node at each step, based on
key values of the destination and the current node. While
structured overlay lookups are efficient and scalable, they
are not overlay-independent because the routing algorithm
is usually coupled with an appropriate overlay structure
with maintenance strategies. For example, Pastry uses pre-
fix routing based on key values, and nodes in the underlying
overlay select neighbors based on the same metric. Recent
studies reveal that many structured overlays may be churn-
resistant, but we show in this paper that they may not be
resistant to more general perturbations.

We present a new resource location and discov-
ery algorithm called MPIL (Multi-Path Insertion/Lookup)
that provides both overlay-independence and perturbation-
resistance. MPIL achieves these goals by using a determin-
istic routing metric (like DHTs), but by exploiting limited
redundancy (like unstructured p2p systems). The determin-
istic routing metric used is based on the hash value of keys
(objects and nodes), just like Pastry or Chord, but unlike
those systems, does not assume any characteristics about the
underlying topology. This routing requires the use of lim-
ited redundant routing of lookups to insert and query mul-
tiple replicas of an object pointer. This limited redundant
routing also provides perturbation-resistance. Put together,
MPIL provides a cost-effective and convenient way of de-
veloping and deploying robust p2p applications that target
any type of overlay. In a sense, the techniques of limited
redundancy and overlay-independence achieves the best of
both worlds from both structured and unstructured overlays.

The rest of this paper is organized as follows. Section 2
presents the related work. We pick the Pastry overlay as a
baseline for comparison with MPIL. Section 3 discusses the
effect of perturbation on MSPastry, the original implemen-
tation of Pastry1. Section 4 presents MPIL and its analysis.
In Section 6, we experimentally evaluate the perturbation-
resistance and overlay-independence of MPIL over static
overlays as well as dynamic overlays, comparing with Pas-
try at each step. We conclude in Section 7.

2 Related Work

Perturbation has been studied in other contexts besides
overlay networks. Birman et al.[3] study the effect of per-
turbation in the context of multicast protocol. In their sim-
ulation, virtually synchronized multicast groups are used to

1Obtained under a limited license from Microsoft Research.

study the effect of perturbation. They measure throughput
of a live node in the presence of perturbation - some frac-
tion of the multicast group members sleep for some fraction
of each second. Their result shows that even with a sin-
gle perturbed group member, the throughput drops signifi-
cantly, decreasing rapidly as the number of perturbed nodes
increases.

Many studies have shown that the arrival rate and the de-
parture rate of nodes in peer-to-peer systems are very high,
which proves the instability of peer-to-peer systems. Bhag-
wan et al.[2] show the availability of Overnet peers. They
implement a crawler to discover peers in the Overnet net-
work and a prober to measure the availability. Their re-
sults show that approximately 25% of the peers are newly-
joined and even larger fraction of hosts join and leave per
day. Also, the arrival rate and the departure rate are almost
the same. Saroui et al. [16] study node availability of Nap-
ster and Gnutella. Their result can be summarized as the
best 20% of Napster peers has an uptime of 83% and more,
and the best 20% of Gnutella peers has an uptime of 45%
or more.

Robustness issues of DHTs have been studied recently
[6] [14] [9]. Li et al.[9] studies the effect of churn to
some popular DHTs including Chord, Tapestry, Kelips, and
Kademlia. They show that these protocols can achieve sim-
ilar performance if parameters are sufficiently well-tuned.
Castro et al.[6] study the performance and dependability of
Pastry with MSPastry implementation. They propose sev-
eral techniques that mitigate the effect of churn and link loss
rate on Pastry. They show that their techniques can indeed
improve the dependability of Pastry by simulations with real
traces (Gnutella trace, the Overnet trace, and the Microsoft
trace). Their results show that MSPastry implementation is
dependable in that it achieves low incorrect delivery rates
and low loss rates with low maintenance overhead under
given traces. Rhea et al.[14] study the similar issues of
churn as in [6]. They identify three factors that affect the
behavior of overlays under churn - reactive vs. periodic re-
covery, message timeout calculation, and proximity neigh-
bor selection - and discuss various techniques that can be
used for the three factors.

Efficient search algorithms for unstructured overlays
have been studied recently [10] [13]. Lv et al.[10] explores
the use of random walks and replication to improve the in-
efficiency of unstructured p2p systems caused by flooding.
More recently, it has come to our attention that Morselli
et al. [13] propose a search algorithm that combines ran-
dom walks and a DHT routing algorithm based on Chord
routing algorithm to improve the search efficiency of un-
structured p2p systems. This study shares some similarities
with our study in that 1) it uses name-space virtualization
for unstructured overlays, 2) it proposes a replication strat-
egy, and 3) it separately considers overlays and routing al-

gorithms. However, their focus is producing unstructured
p2p systems, while our focus is producing robust p2p sys-
tems.

Using searching algorithms of unstructured p2p systems
over structured overlay topologies has been proposed by
Castro et al. [5] with a different goal. They use the flood-
ing and random walks over Pastry’s structured overlay to
support complex queries and to improve the performance
of flooding and random walks. Our approach is different
from this approach, because we develop a robust resource
discovery algorithm that runs over any type of overlay.

