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Abstract rithms in the asymptotic system size limit under unreliable
environments become essential.

In recent years, many DHT-based P2P systems have In the past few years, there has been a growing number
been proposed, analyzed, and certain deployments havef newly proposed DHT routing algorithms. However, in
reached a global scale with nearly one million nodes. One the DHT routing literature, there have been few papers that
is thus faced with the question of which particular DHT sys- provide a general analytical framework to compare across
tem to choose, and whether some are inherently more ro-the myriad routing algorithms. In this paper, we develop a
bust and scalable. Toward developing such a comparativemethod to analyze the performance and scalability of differ
framework, we present the reachable component methodent DHT routing systems under random failures of nodes.
(RCM) for analyzing the performance of different DHT We would like to emphasize that we intend to analyze the
routing systems subject tandom failuresWe apply RCM  performance of théasic routing geometry and protocol.
to five DHT systems and obtain analytical expressions thatIn a real system implementation, there is no doubt that a
characterize theirroutability as a continuous function of system designer have many optional features, such as addi-
system size and node failure probability. An important con- tional sequential neighbors, to provide improved fault tol
sequence is that in the large-network limit, the routabpidf erance. Nevertheless, the analysis of the basic routing ge-
certain DHT systems go to zero famynon-zero probability ~ ometry will give us more insights and good guidelines to
of node failure. These DHT routing algorithms are therefore compare among systems.
unscalablewhile some others, including Kademlia, which In this paper, we investigate the routing performance of
powers the popular eDonkey P2P system, are found to befive DHT systems with uniform node failure probability
scalable Such a failure model, also known as thitic resilience
model, is assumed in the simulation study done by Gum-
madi et al. [2]. A static failure model is well suited for
analyzing performance in the shorter time scale. In a DHT,
very fast detection of faults is generally possible through
means such as TCP timeouts or keep-alive messages, but

Developing scalable and fault tolerant systems to lever- establishing new connections to replace the faulty nodes is
age and utilize the shared resources of distributed computmore time and resource consuming. The applicability of the
ers has been an important research topic since the dawn ofesults derived from this static model to dynamic situation
computer networking. In recent years, the popularity and such as churn, is currently under study.
wide deployment of peer-to-peer (P2P) systems has inspired Intuitively, as the node failure probabilityincreases, the
the development of distributed hash tables (DHTs). DHTSs routing performance of the system will worsen. A quantita-
typically offer scalableO(logn) routing latency and effi-  tive metric, calledroutability is needed to characterize the
cient lookup interface. According to a recent study [12], routing performance of a DHT system under random fail-
the DHT based file-sharing network eDonkey is emerging ure:
as one of the largest P2P systems with millions of users
and accounting for the largest fraction of P2P traffic, while Definition 1 The routability of a DHT routing system is
P2P traffic currently accounts for 60% of the total Internet the expected number of routable pairs of nodes divided by
bandwidth. Given the transient nature of P2P users, analyz-  itpe termstatic refers to the assumption that a node’s routing table
ing and understanding the robustness of DHT routing algo- remains unchanged after accounting for neighbor failures.

1 Introduction
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the expected number of possible pairs among the survivingsimple yet effective method for analyzing DHT routing per-
nodes. In other words, it is the fraction of survived routing formance under random failure. We apply the RCM method
paths in the system. In general, routability is a function of to analyze the basic routing algorithms used in the follgwin
the node failure probability and system siz4'. five DHT systems: Symphony [10], Kademlia [11], Chord
[16], CAN [14] and Plaxton routing based systems [13]. For
all algorithms except Chord routing, we derive the analyt-
ical expression for each algorithm'’s routability under-ran
dom failure, while an analytical expression for a tight lowe
wherep. is called the percolation threshold of the underly- bound is obtained for Qhord routing. In fact_, our an_alyt|-
cal results match the simulation results carried out in [2],

Ny netvyork, then the network will get fragmented into very where different DHT systems were simulated and the per-
small-size connected components and for large enough net-

work size. As a result, the routability of the network will centagltz of fa_uled paths.(l.e.., ! routablh_ty) was eStII”dEitE.
i - N = 216 asillustrated in Fidll6. In addition, we also derive
approach zero for such failure probability due to the lack . . .
- the asymptotic performance of the routing algorithm under
of connectivity. However, because of how messages ge

.
- ) . failure as the system scales.
routed as specified by the underlying routing protocol, all Y

. . One interesting finding of this paper is that under ran-
pairs belonging to the same connected component need no , : . ,
. om failure, the basic DHT routing systems can be classi-

be reachable under failure.

