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Abstract

Common practice in anomaly-based intrusion detection
assumes that one size fits all: a single anomaly detector
should detect all anomalies. Compensation for any per-
formance shortcoming is sometimes effected by resorting
to correlation techniques, which could be seen as making
use of detector diversity. Such diversity is intuitively based
on the assumption that detector coverage is different – per-
haps widely different – for different detectors, each cover-
ing some disparate portion of the anomaly space. Diversity,
then, enhances detection coverage by combining the cover-
ages of individual detectors across multiple sub-regions of
the anomaly space, resulting in an overall detection cover-
age that is superior to the coverage of any one detector. No
studies have been done, however, in which measured effects
of diversity amongst anomaly detectors have been obtained.

This paper explores the effects of using diverse anomaly-
detection algorithms in intrusion detection. Experimental
results indicate that while performance/coverage improve-
ments can in fact be effected by combining diverse detection
algorithms, the gains are not the result of combining large,
non-overlapping regions of the anomaly space. Rather, the
gains are seen at the edges of the space, and are heavily
dependent on the parameter values of the detectors, as well
as on anomaly characteristics.

Based on this study, defenders can be provided with
knowledge of how combinations of diverse, sequence-based
detectors behave to effect detection performance superior
to that of a single detector.

1 Introduction
Reliable, accurate and fast anomaly-based intrusion de-

tectors capable of detecting known attacks, novel attacks
and instances of insider threat over varying environments
and data sets, remains as elusive today as it did two decades

ago when Jim Anderson [1], and subsequently Dorothy
Denning [4], proposed the idea. High false-alarm rates [3],
inconsistency of detector performance [9, 20], and the inad-
vertent incorporation of intrusive behavior into a detector’s
concept of normal behavior (possibly causing the detector
to miss the intrusion [11]), are only some examples of the
numerous problems associated with the use of anomaly de-
tectors in intrusion detection today.

Despite these many problems, anomaly detection re-
mains, arguably, the most promising technique for detect-
ing more insidious, and potentially more destructive, ma-
licious incidents such as novel attacks and instances of in-
sider threat. Such incidents are difficult to detect because
they typically do not constitute a clear violation of security
protocols and often lack clear, reliable signatures to facili-
tate their detection.

It is interesting to observe that despite the variety of
anomaly detectors currently present in the intrusion detec-
tion literature, there appears to be an implicit assumption
that a single anomaly detection algorithm is all that is re-
quired to detect intrusions or attacks on any given sys-
tem. This assertion is supported by two further observa-
tions. First, intrusion detection systems claiming to per-
form anomaly detection typically employ only one kind of
anomaly detection algorithm, e.g., [7, 8, 9, 18]. There is,
however, no evidence to suggest that a single anomaly de-
tector will be sufficient for a given intrusion detection task.
No studies to date show that the kinds of anomalies that
arise as manifestations of attacks are actually the kinds of
anomalies that are detected by any given detector.

Second, of the studies that compare more than one
anomaly detector (e.g., [10, 20]), the results of the re-
spective efforts have been to determine the “best” sin-
gle anomaly detection strategy for a data set. There are
currently no studies, of which the authors are aware, ac-
knowledging the possibility that effective intrusion detec-
tion may not necessarily be afforded by choosing the single,
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best-performing anomaly detector, but rather, by combining
anomaly detectors such that the weaknesses of one may be
compensated for by the strength of another, thereby taking
advantage of diversity in detection algorithms.

Littlewood and Strigini [5] noted a renewed interest in
using diversity for security. However, they also noted an
absence of strategies by which to choose amongst diverse
designs and by which to evaluate the effectiveness of the
designs once selected. The present work takes inspiration
from these observations, and examines how such choices
can be made in anomaly detection. Namely, how can one
make an informed choice amongst a set of anomaly detec-
tors in a way that promotes improved detector performance?
How can detectors be chosen such that their combined per-
formance results in a net improvement? The evaluation
strategy presented here enables one to study the effects of
diversity on anomaly detection performance. The results
of the evaluation describe the operational characteristics of
a detector, providing a basis upon which to select amongst
diverse detector designs. It also provides knowledge regard-
ing the effects of combining more than one detector.

2 Background and related work
Anomaly detection can be regarded as simply a classifi-

cation decision about an object or event: it is either anoma-
lous or it’s not. Although other researchers in the intrusion
detection literature have extended the definition of anomaly
detection to include causality (e.g., “anomaly detection at-
tempts to quantify the usual or acceptable behavior and flags
other irregular behavior as potentially intrusive”[11]), the
present study views the attribution of cause as a separate
decision and a separate problem to be solved. This latter po-
sition was adopted because it was deemed more important
that the primary, and often only, capability of an anomaly
detector, i.e., the detection of anomalies, be evaluated first.
Subsequent evaluations can be performed to assess a detec-
tor’s ability to identify those events that it does not directly
detect, but that may have caused the detected anomalies
(e.g., attacks and intrusions). An anomaly-based intrusion
detection system therefore refers to a system that employs
an anomaly detector as a component, and also attempts to
link the detected anomalies to causal mechanisms such as
attacks. It is interesting to note that at present, the link be-
tween anomalies and attacks is only an assumption [4].