3 Effect of Perturbation on Pastry

To study the effect of perturbation on Pastry, we conduct
a set of simulations with MSPastry. Our result indicates
that although MSPastry already has various overlay main-
tenance techniques that deal with failures in overlays, they
are not sufficiently perturbation-resistant.

Figure 1 summarizes our results. Each simulation con-
sists of two stages. In the first stage, 1000 insertion requests
are generated to the static overlay of MSPastry. These 1000
insertion requests have randomly-generated unique mes-
sage IDs. In the second stage, 1000 lookup requests are
generated by the same node which generates the insertion
requests in the first stage. The lookup requests are gener-
ated every (online period + offline period) seconds one by
one. These 1000 lookup requests are the lookup requests for
1000 IDs inserted in the first stage. The overlay in the sec-
ond stage is not static; Each node gets perturbed with some
probability. As mentioned earlier, our model of perturbation
can be described as flapping. A perturbed node periodically
flaps between being offline and being idle (online). At the
beginning of each idle period, every node comes back on-
line and stays online during the period. At the beginning of
the offline period, however, each node decides whether to
go offline or to stay online based on the flapping probabil-
ity. Each node randomly picks its very first beginning of the
flapping period (i.e. idle period + offline period). Lookups
are performed after every node enters its flapping period.

As in Figure 1, when idle:offline period is 45:15 (sec-
onds), MSPastry can route more than 90% of the messages
successfully. This result shows that MSPastry is already
robust to a certain level, which is due to the overlay main-
tenance techniques of MSPastry. However, the number of
successful lookups decreases in other cases and with higher
flap rates in general. When idle:offline period is 30:30 (sec-
onds), the success rate is roughly about 85% even with
the flapping probability of 0.1. When idle:offline period is
1:1 (seconds), the success rate drops almost linearly. With
idle:offline period of 300:300 (seconds), the success rate is
almost 0 with the flapping probability from 0.8 to 1. This re-
sult clearly shows that the overlay maintenance techniques

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Flapping Probability

1:1
45:15
30:30

300:300

Figure 1. The effect of perturbation on
MSPastry. x-axis (flapping probability) in-
dicates the probability for a node to get
perturbed. 1:1 indicates that the online
period is 1 second and the offline period
is 1 second. The same goes for 45:15
(idle:offline=45:15), 30:30 (idle:offline=30:30),
and 300:300 (idle:offline=300:300).

Routing Algorithm

Insertion Lookup

Traffic
control

Routing
metric

Figure 2. The architecture of MPIL. Insertion
and lookup operations use the routing algo-
rithm, and the routing algorithm uses a rout-
ing metric and a traffic control algorithm.

of MSPastry are perturbation-resistant only to a limited de-
gree. Further, both short-term perturbations (e.g., 1:1) and
long-term perturbations (e..g, 300:300) drastically affect the
lookup behavior.

4 Multi-Path Insertion/Lookup Algorithm

Figure 2 shows the overall architecture of MPIL (Multi-
Path Insertion/Lookup). The insertion and lookup opera-
tions use the routing algorithm, and the routing algorithm
rely on two important bases, a routing metric and a traffic
control algorithm. In fact, the insertion and lookup opera-
tions become straight-forward once we understand the rout-
ing algorithm.

The MPIL routing algorithm works as follows: when a
node receives a lookup request for an object, it calculates
the routing metric for each of its neighboring peers, and
forwards the lookup to the “best” few peers. Below, we first
describe how the routing metric is calculated for a given
object, and then detail the routing algorithm itself.

1 0 0 1

1 0 1 1

1 0 0 1

0 0 1 0

Figure 3. An example for the routing metric.
On the Left, ID 1001 and 1011, on the right, ID
1001 and 0010. The routing metric gives the
value of 3 and 1, respectively.

4.1 Routing Metric

For a given object ID and a neighboring peer’s ID, the
routing metric is simply the number of matching digits ap-
pearing in same positions. Another way to view this metric
is the number of 0’s in XOR product of the two ID’s; this
is related to the concept of Hamming distance. Unlike the
Kademlia overlay [12], which also uses an XOR, MPIL uses
the XOR metric to select multiple next hops for the query –
we detail this in Section 4.2.

Figure 3 shows an illustration of this routing metric.
Consider the nodes with id’s 1001 and 1011 from the 4-
bit ID space (example on the left). The value of the MPIL
routing metric is 3, since only the second-least significant
bits do not match. Suppose a node currently holds a lookup
request for an object with ID 1001, and the node has two
neighbors 1011 and 0010. Since the values returned by
MPIL are 3 and 1 respectively, the lookup is forwarded to
node 1011.

4.2 Properties of MPIL’s Routing Metric

The routing metric of MPIL has the following advan-
tages over other routing metrics that exist for structured
overlays.