: fied into two classesscalableandunscalable For example,
In general, the size of the connected components do nOtthe XOR routing scheme of Kademlia is found to 4izal-

directly give us the routability of the subnetworks. Hence, ; o
: able since the routability of the system under nonzero prob-
one needs to develop a framework different from the well- .- . L
ability of failure converges very fast to a positive limiteav

known framework of percolation. As a result, this work in- . o o :
. i ) as the size of the system tends to infinity. This is consistent
vestigates DHT routability under the random failure model . . .
. . S -~ with the observation that the Kademlia-based popular P2P
for both finite system sizes and the infinite limit. We will . i
network eDonkey is able to scale to millions of nodes. In

define thescalability of a routing system as follows: contrast, as the system scales, the routability of Symphkony
Definition 2 A DHT routing system is said to Isealabldf routing scheme is found to quickly converge to zero for any

and only if its routability converges to a nonzero value a&sth  failure probability greater than zero. Thus, the basicinmut
system size goes to infinity for a nonzero failure probapilit system for Symphony is found to bmscalable However,

As the DHT-based eDonkey is reaching global scale, it is
important to study how DHT systems perform as the num-
ber of nodes reaches millions or even billions. In fact, we
know from site percolation theory [15], thatif> (1 —p.),

g. Mathematically, it is defined as follows: as briefly discussed above in this section, a system designer
. for Symphony can specify enough near neighbors to guar-
ngnoo r(N,q) >0 for0<g<1-—p, antee an acceptable routability in the system for a maximum

N network size and a reasonable failure probability
wherer(N, q) denotes the routability of the system as @ The rest of this paper is organized as follows. In section
function of system siz& and failure probabilityg. Simi-  py e discuss previous work on the fault tolerance of P2P
larly, the system is said to henscalablef and only if its  youting systems. In sectidh 3, we will give an overview of
routability converges to zero as the system size goes 10 inyhe DHT routing systems that we intend to analyze. In sec-
finity for a nonzero failure probability: tiond, we present theeachable component meth@@CM)

. _ _ and apply the RCM method on several DHT systems. In
ngnoo r(N,g) =0 for0<g<1-pe sectionb, we examine the scalability of DHT routing sys-

tems. In sectiohl6, we give our concluding remarks.

We want to emphasize that in a real implementation, there

are many system parameters that the system designer cad R€lated Work

specify, such as the number of near neighbors or sequential

neighbors. As a result, the designer can always add enough The study of robustness in routing networks has grown in

sequential neighbors to achieve an acceptable routabilitythe past few years with researchers simulating failure con-

under reasonable node failure probability for a maximum ditions in DHT-based systems. Gummadi et al. [2] showed

network size that exceeds the expected number of nodes thathrough simulation results that the routing geometry ofieac

will participate in the system. The scalability definitian i  system has a large effect on the network’s static resilience

provided for examining theéheoreticalasymptotic behavior  to random failures. In addition, there have been research

of DHT routing systems, not for claiming a DHT system is work done in the area of analyzing and simulating dynamic

unsuitable for any large-scale deployment. failure conditions (i.e. churn) in DHT systems [5, 7, 8].
Having specified the definition of the key metrics, we Theory work has been done to predict the performance

will present the reachable component method (RCM), aof DHT systems under a static failure model. The two



main approaches thus far have been graph theoretic meth- The routing Markov chain (Fig-4{a)) for the tree geome-
ods [1, 6, 9] and Markov processes [17]. Most analytical try can easily be generated by examining the possible @ilur
work to date has dealt with one or two routing algorithms to conditions during routing. At each step in the routing pro-
which their respective methods are well-suited but have notcess, the neighbor that will correct the leftmost bit must be
provided comparisons across a large fraction of the DHT present in order for the message to be routed. Otherwise,
algorithms. Angel et al. [1] use percolation theory to place the message is dropped and routing fails.