It is possible for anomaly detectors to be blind to cer-
tain types of anomalous patterns. For example, an anomaly
detector that does not employ probabilities such as Stide
[20], cannot possibly detect an attack that manifests as a
rarely occurring sequence. If detectors can be blind to cer-
tain types of anomalous patterns, it is not unreasonable to
ask whether the detector can also be blind to those anoma-
lous patterns that are the manifestations of attacks. [16]
and [19] have shown that attacks may manifest, or even be

manipulated to manifest, as normal behavior or as anoma-
lous events that are invisible to a given anomaly-based in-
trusion detection system. The detection of attacks that man-
ifest as normal behavior is obviously beyond the scope of
an anomaly detector; however, the detection of attacks that
do manifest as anomalous events is not out of scope. Figure
1 shows the necessary steps for determining whether or not
an anomaly detector was successful at detecting an attack.
The evaluation procedure described in this paper is focused
on the last two issues, D and E, where the abilities specific
to the anomaly detector itself are studied.
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Figure 1: Determining the intrusion detection capability of
an anomaly detector.

There are currently no studies centered on the anomaly
detection capabilities of anomaly detectors, i.e., the kinds
of anomalous events that a given anomaly detector actually
detects, and how well. There are also currently no studies
that employ such knowledge to examine the performance
effects of diverse anomaly detection algorithms. The issue
of diversity and security, however, was addressed in [5]. In
that paper, the authors noted a growing awareness of diver-
sity as a potentially valuable tool in the security community,
but pointed out that none of the papers they examined ad-
dressed issues such as choosing amongst different diverse
designs or evaluating the effectiveness of a selected design.

Previous work that attempts to evaluate anomaly-based
intrusion detection systems does so without the diagnostic
processes necessary to establish a factual link between at-
tacks deployed and anomalies detected, i.e., issues A, B,
and C of Figure 1. The evaluation procedure predominantly
used in the literature for anomaly-based detection systems
can be summarized in the following way [7, 9, 10, 12, 20].
Sets of normal data (obtained in the absence of intrusions
or attacks) and intrusive data (obtained in the presence of
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intrusions or attacks) are collected. The anomaly-based in-
trusion detection system is trained on the normal data, and
then tested on test data that contains either intrusive data
only or some mixture of normal and intrusive data. The
success of the detection algorithm is typically measured in
terms of hit, miss, and false alarm rates, the ideal result be-
ing 100% hits, and 0% misses and false alarms.

This procedure is based on 3 unsupported assumptions:

1. An intrusion will manifest in data being analyzed by
the anomaly-based intrusion detection system;

2. The manifestation is an anomalous event;
3. The anomaly detector within an anomaly-based intru-

sion detection system is capable of detecting the spe-
cific kinds of anomalous events that may be caused by
the attacks of interest.

These assumptions make it impossible to determine,
on the basis of the aforementioned evaluation procedure,
whether or not a given anomaly detector is successful at de-
tecting the attack. This is because there are three possible
explanations for the results:

1. The anomaly detector is successful at detecting the
anomalous manifestation(s) of the attack;

2. The detector detected anomalies that were the not the
result of the attack;

3. The detector detected anomalies that resulted from an
interaction between attack and non-attack events.

In short, all that can be determined from such results is
that a set of anomalies was detected in the data, some or
none of which may have been the anomalous manifesta-
tion(s) of the attacks of interest.

To assess the intrusion detection capabilities of an
anomaly-based intrusion detection system, it is necessary
to address each of the three assumptions listed above. To
assess the capabilities of the anomaly detection component
alone, however, it is only necessary to address the third as-
sumption, as will be done by the present study. The eval-
uation procedure for anomaly-based intrusion detectors de-
scribed above is set aside by this study because of the ambi-
guities inherent in the results and because it does not eval-
uate the capabilities of the anomaly detector with respect to
the event it directly detects – the anomaly.

3 Hypothesis and claims
If it is true that any single anomaly detector can be ap-

plied to a detection task (because all anomaly detectors are
equally capable of detecting anomalies, as has been pre-
sumed in the literature; see Section 1), then identical detec-
tion coverage is expected from each of the several anomaly
detectors evaluated in this study, and the impact of employ-
ing diverse detection algorithms is minimal.

If differences are exhibited in detection coverage, then it
can be concluded that not all anomaly detectors are equally

capable; as a consequence, a single anomaly detector may
not necessarily be sufficient for a given detection task, argu-
ing for the use of diverse detection systems. The hypothesis
is, therefore, that all anomaly detectors are equally capable
of detecting anomalous events that may arise as manifesta-
tions of attacks or intrusions.

The claims made in this paper are also the lessons
learned at the completion of the study, namely that (1)
anomaly detectors designed to detect unequivocally anoma-
lous events can be completely blind to these events; (2)
diversity in detection methods has a significant effect on
anomaly detection performance; (3) diversity in detection
methods is manifested as differences in the conditions un-
der which anomalous events can be detected; and (4) these
conditions are affected by the characteristics of the anoma-
lous event and by detector parameter values.

4 Approach
The approach taken by this study involves deploying a

set of diverse, sequence-based anomaly detectors on care-
fully constructed synthetic data into which is injected a
clearly defined, unequivocally anomalous event, detectable
by all the chosen detectors. This approach was adopted
for reasons that can be more clearly explained by address-
ing each of these three points: (1) the decision to use
clearly defined anomalous events, (2) a set of sequence-
based anomaly detectors, and (3) synthetic data.

4.1 Anomaly-based evaluation
An anomaly-based evaluation approach was adopted for

two reasons. First, anomaly detectors do not detect attacks
or faults unless they manifest as anomalies detectable by a
given anomaly detector. It makes sense, therefore, to evalu-
ate an anomaly detector’s performance with respect to what
it is designed to detect (anomalies) and not to what it may
indirectly detect.