Continuous Forwarding over Arbitrary Overlays
MPIL is better than prefix or suffix routing at distin-
guishing neighbors of a node when trying to select the
best next hop for a lookup message. For example, in the
overlay of Figure 4, if node 1001 has a lookup message for
object 0110, both prefix routing and suffix routing treat all
neighbors as being equivalent - this may cause the lookup
message to be dropped or evaluated again to break the tie.
However, the MPIL routing metric returns 1111 as the best
neighbor.

The reason can be explained probabilistically. In pre-
fix routing, the probability that any given two IDs share
no common prefix at all is 0.75 for base-4 representation,
and 0.5 for binary representation. Considering that having a
common prefix is a basic requirement, the probability needs
to be far lower than 0.75 or 0.5 in order for the prefix rout-
ing to be used over arbitrary overlays. This problem be-
comes worse especially when the large fraction of the total
nodes has only a small number of neighbors, e.g. power-law
graphs.

1011 1111

10011101

Figure 4. An example topology for continuous
forwarding

On the other hand, for the MPIL routing metric,
the probability of the above event is only (3

4)80 =
(1.0113490...)−10 if we assume 160-bit ID space and base-
4 representation. The MPIL routing metric thus distin-
guishes neighbors better; at the least, this ensures a lookup
request undergoes continuous forwarding even over arbi-
trary overlays.
Redundancy For Robustness The MPIL routing metric
provides an easy way to exploit redundancy for robustness
since it provides an inherent way to create multiple paths to
multiple peers. Since the MPIL routing metric counts the
number of common digits in same positions, there can be
multiple nodes that have the same number of common dig-
its. In Figure 4, suppose the node 1001 forwards a message
of ID 0001. 1111 and 0001 share 1 common digit, 1101
and 0001 share 2 common digits, and 1011 and 0001 share
2 common digits. Thus, 1101 and 1011 are both the can-
didates for the next hop. Unlike other routing algorithms
that break this tie using other mechanisms, MPIL forwards
messages to every candidate, thus creating multiple paths to
multiple peers. We use the term flows or paths. If a node
forwards a query to exactly one neighboring node, there is
only one flow. For each additional neighbor that is chosen to
forward the lookup, an additional flow is said to be created.

Such replication might cause some nodes to receive the
same message. In this case, there are two options. A node
can either silently discard the message and not forward it
any more (thus stopping the flow), or forward the message
again. We explore both options in our simulations.

The effectiveness of such redundancy is limited for pre-
fix and suffix routing due to the lower distinguishability of
their routing metrics.

4.3 MPIL Routing

MPIL routing works as follows; When a node receives
a lookup message containing an object ID, the node calcu-
lates the value of each neighbor’s routing metric w.r.t. this
object, as described in Section 4.1. The node then forwards
the message to the neighbor having the highest value. In
the case that the node has several neighbors with the same
highest value, the node has to choose multiple nodes from

among all such highest-value neighbors.
To prevent message explosion, a message field called

max flows is used to limit the number of extra flows cre-
ated. max flows is an integer field in every message, and
it is decreased each time a node creates an additional flow
(recall that forwarding to exactly one node is not consid-
ered as an additional flow). When max flows is decreased
to 0, no additional flows can be created. This max flows
is conceptually similar to “quota” that is consumed by each
node on a route whenever a node replicates a message. The
original max flows value of a message is specified by the
originator of the message.

To summarize, when a node receives a message, it does
the following:

1. Creates a list of possible candidates for forwarding the
message.

2. Compares the size of the list and (max flows +
given flows), where given flows is 0 if the node is
the original sender, and 1 otherwise. max flows is
specified in the message.

3. Picks the minimum value of the two (say m).
4. Forwards the message to m nodes from the candidate

list.
5. Replace the value of max flows of each message

that the node forwards to (max flows − m +
given flows)/m.

In the last step, the decrease of max flows by m −
given flows is because that is the number of additional
peers that the node forwards the message to. The node
divides the value by m for distribution of the original
max flows. If the final value is not an integer, a node can
distribute the residue one by one in round-robin fashion to
the m nodes.

The complete MPIL algorithm uses the routing metric in
Section 4.1 and the algorithm for limiting multiple flows.
Figure 5 shows the pseudo-code of the algorithm. Note that
when choosing next hop list from neighbor list, the number
of common digits between N and M does not have any ef-
fect. In addition, there is a message field called route, which
contains the list of nodes that the message has visited. The
route field prevents the message from being forwarded to
a node the message has visited already. Thus, Choosing
next hop list is dependent only on peers in neighbor list,
excluding the nodes in M.route and N. Depending on the
configuration, each node might discard a message that has
been forwarded already. In this case, a sequence number
or a random number should be attached to distinguish the
message from old messages with the same message ID.

4.4 Insertion, Lookup, and Deletion

Both insertion and lookup use the routing algorithm, but
each has differences in its specifics. We discuss each in

M = Message ID
N = Node ID

if M has been forwarded already, discard it (optional).
for node in (neighbor list of N - M.route):

C = common digits between M and node
if C is the largest until now:

next hop list = [node]
elif C is equal to the largest until now:

next hop list.add(node)
Count common digits between M and N
if N has the largest value among all nodes in neighbor list:

N is the destination
Perform message-specific actions (for insertion messages)

else:
Apply the paths-limiting algorithm to next hop list
Forward to nodes in next hop list

Figure 5. A Pseudo-code of the MPIL Routing
Algorithm

detail.