tight bounds on the critical failure probability that campsu

port efficient routing on both hypercube atdlimensional 3.2 Hypercube (CAN)

mesh topologies. By efficient they mean that it is possible

to route between two nodes with time complexity on the  In the hypercube geometry, each node’s identifier is a
order of the network diameter. While this method predicts binary string representing its position in thedimensional

the point at which the network becomes virtually unusable, space. The distance between nodes is simply the Hamming
it does not allow the detailed characterization of routabil distance of the two addresses. The number of possible paths
ity as a function of the failure probability. In contrasteth ~ that can correct a bit is reduced by 1 with each successful
reachable component method (RCM) method exploits thestep in the route. This fact makes the creation of the hyper-
geometries of DHT routing networks and leads to simple cube routing Markov chain (Fif.4{b)) straightforward.
analytical results that predict routing performance fdui-ar

trary network sizes and failure probabilities. 3.3 XOR (Kademlia)

In XOR routing [11], the distance between two nodes is
the numeric value of the XOR of their node identifiers. Each
- ) ) ) ) node keepsog(N) connections, with théth neighbor cho-

We will first review the five DHT routing algorithms that  ggp, uniformly at random from an XOR distance in the range
we intend to analyze. An excellent discussion of the geo- 4 [2d-i 2d=i+1] away. Messages are delivered by routing
metric interp.retatiop of these routing glgorithms (exdept greedily in the XOR distance at each hop. Moreover, it is a
Symphony) is provided by Gummadi et al. [2] and we use gjmple exercise to show that choosing a neighbor at an XOR
the same terms for the geometric interpretations of DHT istance of2¢—4, 24-i+1] away is equivalent to choosing a
routing systems in this paper (e.g. hypercube and ring ge-nejghhor by matching the first (i-1) bits of one’s identifier,

ometry for CAN and Chord routing systems, respectively). fiipping theith bit, and choose random bits for the rest of
By following the algorithm descriptions in [2] as well as the  {he pits.

descriptions in this section, one can construct Markovithai  Effectively, this construction is equivalent to the Plaxto

models (e.g. Fig[l4) for the DHT routing algorithms. The tree routing geometry. As a result, when there is no failures
application of the Markov chain models will be discussed he XOR routing protocol resolves node identifier bits from
in sectiorl 41l an412. _ left to right as in the Plaxton-tree geometry. However, when

~ In-addition, we will use the notation gfhasesas used  the system experiences node failures, nodes have the option
in [3]: we say thatthe routing process has reached phiise g route messages to neighbors that resolve lower order bits
the numeric distance (used in Chord and Symphony) or theyhen the neighbor that would resolve the highest order bitis
XOR distance (used in Kademlia) from the current messagenot available. Note that resolving lower order bits willals
holder to the target is betweedi and2/*!. In addition,  make progress in terms of decreasing the XOR distance to
we will use binary strings as identifiers although any other yestination. Nonetheless, the progress made by resolving

base besides 2 can be used. Finally, for those systems thabwer order bits is not necessarily preserved in future hops
require resolving node identifier bits order, we use the phases (see Fif.5(a)).