Second, the way in which an anomaly detector defines or
perceives anomalies may not necessarily coincide with the
ways in which anomalies naturally occur in data or with the
kinds of anomalies that are manifestations of attacks. For
example, an anomaly detector may be designed to detect
foreign sequences, i.e., sequences that do not exist in the
training data; however, in natural data, foreign sequences
may exhibit unforeseen characteristics that interfere with
the detector’s abilities; this was in fact observed in the re-
sults and is discussed further in Section 7. Indeed, intru-
sion detection effectiveness for anomaly detectors can be
described as a measure of the disparity between the kinds
of anomalies that are the manifestations of attacks, and the
kinds of anomalies that are detectable by the given anomaly
detector. The greater the disparity, the worse the intrusion
detection capability of an anomaly detector.

One may question whether the anomaly used in this
study, the minimal foreign sequence described in Section
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5.1, is of any significance in the real world, i.e., does this
type of anomaly actually occur in natural data? Natural data
was found to be replete with minimal foreign sequences of
varying lengths. This is documented in [17] where datasets
collected from various computer systems were analyzed;
numerous instances of the minimal foreign sequence were
found in the intrusive traces.

4.2 Sequence-based anomaly detectors
A set of sequence-based detectors comprises the element

of diversity that is the basis of this study. The chosen
detection algorithms can be described as “diverse” in that
they were designed, created and deployed by different re-
searchers for different projects, and diverse in the methods
they use to effect anomaly detection.

The primary consideration guiding the choice of detec-
tors was one of experimental control. Anomaly detectors
may be diverse in a number of ways. Detectors may, for ex-
ample, vary in the way they consume data – fixed-length se-
quences, single events, variable length sequences, etc.; de-
tectors may also vary in the way by which they determine an
event to be anomalous, by the way which normal behavior
is modeled, and so forth. Choosing a set of anomaly de-
tectors that are diverse in several dimensions would make it
difficult to isolate the specific kind of diversity effecting de-
tection performance or detection failure. It would also make
it difficult to attribute observed detection performance to the
effects of diversity as opposed to other effects. For this rea-
son, the substance of diversity in this study is constrained
to only one, and arguably the most important, aspect of the
chosen anomaly detectors – the methods by which devia-
tions from normal behavior are measured.

The anomaly detectors selected for this study can be de-
scribed as consisting of three general components:

1. A mechanism for modeling normal behavior;
2. A metric or method for measuring deviations from the

model of normal behavior;
3. A thresholding mechanism for determining whether

the detected deviation is significant enough to label the
event as anomalous with respect to normal behavior.

Whereas the detectors are diverse in the second of these
components, they are invariant in the other two. The ba-
sic event being analyzed is the same for all four selected
detectors – the fixed-length sequence. All four detectors are
expected to be able to detect the same anomaly, a foreign se-
quence. The thresholding mechanisms for all four detectors
are set by the user, and as such are controlled by ensuring
that the definitions of hits and misses are consistent across
all four detectors. This last issue will be addressed further
in Section 5.5.

4.3 Synthetic data
Natural data was not used in this study because it was

necessary to ensure that the data upon which the detectors

were to be deployed did not contain confounding elements
that can undermine the fidelity of the final results. To this
end, this study employed synthetic data because it provided
the control necessary for constructing the defined anoma-
lous event, for constructing training and background test
data that were free of spurious, naturally occurring anoma-
lies, and for enabling an injection procedure that kept the
character of the anomalous event and the background data
intact.

5 Experimental methodology
The effect of diversity on detector performance is exam-

ined by focusing narrowly on the abilities of a set of chosen
anomaly detectors to detect a single, clearly defined, and
unequivocally anomalous event. The following list provides
an overview of the experimental methodology designed to
support this intent; subsequent sections describe the experi-
ment in detail, giving the rationales and motivations behind
the decisions made for each stage of the experiment.

1. Define the anomaly.
2. Select the detectors.
3. Synthesize the training (normal) data.
4. Synthesize the test data.

(a) Synthesize the background data.
(b) Synthesize the anomaly, and inject the anomaly

into the background data to create the final cor-
pus of test data.

5. Deploy the anomaly detectors on the synthesized train-
ing data and on the test data.

6. Analyze the results.

5.1 The anomaly
The anomalous event used in this study is referred to as

a minimal foreign sequence (MFS). A foreign sequence can
be described as a sequence of length N where each individ-
ual element within the sequence is a member of the training-
set alphabet, but where the entire length-N sequence itself
does not occur in the training data. A minimal foreign se-
quence is a foreign sequence with the property that all of its
proper sub-sequences do exist in the normal data [15, 17].
Put simply, a minimal foreign sequence is a foreign se-
quence that contains within it no smaller foreign sequences.

The decision to employ only one anomaly type in this ex-
periment was prompted by two reasons. First, for anomaly
detectors that employ fixed-length sequences, the foreign
sequence is exemplary of the kind of anomaly that should
be detectable by all sequence-based anomaly detectors –
unlike, for example, rare sequences. Rare sequences are
detectable by some detectors, e.g., Markov-based detectors,
but are not detectable by others, e.g., Stide and the Lane
and Brodley (L&B) detector. Furthermore, the intrusion
detection literature remains ambiguous about the “alarm-
worthiness” or “anomalous-ness” of rare sequences [20].
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Secondly, the use of a single anomaly type would more
clearly illustrate the point that if there are wide variations
in detection capabilities over a single, detectable anomaly,
then the intrusion detection practice of deploying only one
anomaly detection strategy in a given intrusion detection
system may be prone to failure, arguing for the use of di-
verse detection strategies.