Insertion An object (or a pointer to its location) can be in-
serted using MPIL routing. An insertion message is propa-
gated and replicated as usual in the MPIL routing algorithm,
and an object is inserted at a node when none of its neigh-
bor nodes have a higher MPIL routing metric value than the
node. We call such nodes as local maxima. This results in
multiple replicas of the object being created.

Replica placement is done by specifying the number
of per-flow replicas (we call this number num replicas for
the discussion. In Figure 5, it says that if N is the desti-
nation, then it performs message-specific actions. In the
case of an insertion message, N stores the object location
specified in the message. However, this process continues
num replicas-times to store more replicas. This is possible
because each node picks the next hop from (its neighbor list
- M.route) as in Figure 5, a list that does not include the node
itself.

Since max flows is the maximum number of possible
paths, and each path creates num replicas replicas, the max-
imum total number of replicas created by an MPIL object
insertion request is bounded from above by max flows ×
num replicas.

Querying A lookup message that is a query for an object
is propagated in essentially the same manner as insertion re-
quests above. However, each recipient node checks to see it
has the object; if it does, it stops forwarding the query and
replies back directly to the querying node. The forwarding
process stops when either the location is found or the mes-
sage has passed through num replicas local maxima. For
arbitrary overlays, although MPIL can never guarantee a
100% lookup success rate, our simulations reveal that the
success rate of MPIL are close to 100%.

Deletion Deletion can be done in many ways, but here we
discuss just one of them. Whenever a replica is placed in
a node, the node sends a periodic heartbeat to the owner of

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

0001

1001 0000

01011110

1111

0010 0100

0011

ID 1011

 1max_flows

max_flows 0

 2

 1

num_replicas

num_replicas 1
 1max_flows

num_replicas 1
 0max_flows

num_replicas

ID 1011

ID 1011

ID 1011

Figure 6. An example of MPIL. Gray nodes
store the location of the object.

the original object. When the originator wants to delete a
replica, it sends an explicit delete message to the node.

4.5 Comprehensive Example

Figure 6 shows an example of how MPIL inserts and
queries an object. Suppose the node 0001 wants to insert
an object with ID 1011. Originally, max flows is 2 and
num replicas is 2. After node 0001, max flows becomes
1. The node 0001 first selects 1001 among its neighbors
because 1011 and 1001 share three common digits, while
1011 and 0000 share only one digit. Since 1001 shares
the largest common digits among all of its neighbors, 1001
stores this object and decrements num replicas by 1. But
it still forwards the message to 1110 since num replicas is
1. Since 1110 has two neighbors that share three common
digits and max flows is still 1, 1110 forwards this message
to both neighbors. 0011 and 1111 receive this message and
store the location because they share the largest common
digits among all of their neighbors. They stop forwarding
because num replicas has reached 0. Lookup messages fol-
low the exact same steps, but every node along the routes
checks if it has the location. The notion of flow can be ex-
plained using Figure 6 again. There are two flows. One is
from 0001 to 0011, and the other is from 0001 to 1111. We
say that one additional flow is created by 1110.

5 Analysis

In this section, we present the analysis results of MPIL
over various types of overlay topologies. First, we study

the expected number of local maxima (See Section 4.4 for
the definition of local maxima), which is an upper bound on
the expected number of replicas, and expected number of
hops to a local maximum from a node in general topologies.
Recall that a local maxima node may store a replica (if the
insert message reaches the node). We study two examples,
random regular topologies and complete topologies.

There are several assumptions for the analysis. We as-
sume that 1) there is an m-bit ID space with base-2b rep-
resentation, where m = Mb for some constant M . Thus,
each ID is a M -character-wide string with 2b possible char-
acters. 2) the total number of nodes is N , and the degrees
is d. 3) There is a message with ID a, and node IDs are
a0, . . . , aN . We say that a node ID, ai, is k-common when
ai shares k common digits with the message ID, a.

5.1 General Overlay Topologies

For the expected number of local maxima, assume that
the degree distribution function of a given type of overlays
is known. Then, we can calculate the expected number of
local maxima in an overlay topology by N × C, where

C =
∑N

d=1

{
P (# of neighbors = d)

∑M
k=1

(
A × Bd

)}

A =
(
M
k

) (
1
2b

)k
(

2b−1
2b

)M−k

B =
∑k−1

j=0

(
M
j

) (
1
2b

)j
(

2b−1
2b

)M−j

C is the probability for a node to become a local maxi-
mum. A is the probability for a node to be k-common, and
B is the probability for every other node to be j-common,
for some j < k.

If we assume that the local maxima are distributed uni-
formly over the topology and we perform a random walk
over the topology, then the expected number of hops to
reach one of the local maxima from any node in the overlay
is simply 1

C .
Thus, if the degree distribution function is known, we

can calculate the expected number of local maxima and the
expected number of hops to one of the local maxima.