3 Overview of DHT Routing Protocols

convention of correcting bits from left to right. For example, at the start of the routing process, one phase
is advanced if the neighbor correcting the leftmost bittsxis
3.1 Tree (Plaxton) Otherwise, the routing process can correct one of the lower
order bits. However, if all of the neighbors that would re-
Each node in a tree-based routing geometrylbgsV  solve bits have failed, the routing process fails. A Markov

neighbors, with théth neighbor matching the firgt- 1 bits chain model for the routing process is illustrated in Fig.
and differ on theith bit. When a source nodg, wishes

to route to a destination), the routing can only be suc-

cessful if one of the neighbors ¢f , denotedZ, sharesa 3.4 Ring (Chord)

prefix with D and has the highest-order differing bit. Each

successful step in the routing results in the highest-dsier In Chord [16], nodes are placed in numerical order
being corrected until no bits differ. around a ring. Each node with identifier maintains



log(NN') connections or fingers, with each finger at a distance of nodei is a subset of the connected component contain-
[24— 24=i+1] away (the randomized version of Chord is ing nodei. Third, we assume that no "back-tracking” is
discussed here). Routing can be done greedily on the ringallowed (i.e. when a node cannot forward a message fur-
When the system experiences failure, each node will con-ther, the node is not allowed to return the message back to
tinue to route a message to the neighbor closest to destinathe node from whom the message was received).

tion (i.e. in a greedy manner). A Markov chain model for ~ RCM is fairly simple in concept and involves the follow-
the routing process is illustrated in F[g. 8(a). ing five steps:

3.5 Small-World (Symphony) 1. Pick a random node, nodefrom the system and de-
note it as theoot node Construct the root node’s rout-
ing topology from the routing algorithm of the system
(i.e. the topology by which the root node routes to all
other nodes in the system).

Small-world routing networks in the-dimensional case
have a ring-like address space where each node is connected
to a constant number of its nearest neighbors and a constant
number of shortcuts that have Ad distance distributiond
is the ring-distance between the end-points of the shgrtcut
Each node maintains a constant number of neighbors and
uses greedy routing. Due to the distance distribution it wil
take an average @(log N) hops before routing halves the
distance to a target node, therefore requitifgpg N) such
phases to reach a target node for a total expected latency of
O(log® N).

When the system experiences node failures, some of the
shortcuts will be unavailable and the route will have to take
"suboptimal” hops. The small-world Markov chain model

is fundamentally different from the ones for XOR routing 4 compute the expected size of teachable component

(Fig. [5(B}) and ring routing (Fig[_8g)). A routing phase from the root node by first calculating the expected
is completed if any of the node’s shortcuts connects to the number of reachable nodes at distakichops away

2. Obtain the distribution of the distances (in hops or in
phases) between the root node and all other nodes (de-
noted as:(h)); in other words, for each integér cal-
culate the number of nodes at distahdeops from the
root node. Note that the meaning lobpsor phases
will be clear from the context.

3. Compute the probability of succeggh, q), for rout-
ing to a nodé&h hops away from the root node under a
uniform node failure probability;.

desired phase. This happens with probab'@tywhereks (which is simply given byn(h) = p(h, q)). Now, we
denotes the number of shortcuts that each node maintains.  g,m over all possible number of hops to obtain the ex-
Alternatively, the routing fails if all of the node’s nearigl- pected size of the reachable component.

bor and shortcut connections fail, which happens with prob-
ability ¢*~**-. If neither of the above happens then the 5 By inspection, the expected number of routable pairs

route takes a suboptimal hop, which happens with probabil- i the system is given by summing all surviving nodes’
ity 1 — % — gt expected reachable component sizes. Then, dividing
the expected number of routable pairs by the number

4 Reachable Component Method and its Ap- of possible node pairs among all surviving nodes pro-
plications duces the routability of the system under uniform node

failure probabilityg.

4.1 Method Description The formula for computing the expected size of the
reachable componenk[S;], described in step 4 is derived
We now describe the steps of treachable component as follows:
methodRCM) in calculating the routability of a DHT rout-

. . . N N

ing system under random failure. Before we delve into the P a1 1

description, let us first clarify several concepts and nota- Elsi] = E[ZYJ] N z_: ERs] = Zn(h)p(h’ 2
tions on DHT routing. First, we allow all DHTSs to fully = = =

populate their identifier spaces (i.e. node identifier lengt

d = log, N). Second, when a DHT is not in its perfect whereY; is Bernoulli random variable for denoting reach-
topological state, it can be the case that a pair of nodesare i ing nodej, andd is the node identifier length.