5.2 The sequence-based anomaly detectors
Four sequence-based anomaly detectors were examined

in this study. Their selection was governed by the need to
constrain diversity to only one aspect of the detector for ex-
perimental control. All four detectors analyze fixed-length
sequences of categorical data, and conform to the generic
description of an anomaly detector described in Section 4.2.
Their diversity, however, lies in the manner in which they
each determine the abnormality of a given sequence, i.e.,
their similarity metric. Where one algorithm may employ
probabilistic concepts to determine such abnormality, an-
other would establish abnormality merely as a difference in
the ordering of elements within a sequence. The detectors
examined in this study are a Markov model-based detector,
a Neural Network-based detector, Stide, and the Lane and
Brodley detector.

This section describes the similarity metrics for each of
the four anomaly detectors under scrutiny. Normal behavior
for all four detectors is acquired by sliding a detector win-
dow of fixed-length size (DW ) across the training data, and
storing the DW -sized sequences in a database.

Markov-based detector. The Markov-based anomaly
detector [12, 18] employs the sequential ordering of events
and conditional probabilities in its detection approach. For
every fixed-length sequence of size DW obtained from the
test data, the detector calculates the probability that the
“DW + 1”st element will follow. The detector produces
a score between 0 and 1 for each element in the test data
stream beginning at the “DW + 1”st element. This score
indicates the probability that the “DW + 1”st element fol-
lowed the previous size-DW sequence, where 1 indicates
highly improbable and 0 indicates normal (very probable).

Neural-network-based detector. The Neural-network-
based anomaly detector [6] employs sequential ordering
of events in its detection approach. The similarity met-
ric for this detector is essentially embedded in the multi-
layer, feed-forward learning mechanism. Although it does
not use explicit probabilistic concepts, the detector’s learn-
ing algorithm is an approximation function that can be de-
scribed as “mimicking” the effects of employing probabilis-
tic concepts such as the conditional probabilities used by the
Markov-based detector.

Stide detector. Stide [7, 20] is an anomaly detector that
is completely dependent upon the sequential ordering of
categorical elements in the data stream. The detector es-
tablishes whether every fixed-length sequence of size DW

from the test data exists in the normal database of same-
sized sequences. The value 0 is assigned to indicate that
a matching normal sequence was found, and the value 1 is
assigned to indicate otherwise. No direct probabilistic con-
cepts, such as the calculation of frequencies or conditional
probabilities, are employed by this algorithm.

Lane & Brodley detector. The Lane & Brodley de-
tector (L&B) [13] is also completely dependent on the se-
quential ordering of elements in the data stream. For two
fixed-length sequences of the same size, each element in
one sequence is compared to its counterpart at the same po-
sition in the other sequence. Elements that do not match
are given the value 0, and matching elements are given
a score that incorporates a weight value. This weight
value increases as more adjacent elements are found to
match. The similarity metric produces a value between 0
and DW (DW + 1)/2, where 0 denotes the greatest degree
of dissimilarity (anomaly) between the two sequences and
DW (DW + 1)/2 denotes the greatest degree of similarity
(identical sequences). No probabilistic concepts such as the
calculation of frequencies or conditional probabilities are
used by this detector.

5.3 The training data

The generation process of the evaluation dataset is doc-
umented in detail in [14] and [17]; hence, this section will
only describe the characteristics of the evaluation data that
are pertinent to the present experiment.

A training-data stream of 1,000,000 elements was con-
structed using a Markov-model transition matrix. Three
parameters were chosen arbitrarily in this experiment: the
sample size of 1,000,000 elements; the length of the min-
imal foreign sequences (denoted AS for anomaly size),
which ranged from 2 to 9; and the definition of a rare se-
quence – a rare sequence is one with a relative frequency of
less than 0.5% in the training data [20].

The alphabet size for the training data was 8. Although
alphabet sizes in real-world data are higher than this and
may influence, for example, the size of the set of possible
sequences that populate the normal database, the alphabet
size of the training data does not affect the synthesis of for-
eign sequences, nor does it affect a sequence-based detec-
tor’s ability to detect foreign sequences.

Ninety-eight percent of the one-million-element
data stream consisted of a repetition of the sequence
“12345678.” This characteristic of the data provided a
consistent set of “noiseless” common sequences that were
independent of sequence length, and that could be used to
populate the background data, i.e., the test data without
the injected anomaly. The remaining two percent of the
training data contained rare sequences that were the result
of a small amount of nondeterminism in the probabilities
of the data generation matrix. These rare sequences were
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necessary for synthesizing the minimal foreign sequence
anomaly composed of rare sub-sequences.

5.4 The test data
The test data were constructed in two stages. First the

background data was created; after this, the anomalies were
synthesized and injected into the background data to form
the final corpus of test data.

5.4.1 The background data
The background data were composed of commonly occur-
ring sequences found in the training data, i.e., a repetition
of the sequence “12345678.” This ensured that the back-
ground data was “clean.” and contain no spurious, naturally
occurring foreign or rare sequences that might confound the
results of the experiment. Hence, any detector-window size
ranging from 1 to the data sample size of a million, sliding
over the background data, would only experience common
sequences already present in the training data.