5.2 Random Regular Topologies and Complete
Topologies

The degree distribution function of random regular over-
lay topologies, where each node has fixed d neighbors is
given by,

P (# of neighbors = i) =
{

1 if i = d
0 otherwise

Then, we can calculate the average number of local maxima
in a random regular topology, which is N × C, where C =∑M

k=1

(
A × Bd

)
. C is a constant for a given d. Figure 7

shows the average number of local maxima with different
number of nodes and neighbors.

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

L
o
c
a
l

M
a
x
i
m
a

Number of Neighbors

4000 nodes
8000 nodes

16000 nodes

Figure 7. The expected number of local max-
ima for random regular topologies

 1.55

 1.56

 1.57

 1.58

 1.59

 1.6

 1.61

 1.62

 1.63

 2000 4000 6000 8000 10000 12000 14000 16000

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

R
e
p
l
i
c
a
s

Total Number of Nodes

of replicas

Figure 8. The expected number of replicas for
complete topologies

The expected number of hops to one of the local maxima
by a random walk is also a constant, 1

C
Similarly, we can calculate the expected number of repli-

cas in a complete topology by using a similar equation,
which is, N × ∑M

k=1

(
A × DN−1

)
, where

D =
∑k

j=0

(
M
j

) (
1
2b

)j
(

2b−1
2b

)M−j

.

Compared to the equation for random topologies, this
equation uses N − 1 instead of d, since it assumes a com-
plete topology. Also, D is exactly the same as B except that
the summation includes k, since it considers the number of
replicas. Figure 8 shows the results for various number of
nodes.

6 Simulation Results

Two different classes of simulations are performed to
examine MPIL and its robustness. The first class of sim-
ulations are mainly to evaluate the MPIL insertion/lookup
performance over various static overlays. This is done by
a simulator written in Python that simulates overlay-level
routing. This is a message-level simulator, not a packet-
level simulator. The second class of simulations are mainly
to evaluate the robustness of MPIL over structured overlays
without overlay maintenance techniques using the overlay
of MSPastry. This is done by MSPastry, which contains its

own simulator and used in [6]. We first evaluate the perfor-
mance of MSPastry with Pastry routing under perturbations
and compare it with the performance of MSPastry with the
MPIL routing under perturbations. For ID-generation, we
use random numbers picked from 160-bit ID space. All
simulations are done on Pentium4 2.7GHz and 512M RAM.

6.1 MPIL Insertion/Lookup Performance over
Static Overlays

Overlay Topologies There are very few reliable bench-
marks or workload generators for legacy distributed appli-
cations like Grid applications. However, we believe that
many legacy applications may naturally follow a power-law
or random graph structure for the overlay. Thus, we con-
sider power-law graphs and random graphs for our experi-
ments in this section.

10 different power-law graphs are generated by Inet [8],
each with 4000 nodes, 8000 nodes, and 16000 nodes. We
use 0% of degree 1 nodes. Similarly, 10 different random
graphs are generated, each with 4000 nodes, 8000 nodes,
and 16000 nodes. In these random graphs, each node has
100 neighbors, equally.

Methodology For each overlay, random nodes are chosen
to insert objects with different IDs 100 times. After that,
those 100 objects are queried one by one again by randomly
chosen nodes. Since there are 10 different overlays for each
4000 nodes, 8000 nodes, and 16000 nodes, the total number
of insertion/lookup pairs is 1000 for every number of nodes.
For all insertions and lookups, a node silently discards a
message if the node receives the same message more than
once.
Insertions Figure 9 shows the insertion performance of
MPIL over the power-law and random overlays. The pur-
pose of this simulation is to see the behavior of MPIL inser-
tions with different numbers of nodes. The maximum num-
ber of flows is fixed at 30 and the per-flow replicas is fixed at
5 (See Section 4.2, 4.3, and 4.4 for the notion of flows, max-
imum flows specified by originators, and per-flow replicas).
Even though we only show the result of a specific setting,
different settings have similar behaviors. We measure two
different categories - number of replicas and traffic per in-
sertion - over 4000 nodes, 8000 nodes, and 16000 nodes.

The leftmost graph of Figure 9 shows the average num-
ber of replicas per insertion and the center graph of 9 shows
the average number of total messages per insertion. To
count the total number of messages, a counter is increased
by one whenever a node sends a message to a single neigh-
bor. Since a node can have multiple neighbors that share
the same largest number of common digits, the counter can
be increased by n (n > 1) at one node. The rightmost
graph of Figure 9 shows the total number of duplicate inser-
tion requests. Whenever a node receives the same insertion

 0

 10

 20

 30

 40

 50

 60

 70

 2000 4000 6000 8000 10000 12000 14000 16000

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

R
e
p
l
i
c
a
s

Number of Nodes

Power-Law Topologies
Random Topologies

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2000 4000 6000 8000 10000 12000 14000 16000

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

(
T
r
a
f
f
i
c
)

Number of Nodes

Power-Law Topologies
Random Topologies

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2000 4000 6000 8000 10000 12000 14000 16000

D
u
p
l
i
c
a
t
e

M
e
s
s
a
g
e
s

Number of Nodes

Power-Law Topologies
Random Topologies

Figure 9. The behaviors of MPIL insertion - number of replicas (leftmost), insertion traffic (center),
and duplicate messages (rightmost). Even though the plots seem to increase, they are actually
bounded by max flows and per-flow replicas specified by the originator, regardless of the number of
nodes. For example, the number of replicas is limited by max flows × per-flow replicas, which is 150 in
the simulations.

request from a different neighbor, it is considered as a du-
plicate request.