the same connected component but these two nodes cannot Since nodes in the system are removed with probability
route between each other. Thus, the reachable componentaf, there ar€1 — ¢) N or pN nodes that survive on average.
node: is the set of nodes that nodean route to under the In step 5, the formula for calculating the routability, of
given routing algorithm. Note that the reachable componentthe system under uniform failure probabiligyis given as
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Figure 2. We select node 011
Figure 1. Here we to be the root of the routing Figure 3. For illustration purpose, we examine how
illustrate the reachable graph. The symmetry of the 011 routes a message to 100. Note that three choices
component method us- system means that each node exist for the first hop, 2 choices exist for the second hop
ing an 8-nodes hyper- will be the root of a routing and only one choice left for the last hop. For this exam-
cube. graph with identical structure. ple,p(h,q)is: p(3,¢) = (1 — ¢*)(1 — ¢*)(1 — q).
follows: Step 3. The routing process can be modeled as a discrete
time Markov chain (Fig.[03 anf4{b)). The statés of
pN pN .
B ZS' ZE[S'] the Markov chain correspond to the number of corrected
M. — ’ - ’ bits. Note that there are only two absorbing states in the
r o= L= = N —— Markov chain: the failure statg' and the success state (i.e
M, [pN]) N(pN —1 : - - A
P 2( 2 ) pN(p ) S1). Thus, the probability of successfully routing to a target
_ E[S] 1) node at distancg hops away is given by the probability of

transitioning fromSy to .Sj, in the Markov chain model:

whereM,,, denotes the expected numberofitable pairs
among surviving nodes, and,, is the expected number of
all possible pairemong surviving nodes. Note that the last

p(h,q) = PrSo— S1— ... — Sh)
Pr(S() — Sl)Pr(Sl — SQ)...Pr(Sh,1 — Sh)

equality follows from the observation that DHTs investi- = 1-¢"1-¢"NH..1-9

gated in this paper have symmetric nodes. Therefore, the h

routing topology of each node is statistically identical to = (1—q™) (2)
each other. Thus, al¥;’s are identically distributed for all m=1

i's: E[S] = E[S;] Vi.
Step 4.Thus, the expected size of the reachable component
4.2 Using the Hypercube Geometry as an is given as:
Example

d h
A simple application of the RCM method is illustrated E[S] =Y n(h)p(h,q) = (Z) [Ha-eam

for the CAN hypercubic routing system in Fi@l[1-3. The h=1 h=1

RCM steps involved are as follows:

Step 1. As reviewed in sectiofll3, in a hypercube routing Step 5.Using Eq[1, we obtain the analytical expression for

geometry [14], the distance (in hops) between two nodes isroutability:

their Hamming distance. Routing is greedy by correcting

bits in any order for each hop.

m=1

Step 2.Thus, for any random noden a hypercube routing Z n(h)p(h,q)

system with identifier length af bits, we have the follow- y = h=1 3)
ing distance distributionn(h) = (). The justification is (1-g)2¢ -1

immediate: a node dt hops away has a Hamming distance dra\ &

of h bits with nodei. Since there aré;'f) ways to place the Z L H (1—-4¢™)

h differing bits, there aré,‘f) nodes at distanck (see Fig. — h=1 m=1 4)
D). (I—gq)27-1



(a)Tree (b) Hypercube

Figure 4. The above diagrams illustrate the Markov chain model of thaing process to a target at distariclops from the

root node. Note that there are only two absorbing stateseisetiMarkov chains: the failure state (denotedrt)yand the success
state (denoted bg},). (a) Markov chain model for tree routing: Ti$s represent the states that correspond to number of corrected
orderedbits. At eachsS;, the neighbor that will correct the leftmost bit must be presin order for the message to be routed.
Otherwise, the message is dropped and routing fails. Thagdransition probability fron®; to S;11 is 1 — ¢, while the transition
probabilities to the failure stateds (b) Markov chain model for hypercube routing: Here, fie represent the states that correspond
to number of corrected bits in any order. The transition plilities are obtained by noting that at st&tethere are: — ¢ neighbors

to route the message to.