5.4.2 Creating and injecting the anomalies
The training data were used to create the anomalies – min-
imal foreign sequences of sizes 2 to 9, composed of rare
sub-sequences. A rare sequence is simply defined to be a
sequence with a relative frequency of 0.5% in the training
data, a definition taken from previous work [20].

The decision to use rare sub-sequences was prompted by
the expectation that both the Neural Network detector and
the Markov detector should be able to respond to rare se-
quences. Although some detectors (such as Stide) do not
have the ability to respond to rare sequences, they are nev-
ertheless applied to anomalies having these characteristics,
primarily to facilitate performance comparisons; i.e., all the
detectors in question are evaluated on their ability to detect
the same anomaly. Furthermore, it would be a point of in-
terest to observe, and possibly quantify, how much more ac-
curacy the ability to detect rare sequences actually confers
upon the detection of foreign sequences so composed.

Sequences composed by concatenating short, rare se-
quences from the training trace are likely to be foreign,
simply due to the improbability that a substantial number
of rare sequences would appear in the training trace in the
chosen order. It is easy to generate such sequences, and to
verify their “foreign-ness” and minimality characteristics.
These same characteristics, however, complicate the pro-
cess of injecting the anomaly, which unfortunately remains
somewhat of a brute force effort.

The sub-sequences within the composed anomaly tended
to interact with the background data to produce spurious
rare and/or foreign sequences. These unintended anomalies
were most likely to occur at the boundaries where some el-
ements of the injected anomaly and some elements of the
background data combined within the sliding detector win-
dow to produce unintended foreign or rare sequences. Fig-

F F F+ +

F F F+ +

F + + + +

F + + + +

Boundary
Sequence

Boundary
Sequence

F F F F++

Incident Span
Data

Stream

Figure 2: Boundary sequences with detector window of size
5 and foreign sequence of size 8. F: injected foreign se-
quence; +: elements of background involved in boundary
sequences. The incident span comprises all 5-element se-
quences that contain at least one element of the anomaly.

ure 2 provides examples of these “boundary sequences.”
Randomly injecting an anomaly into the background data
is undesirable because of the high probability that a mixture
of foreign or rare boundary sequences is introduced by such
an injection strategy.

Given a detector window of size DW and a minimal for-
eign sequence anomaly, a desirable injection procedure is
one ensuring that all of the 2(DW− 1) sequences of length
DW that can be composed at the boundary of the injection,
i.e., sequences that contain some elements of the anomaly
and some elements of the background data, are common se-
quences that exist in the training data. It must be ensured
that no background data sequences or boundary sequences
register as foreign or rare. If this is not possible for some
location in the trace, a new anomaly must be produced as a
replacement, and the process repeated.

The final suite of evaluation data contains one stream of
training data and 8 streams of test data, where each test-data
stream contains a single minimal foreign sequence whose
length is selected from the range 2 to 9. This set of 9 data
streams is then replicated for each detector-window length
of 2 to 15. In total there are 112 test-data streams.

5.5 Detector deployment and scoring
Each detector was deployed on the suite of data cre-

ated in the preceding section. For each minimal foreign
sequence being detected, the length of the detector window
was varied from 2 to 15. Processes occurring after the appli-
cation of the similarity measure were ignored, e.g., Stide’s
locality frame count (LFC). Only a detector’s intrinsic abil-
ity to detect a specific anomalous phenomenon was consid-
ered – not noise-suppression techniques like the LFC.

The results of the experiments are expressed in terms of
hits, misses, and regions of detection blindness and weak-
ness. When a detector window slides over an anomaly and
encounters a boundary sequence, the interaction between
the elements of the anomalous sequence and the back-
ground data will prompt the detector to produce a response
that is influenced by the elements of the injected anomaly.
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Figure 3: Detection coverage, L&B detector.

This issue is considered in the scoring process and resulted
in the concept of the incident span [17], see Figure 2.

Allowing a detector’s response to range from 0 (indicat-
ing completely normal) to 1 (indicating maximal abnormal-
ity), a detector is described as: blind, in the case where the
detector response is 0 for every sequence of the incident
span; weak, in the case where the maximum detector re-
sponse registered in the incident span is greater than 0 and
less than 1, indicating that something definitely abnormal
has been seen; and capable, in the case where at least one
detector response of 1 was registered in the incident span.

Binary detectors, such as the sequence-matching portion
of Stide, are only capable of generating responses of 0 or
1; however, the Neural Network and the Markov-based de-
tector can generate weak responses. Weak responses can be
converted to binary responses by applying a threshold that
converts responses below the threshold to 0 and others to 1.
To facilitate fair comparisons among these detectors, the de-
tection threshold was set to 1 for all detectors, recognizing
only maximally anomalous (foreign) sequences as “hits.” 1

6 Results
The results from the experiment described above are dis-

played in four graphs. Figure 3 presents the detection capa-
bility for the L&B detector, Figure 4 for the Markov-based
detector, Figure 5 for Stide, and Figure 6 for the Neural-
Network-based detector.

The x-axis in each figure marks the increasing length of
the minimal foreign sequence (MFS) injected into the test-

1Detection thresholds are often used to determine “alarm-worthy”
events. The maximum anomalous response will always register as an
alarm regardless of where the detection threshold is set. An anomalous
phenomenon generating such a response will never “disappear” or become
a miss when the detection threshold is raised or lowered.
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Figure 4: Detection coverage, Markov-based detector.

data stream, and the y-axis charts the length of the detector
window. Each star marks the length of the detector win-
dow (on the y-axis) required to detect a foreign sequence
whose corresponding length is marked on the x-axis; the
term “detect” specifically means that a maximum anoma-
lous response occurred in the incident span. The areas that
are absent of a star (blind regions) indicate that the foreign
sequence whose corresponding length is marked on the x-
axis was perceived by the detector as being a completely
normal sequence.