The number of replicas is bounded by (the maximum
number of flows)× (the number of per-flow replicas). Thus,
in the leftmost graph of Figure 9, the maximum number of
replicas is bounded from above by 150, regardless of the
number of nodes. As discussed earlier, additional flows are
not created at every node, but at a node that has multiple
neighbors with the same number of common digits. Thus,
the actual number of flows is usually less than the maxi-
mum specified by the originator. The leftmost graph of Fig-
ure 9 shows this behavior as well. Even with 30 maximum
flows and 5 per-flow replicas, the actual number of replicas
is much less than 150.

A couple of further observations can be made from Fig-
ure 9. First, the number of replicas and traffic of insertions
in the power-law overlays stay almost the same across dif-
ferent settings. The reason can be found in the rightmost
graph of Figure 9. As the number of nodes increases, the
number of duplicate messages increases in the power-law
overlays. This means that more duplicate messages arrive
at the same set of nodes and are silently discarded, which
prohibits an insertion from storing more replicas. Second,
the number of replicas and traffic increases in the random
overlays in contrast to power-law overlays. The reason can
be found again from the duplicate messages. In the right-
most graph of Figure 9, the number of duplicate messages
decreases as the number of nodes increases in the random
overlays. Thus, more messages follow different paths as
the number of nodes increases, which leads to storing more
replicas.

The big gap between the random overlays and power-
law overlays in the number of duplicate messages is caused
by the different number of neighbors. Each node has 100
neighbors in the random overlays, while many nodes have
only a few neighbors in the power-law overlays. However,
we do not discuss this difference further since the purpose
of these simulations is not in comparing advantages and dis-

Table 1. MPIL lookup success rate over
power-law topologies

Per-flow Replicas
nodes Max flows 1 2 3 4 5

4000 5 52.9 94.4 97.7 98.7 99.1
10 55.4 98.7 99.7 99.9 100
15 56.0 99.0 99.7 99.9 100

8000 5 57.1 96.5 98.8 99.6 99.2
10 60.5 99.2 100 100 100
15 60.0 99.6 100 100 100

16000 5 58.3 98.1 99.7 99.9 99.9
10 60.4 99.5 100 100 100
15 60.9 99.8 100 100 100

Table 2. MPIL lookup success rate over ran-
dom topologies

Per-flow Replicas
nodes Max flows 1 2 3 4 5

4000 5 98.6 100 100 100 100
10 98.8 100 100 100 100
15 98.4 100 100 100 100

8000 5 97.0 99.9 100 100 100
10 98.5 100 100 100 100
15 98.7 100 100 100 100

16000 5 95.0 99.9 100 100 100
10 98.4 100 100 100 100
15 98.6 100 100 100 100

advantages of different type of overlay.

Lookups Table 1 and 2 show the success rates of MPIL
lookups in various settings. Note that the per-flow replicas
(r) for lookups means that the lookup stops when a flow
encounters a node with the largest common digits r-times.
Insertions are performed before lookups, and the number of
maximum flows is fixed at 30 and the number of per-flow
replicas is fixed at 5. Since we consider insertions to be
rare events compared to the lookups, the traffic of insertions
caused by the large number of maximum flows and per-flow
replicas can be amortized over time.

From Table 1 and 2, three observations can be made.
First, having more per-flow replicas gives higher success
rates. This is obvious because the number of per-flow repli-

cas for a lookup limits the path-length of the lookup. Sec-
ond, having more flows gives higher success rates. This is
also obvious because the number of maximum flows limits
the number of search paths. Third, having larger numbers
of nodes gives higher success rates with the same number
of max flows and per-flow replicas, although the difference
is very small and may be negligible. The reason of the dif-
ference can be found in Table 3. Table 3 shows an example
of the average number of flows that are actually created by
lookups with 10 max flows and 3 per-flow replicas over var-
ious numbers of nodes. As the number of nodes grows, the
actual number of flows grows also, even though the maxi-
mum flows and per-flow replicas are the same. Since there
are more flows for bigger overlays, the success rates in-
crease, accordingly.

Figure 10 shows the latency and required traffic of
lookups. In this simulation, max flows is fixed at 10 and
per-flow replicas is fixed at 5, since that setting gives 100%
success rates for all 4000, 8000, and 16000 nodes in both
the power-law overlays and random overlays. Also, the
left graph of Figure 10 only shows the number of hops of
the first successful reply of a lookup among all success-
ful replies. Multiple successful replies are possible because
there are multiple replicas stored in the system. However,
the right graph of Figure 10 shows the total traffic per a
lookup request, as well as the traffic for the first successful
reply.