Since the Markov-based detector utilizes the Markov as-
sumption, i.e., that the next state is dependent only upon the
current state, the smallest window length possible is 2. This
means that the next expected, single, categorical element is
dependent only on the current, single, categorical element.
As a result, the y-axis marking the detector-window lengths
in Figure 4 begins at 2. The same argument applies with the
Neural-Network-based detector in the sense that this detec-
tor predicts the next categorical element based on the cur-
rent categorical element; this makes 2 the smallest workable
detector window length. Although it is technically possible
to run Stide and the L&B detector using a detector win-
dow of length 1, doing so would produce results that do not
include the sequential ordering of events, a property that
comes into play with all the detector-window lengths that
are larger than 1. This, together with the fact that there is
no equivalent for either the Neural-Network-based detec-
tor and the Markov-based detector, argued against running
Stide and the L&B detector with a window of 1.

The x-axis also begins at 2 in each figure. This is be-
cause the type of anomalous event upon which the detec-
tors are being evaluated requires that a foreign sequence be
composed of rare sequences. A foreign sequence of size 1,
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Figure 5: Detection coverage, Stide.

therefore, will contain a single element that must be both
foreign and rare at the same time, and this is not possible.
As a consequence, all the result graphs show an undefined
region corresponding to the anomaly size of 1.

7 Discussion

The results show that despite the fact that all the de-
tectors analyze data in terms of sliding windows of fixed-
length sequences, and that are all expected to detect foreign
sequences, their differing similarity measures significantly
affected their detection capabilities. There are four main
points to note; these are operational details that must be
considered when deploying these detectors.

First, there are regions of detection blindness. Even for
an event as unequivocally anomalous as a foreign sequence,
some sequence-based detectors are unable to detect its pres-
ence. The L&B detector, for example, will classify a mini-
mal foreign sequence as a sequence close to normal, while
Stide will classify that same sequence as an anomaly, but
only when DetectorWindow > AnomalySize.

Second, the results show that the different similarity
measures used by each detector significantly affect detec-
tion performance. In Stide’s case, even though it is certain
that there is a foreign sequence present in the data stream,
this foreign sequence is only visible if the length of the de-
tector window is at least as large as the length of the foreign
sequence. The Markov-based detector, on the other hand,
appears to have no such weakness. The foreign sequence in
the data stream is visible to the Markov detector, even when
the length of the detector window is smaller than the length
of the foreign sequence. This can be attributed to the use
of rare sequences in composing the foreign sequence. Un-
der such a circumstance the use of conditional probabilities
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Figure 6: Detection coverage, Neural-Net-based detector.

appears to have afforded the Markov detector an advantage.
Third, the results provide some knowledge of how to

combine detectors to effect detection performance. Con-
sider, for example, the observation that Stide will only de-
tect foreign sequences, while the Markov-based detector
will detect foreign sequences as well as a variety of rare
sequences. It follows that if the Markov-based detector is
deployed for intrusion detection purposes, it can only be
expected to produce greater numbers of false alarms than
Stide. This is because it will detect anything that manifests
in the data stream as a foreign symbol (this can be seen as
a foreign sequence of size 1), and various compositions of
foreign and rare sequences. Stide on the other hand will
only detect foreign sequences. A circumstance under which
this knowledge may be useful would be, for example, when
it is known that an attack typically manifests as a minimal
foreign sequence, but the size of this foreign sequence is un-
known (making Stide unreliable as the main detector since
Stide would only detect such a manifestation if its detector
window is set to at least the known size of the minimal for-
eign sequence). The Markov-based detector can be used to
detect the manifestation of the attack itself while Stide can
be used as a suppressive mechanism to reduce false alarms.
Any alarms raised by the Markov-based detector, and not
raised by Stide, may be ignored as false alarms; alarms
raised by both Stide and the Markov-based detector are pos-
sible hits. Any alarm raised by Stide will also be raised by
the Markov detector, because it is now known from the re-
sults of the evaluation that Stide’s detection coverage is a
subset of the Markov-based detector’s coverage.

Although the combination of Stide and the Markov-
based detector may produce performance improvements in
the form of reduced false alarms, the combination of Stide
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Figure 7: Similarity calculation between two size-5 se-
quences. The step curve represents the weight contributed
by each match. Note the detector responds with a value
close to normal when presented with a foreign sequence.

and the L&B detector is not so agreeable. While both of
these detectors use very different mechanisms by which to
detect an anomaly, they both show a blindness in the same
region of the performance chart. In this case, employing the
two detectors to take advantage of diverse detection algo-
rithms affords no improvement in performance.

The Neural-network-based detector, although using a
different mechanism by which to effect detection, appears
to be as good as the Markov-based detector. The only caveat
with this detector lies in the reliability of detection. It is
common knowledge that the performance of a multi-layer,
feed-forward network relies on a balance of parameter val-
ues, e.g., the learning constant, the number of hidden nodes,
and the momentum constant [21]. Some combinations of
these values may result in weakened anomaly signals. In
these cases, the setting of another parameter – the detection
threshold – becomes critical for detecting particular events.

The fourth and final point is the observation that by
charting the performance of the detectors with respect to the
detection of minimal foreign sequences, it was possible to
observe the nature of the gain achieved in detection perfor-
mance between an algorithm that employs conditional prob-
abilities and one that employs, for example, only sequence-
matching schemes. This gain in detection ability is signif-
icant and is illustrated by the blind regions marked out in
Figures 5 (Stide) and 3 (L&B).

A detail of concern is the inability of the L&B detector
to detect a minimal foreign sequence anomaly even when
the entire foreign sequence can be “seen” by the detector,
i.e., DW = AS. The blindness in the L&B detector can
be attributed to the similarity metric that the detector em-
ploys. The similarity metric for the L&B detector is biased
in favor of matching adjacent elements. It is possible for
a foreign sequence to match every element of a normal se-
quence except one. If the single, mismatching element is
located at the very first or very last position of the foreign
sequence, the detector returns a similarity value indicating
that the foreign sequence is close to normal.

To illustrate the point more clearly, the left-hand dia-
gram in Figure 7 depicts the similarity calculation between
two identical sequences of size 5. The similarity value for
these two identical sequences is Simmax =

∑DW
i=1 i =

DW (DW+1)
2 = 15. This is the highest, most “normal”

value that the similarity metric can produce for a detector
window of size 5. However, when a normal and foreign se-
quence are compared, as shown in the right-hand diagram
of Figure 7, the only difference between the two sequences
is the last element, and the similarity value computes to
Simweak =

∑DW
i=1 i = DW (DW−1)

2 = 10. The slight dip
in the similarity value from 15 to 10 is all that indicates the
presence of the foreign sequence (the most anomalous result
for this detector is the value 0). For the L&B detector to de-
tect the foreign-sequence anomaly, the detection threshold
must be set to the next most normal value, which is 10. If
this is done, then all sequences from the test data that differ
from a normal sequence by at least one element, will regis-
ter as anomalous. This will raise the false alarm rate, which
will get increasingly worse as the sequence length grows.

8 Conclusion
The hypothesis that all anomaly detectors are equally ca-

pable of detecting anomalies was tested in this study, and
determined experimentally to be without support.

The sequence-based anomaly detectors examined here
exhibit diversity primarily on the basis of their similarity
metrics: the conditional probabilities of the Markov-based
detector, the exact matches of Stide, the weighted matches
of Lane & Brodley, and the function approximation strategy
of neural nets. This diversity in similarity metrics leads to
diversity in coverage of the detection space.

The Markov detector covers the entire space under con-
sideration, but in doing so it is prone to false alarms. The
Lane & Brodley detector, despite its previous application to
masquerade detection, is blind across the entire space con-
sidered. Stide covers a subset of the Markov space, and is
sensitive to conditions under which its detector window is
shorter than the anomalous minimal foreign sequence being
detected. The neural-net detector mimics the Markov detec-
tor; however, it is also highly dependent on the art of setting
its tuning parameters.

Obtaining increased detection coverage is an obvious
goal of exploiting diversity, but combining these detectors
requires care, as the experimental results have shown. Stide,
for example, will only detect foreign sequences, whereas
the Markov-based detector will detect foreign sequences as
well as a variety of rare sequences. Stide can be unreliable
when an attack manifests as a foreign sequence, but the se-
quence size is unknown; in such cases the Markov-based
detector can be used to detect the manifestation of the attack
itself while Stide can be used as a suppressive mechanism
to reduce false alarms.
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In another example, combining Stide and L&B provides
no detection advantage at all. Although each of these detec-
tors uses a very different similarity metric, they each show
blindness in the same region of the performance chart. In
this case, diversity affords no improvement in detection per-
formance (hits) for two reasons: (1) both detectors will be
blind to the presence of an MFS anomaly when deployed
with a detector window size that is less than the size of the
anomaly; (2) when the detector window is set to be equal to
the size of the anomaly, only Stide is capable of detecting
an MFS anomaly when only the first or last element mis-
matched any normal sequence. No detection advantage is
gained by the presence of the L&B detector in this case.

The experiments showed that certain anomalous se-
quences (MFSs) are not detectable under certain conditions
by certain detectors. Since real-world datasets contain nu-
merous instances of these anomalous sequences, the ramifi-
cation for intrusion detection is that some anomaly detectors
will be unable to detect attacks that manifest as minimum
foreign sequence anomalies. Moreover, detectors that are
able to detect attacks that manifest as MFSs can be rendered
blind to these attacks by an incorrect choice of detector pa-
rameter values (e.g., detector window size).

The experiments reported here were based on the de-
tectors’ native abilities for detecting anomalies. The re-
sults maintain their validity when extended beyond syn-
thetic data, into the real world; there is no difference be-
tween a minimal foreign sequence embedded in synthetic
vs. natural data. But, future work must go farther; it must
focus on the relationship between detectable anomalies and
intrusive behaviors. It is critical to establish that the anoma-
lies detected were caused by attacks, and not by more in-
nocuous events. This is not a trivial task.

References

[1] James P. Anderson, “Computer Security Threat Monitoring and
Surveillance”, Technical report, James P. Anderson Co., Fort Wash-
ington, Pennsylvania, April 1980.

[2] Matt Bishop, Steven Cheung, and Chris Wee, “The Threat from the
Net”, 34(8) IEEE Spectrum, pages 56-63, August 1997.

[3] Herve Debar, Marc Dacier and Andreas Wespi, “Towards a Taxon-
omy of Intrusion-Detection Systems”, Computer Networks, 31(8),
pages 805-822, April 1999.