As in the left graph of Figure 10, the latency stays almost
same even though the number of nodes increases. Table 1
shows a similar result because more than 50% of lookups
are satisfied even with 1 per-flow replicas and almost all
lookups are satisfied with 2 per-flow replicas. Although
limiting per-flow replicas does not accurately limit the num-
ber of maximum hops a lookup request is propagated, it
definitely has a correlation. Therefore, both the left graph
of Figure 10 and Table 1 tell us that MPIL lookups cause
small and steady number of hops across different numbers
of nodes in the power-law overlays.

Lookup traffic also stays almost same in the right graph
of Figure 10. The same reason from the case of inser-
tions can be applied to here. Since the number of duplicate
messages increases as the number of nodes increases, more
flows and traffic are suppressed.

Table 3. Actual number of flows of lookups
of Node Actual # of Flows

Power-Law 4000 8.782
Power-Law 8000 9.151
Power-Law 16000 9.542

Random 4000 9.323
Random 8000 9.505

Random 16000 9.63

6.2 MPIL over MSPastry

In this section, we study the robustness of MPIL under
perturbation. We run MPIL over the overlay of MSPastry by
implementing the MPIL algorithm in MSPastry. We com-
pare the robustness of MPIL to that of MSPastry with its
overlay maintenance techniques.

Methodology To evaluate the robustness of MPIL, we
conduct a set of simulations using MSPastry. These sim-
ulations are done in the same condition as in Section 3.
1000 insertions are generated first, and 1000 lookups for
the same IDs of insertions are generated next. For MSPas-
try simulations, we use MSPastry with all the overlay main-
tenance techniques described in [6]. For MPIL simulations,
we modify MSPastry; we replace the original routing algo-
rithm of MSPastry with MPIL. In addtion, we do not use
any of the overlay maintenance techniques. In other words,
we use the structured overlay of MSPastry, but none of the
overlay maintenance techniques. A total of 1000 nodes are
used in all simulations using a topology generated by GT-
ITM [4] as an underlying (Internet) topology.

MSPastry Configuration These are the default parame-
ters of MSPastry simulations across all simulations.

1. b : 4
2. l : 8
3. Leafset probing period : 30 seconds
4. Routing table maintenance period : 12000 seconds
5. Routing table probing period : 90 seconds
6. Probe timeout : 3
7. Probe retries : 2

MPIL Configuration All MPIL simulations are done
with 10 maximum flows and 5 per-flow replicas for both
insertions and lookups. However, the number of replicas ac-
tually inserted by the insertions in the network is typically
6-7.

Success Rate Figure 11 shows the success rates of the
original MSPastry and MPIL under various perturbation
probabilities. In Figure 11, “MSPastry” shows the simu-
lation results with the original MSPastry with no modifica-
tion. “MSPastry with RR” shows the results with MSPastry
with Replication on Route (RR). Using RR, every node on
the route of an insertion message stores a replica whether
it’s the target node or not. In these simulations, the typical
number of hops of an insertion message is 2-3 for MSPastry.
Thus, 2-3 is the typical degree of replication for MSPastry
with RR. “MPIL with DS” shows the simulation results of
MPIL with Duplicate Suppression (DS), while “MPIL with-
out DS” shows the results of MPIL without DS. If MPIL
uses DS, each node silently discards any message that the
node forwarded before. Otherwise, each node forwards a
message repeatedly, even if it received the same message
before.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2000 4000 6000 8000 10000 12000 14000 16000

A
v
e
r
a
g
e

L
a
t
e
n
c
y

(
H
o
p
s
)

Number of Nodes

Power-Law Topologies
Random Topologies

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2000 4000 6000 8000 10000 12000 14000 16000

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

(
T
r
a
f
f
i
c
)

Number of Nodes

Power-Law Topologies
Random Topologies

Figure 10. MPIL Lookup - latency (hops) (left), lookup traffic (right). Even though the traffic seems to
increase, it is actually bounded by max flows and per-flow replicas specified by the originator, regardless
of the number of nodes.

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Flapping Probability

MSPastry
MSPastry with RR

MPIL with DS
MPIL without DS

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Flapping Probability

MSPastry
MSPastry with RR

MPIL with DS
MPIL without DS

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Flapping Probability

MSPastry
MSPastry(RR)

MPIL w/ DS
MPIL w/o DS

Figure 11. Success rate of MSPastry simulations - success rate of idle:offline=1:1 (leftmost), success
rate of idle:offline=30:30 (center), success rate of idle:offline=300:300 (rightmost) . “MSPastry” is the
simulation result using original MSPastry with various overlay maintenance techniques. “MSPastry
with RR” is the simulation results using the original MSPastry plus RR (Replication on Route).
“MPIL with DS (Duplicate Suppression)” and “MPIL without DS” are the simulation results using
MPIL without overlay maintenance techniques. MPIL without DS gives the best robustness under
perturbation.

Intuitively, DS is good for static overlays because it re-
duces traffic. However, each node is likely to have a differ-
ent set of neighbors in dynamic overlays. Thus, if a node
keeps forwarding a message in dynamic overlays, the mes-
sage is likely to take a different route each time, and the
chance of arriving at one of the replicas can be increased.
Figure 11 actually confirms this intuition. MPIL without DS
always gives higher success rates than MPIL with the du-
plicate suppression. However, MPIL typically gives higher
success rates over the original MSPastry, regardless of DS.

Traffic MPIL gives better success rates under perturba-
tion as in Figure 11. However, since MPIL uses multicasts,
the traffic generated by MPIL can be far more than that of
MSPastry. The left graph of Figure 12 compares the lookup
traffic of the original MSPastry and MPIL, when idle:offline
is 30:30. As shown, MPIL creates a lot more lookup traf-
fic than the original MSPastry, especially under low pertur-
bation probabilities. However, the original MSPastry uses
various overlay maintenance techniques that create consis-
tent background traffic, while MPIL does not use any of the

techniques.
The right graph of Figure 12 shows the total number

of messages sent including not only insertion/lookup mes-
sage, but also all the maintenance and control messages. As
shown, MPIL creates far less messages than the original
MSPastry if all the messages are counted. Of course, this
result depends on the frequency of lookup requests. This
background traffic of MSPastry can still be justified if the
frequency of lookup requests is very high.

7 Conclusion and Future Work

This paper has presented a new approach to resource lo-
cation and discovery that is both perturbation-resistant and
overlay-independent. We have designed an insertion/lookup
algorithm, called MPIL, that is independent of the under-
lying overlay structure. MPIL works well over both un-
structured overlays that are random or power-law, and over
structured overlays – the latter was shown with respect to
MSPastry. Under both short-term and long-term perturba-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
b
e
r

o
f

F
o
r
w
a
r
d
e
d

L
o
o
k
u
p

M
e
s
s
a
g
e
s

Flapping Probability

MSPastry
MPIL with DS

MPIL without DS

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
b
e
r

o
f

T
o
t
a
l

M
e
s
s
a
g
e
s

Flapping Probability

MSPastry
MPIL with DS

MPIL without DS

Figure 12. Overall traffic of MSPastry simulations - lookup traffic (left), total traffic including mainte-
nance messages (right). Two figures show the lookup traffic and overall traffic. MSPastry has con-
stant background traffic of overlay maintenance techniques, while MPIL has more traffic of lookup,
but negligible background traffic. Again, we use MPIL with/without DS (Duplicate Suppression).

tion (which may arise from multiple concurrent client ap-
plications or churn respectively), MPIL has a better success
rate than MSPastry routing, and at the cost of only slightly
increased communication for each object lookup request.
MPIL successfully provides any distributed application the
ability to insert and query objects reliably and robustly over
any arbitrary overlay, without the need to change the exist-
ing overlay maintenance mechanisms.

Acknowledgments We thank the Pastry team at Mi-
crosoft Research Labs (Cambridge, UK) for providing us
with the MSPastry license.

References

[1] The Gnutella protocol specification v 0.4, document revision
1.2. www.clip2.com, 2003.

[2] R. Bhagwan, S. Savage, and G. M. Voelker. Understand-
ing availability. In International Workshop on Peer-to-Peer
Systems, February 2003.

[3] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal Multicast. ACM Transactions on
Computer Systems, 17(2):41–88, May 2002.

[4] K. Calvert, M. Doar, and E. W. Zegura. Modeling internet
topology. IEEE Communications Magazine, 1997.

[5] M. Castro, M. Cost, , and A. Rowstron. Should we build
Gnutella on a structured overlay? In Hot Topics in Networks,
November 2004.

[6] M. Castro, M. Cost, and A. Rowstron. Performance and
dependability of structured peer-to-peer overlays. In Inter-
national Conference on Dependable Systems and Networks,
June 2004.

[7] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Re-
nesse. Kelips: building an efficient and stable p2p dht
through increased memory and background overhead. In
International Workshop on Peer-To-Peer Systems, March
2002.

[8] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology gen-
erator. http://topology.eecs.umich.edu/inet, 2002.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek.
Comparing the performance of distributed hash tables under
churn. In International Workshop on Peer-To-Peer Systems,
February 2004.

[10] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. In
International Conference on Supercomputing, June 2002.

[11] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scal-
able dynamic emulation of butterfly. In ACM Symposium on
Principles of Distributed Computing, July 2002.

[12] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International
Workshop on Peer-to-Peer Systems, March 2002.

[13] R. Morselli, B. Bhattacharjee, M. A. Marsh, and A. Srini-
vasan. Efficient lookup on unstructured topologies. Techni-
cal Report CS-TR-4593, University of Maryland, July 2004.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In USENIX Annual Technical Conference,
June 2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), November 2001.

[16] S. Saroui, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Multime-
dia Computing and Networking (MMCN), January 2002.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In ACM SIGCOMM, August 2001.

[18] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. In IEEE JSAC, January
2004.