[4] Dorothy Denning, “An Intrusion-Detection Model”, IEEE Transac-
tions on Software Engineering, SE-13(2), pages 222-232, Feb. 1987.

[5] Bev Littlewood and Lorenzo Strigini, “Redundancy and Diversity in
Security”, In Proceedings ESORICS 2004, 9th European Symposium
on Research in Computer Security,, pages 423-438, Sophia Antipolis,
France, September 2004, Lecture Notes In Computer Science # 3193,
Springer-Verlag, Berlin, 2004.

[6] Herve Debar, Monique Becker, and Didier Siboni, “A Neural Net-
work Component for an Intrusion Detection System”, In Proceedings
of the 1992 IEEE Computer Society Symposium on Research in Se-
curity and Privacy, pages 240-250, 04-06 May 1992, Oakland, CA.
IEEE Computer Society Press, Los Alamitos, CA.

[7] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas
A. Longstaff, “A Sense of Self for Unix Processes”, In Proc. 1996
IEEE Symp. on Security and Privacy, pp. 120-128, 06-08 May 1996,
Oakland, CA. IEEE Computer Security Press, Los Alamitos, CA.

[8] Kevin L. Fox, Ronda R. Henning, Jonathan H. Reed, and Richard
Simonian, “A Neural Network Approach Towards Intrusion Detec-
tion”, In Proceedings of the 13th National Computer Security Con-
ference, pages 125-134, 01-04 October 1990, Washington DC.

[9] Anup Gosh, Aaron Schwartzbard and Michael Schatz “Learning Pro-
gram Behavior Profiles for Intrusion Detection”, In Proceedings of
the 1st USENIX Workshop on Intrusion Detection and Network Mon-
itoring, pages 51-62, 09-12 April 1999, Santa Clara, CA. USENIX
Association, Berkeley, CA.

[10] Anup Gosh, James Wanken, and Frank Charron “Detecting Anoma-
lous and Unknown Intrusions Against Programs”, In Proceedings of
the 14th Annual Computer Security Applications Conference, pages
259-267, Scottsdale, AZ, 07-11 December 1998. IEEE Computer Se-
curity Press, Los Alamitos, CA.

[11] Sandeep Kumar, “Classification and Detection of Computer Intru-
sions”, Ph.D. Dissertation, Purdue University, West Lafayette, Indi-
ana, August 1995.

[12] Somesh Jha, Kymie M. C. Tan, and Roy A. Maxion, “Markov
Chains, Classifiers, and Intrusion Detection”, In Proceedings of the
14th IEEE Computer Security Foundations Workshop, pages 206-
219, 11-13 June 2001, Cape Breton, Nova Scotia, Canada.

[13] Terran Lane and Carla E. Brodley, “Sequence Matching and Learning
in Anomaly Detection for Computer Security”, In Proc. of AAAI-97
Workshop: AI Approaches to Fraud Detection and Risk Management,
AAAI Press, pp. 43-49, 27-31 July 1997, Providence, RI.

[14] Roy A. Maxion and Kymie M. C. Tan, “Benchmarking Anomaly-
Based Detection Systems”, In Proceedings of the International Con-
ference on Dependable Systems and Networks, pages 623-630, 25-28
June 2000, New York, NY. IEEE Computer Society Press.

[15] Roy A. Maxion and Kymie M. C. Tan, “Anomaly Detection in Em-
bedded Systems”, IEEE Transactions on Computers, 51(2), pages
108-120, February 2002.

[16] Kymie M. C. Tan; Kevin S. Killourhy, and Roy A. Maxion, “Under-
mining an Anomaly-Based Intrusion Detection System Using Com-
mon Exploits”, In Proceedings of the Fifth International Symposium
on Recent Advances in Intrusion Detection (RAID-2002), Andreas
Wespi, Giovanni Vigna and Luca Deri (Eds.), 16-18 October 2002,
Zurich, Switzerland, pp. 54-73. Lecture Notes in Computer Science
#2516, Springer-Verlag, Berlin, 2002.

[17] Kymie M. C. Tan and Roy A. Maxion, “ ‘Why 6?’ Defining the Op-
erational Limits of stide, an Anomaly-Based Intrusion Detector”, In
Proceedings 2002 IEEE Symposium on Security and Privacy, pages
188-201, 12-15 May 2002, Oakland, CA. IEEE Computer Society
Press, Los Alamitos, CA.

[18] Henry S. Teng, Kaihu Chen, and Stephen C-Y Lu, “Security Au-
dit Trail Analysis Using Inductively Generated Predictive Rules”, In
Proc. of the Sixth Conference on Artificial Intelligence Applications,
pages 24-29, IEEE Service Center, Piscataway, NJ, March 1990.

[19] David Wagner and Paolo Soto. “Mimicry attacks on host-based in-
trusion detection systems”, In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, pp. 255-264, 18-22
Nov. 2002, Washington, DC. ACM Press, New York, NY, USA.

[20] Christina Warrender, Stephanie Forrest and Barak Pearlmutter, “De-
tecting Intrusions Using System Calls: Alternative Data Models”, In
Proceedings 1999 IEEE Symposium on Security and Privacy, pages
133-145, 09-12 May 1999, Oakland, CA. IEEE Computer Security
Press, Los Alamitos, CA.

[21] J. Zurada. “Introduction to artificial neural systems,” West Publishing
Co., St. Paul, MN, 1992.

0-7695-2282-3/05 $20.00 c© 2005 IEEE 225 DSN 2005: Tan & Maxion