4.3 Summary of Results for other Routing following common form:

Geometries
p(h,q) = G(So,51)G(S1,52)...G(Sh-1,5n)
h
= 1- 5
Using the RCM method, the analytical expressions for ngl( @m)) ®)

the other DHT routing geometries can be similarly derived
as for the hypercube routing geometry. In all the deriva-
tions, the majority of the work involves finding the expres-

sion forp(h, q) through Markov chain modeling. Note that i ¢ deri tigation. A it honl
the analytical expressions derived in this section are com-'outing system underinvestigation. AS a result, we wi bon

pared with the simulation results obtained by Gummadi et provide then(h) and@)(m) expressions for each system for

al. [2] in Fig.[6(@) an@&(B). conciseness.

For ease of exposition, we will use the notati@(y, j),
which denotes the probability that, starting at state
the Markov chain ever visits statg By any of the
Markov chain models for the routing protocols, we note that ) . ) o
G(So,81) = 1= Q(h), G(51,5,) = 1 —Q(h — 1), and Eorthe tree I‘OL(JitIng geometry, the routing d|stanf:§ d|sfr|b
so forth, where the functio(im) can be thought of as the  tion, n(h), is (j,) by inspection. Furthermore, it is sim-
probability of failure at themth phase of the routing pro-  Ple to show thaip(h,q) = (1 — ¢)" by examining the
cess. As a result, all of the DHT systems under study haveMarkov chain model (see Fig[_4[a)). In sum, the ex-
the property that the probability of successfully travglin ~ Pression for routability can be succinctly given as follows

hops or phases from the root nog¢h, ¢), is given by the — r = %

Using Eq.[B, we see that only the expressionsifgr) and
(m) are needed to compute the routability of the DHT

4.3.1 Tree
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(a) XOR Routing under Failure (b) XOR Markov Chain Model

Figure 5. (a) lllustration of XOR routing under failure: in this singpexample, node10 tries to route a message to node 101.
However, its first neighbor 111 (i.e. the randomly chosenenitit flips the first bit and chooses random bits for the reshef
identifier bits), has just failed. As a result, the messag®iged to node 010’s second neighbor, node 000, correctiogver
order bit. Now, node 000’s first neighbor, node 110, is atéélaand node 110’s second neighbor, node 100, is also blaila
Consequently, the message is routed to the destinationI@idey following the dashed arrows in the diagram. (b) Mar&leain
model for XOR routing: this diagram illustrates routing ttaeget located at phases in distance, which is equivalent to correcting
h bits in order (left to right). TheS,s denote the states that correspond to the number of correadecedbits, which is equivalent

to the number of phases advanced. The st@tgg denote a state that correspondsj teuboptimal hops taken after advancing
phases.

4.3.2 XOR chain model, we note that’(Sy, S1) = 1 — Quor(h),
G(S1,52) = 1 — Quor(h — 1), and so forth, where the

As reviewed in sectiofll 3, connecting to a neighbor at an function@,.-(m) is defined as follows:

XOR distance of2¢~%, 2¢=#*+1] is equivalent to choosing a

neighbor by matching the first (i-1) bits of one’s identifier, m—1 m—1

flipping the ith bit, and choose random bits for the rest of Qzor(m) = ¢+ > ™[ J[ 1 —¢)] (6)
the bits. Note that this is equivalent to how neighbors are k=1 j=m—k

chosen in the Plaxton-tree routing geometry. As a result, m q 1 1—g¢mt!
then(h) expression is given asi(h) = (}) just as in the ~ ¢ (m+ ﬂ(q (m—1) - Tq))
tree case.

Now, let's examine how the Markov chain model (Fig. The approximation is obtained by invoking the following:
(b)) is obtained: in this scenario, a message is to be routed — = ~ e~ for x small.
to a destinatiorh phases away; starting at staig stateS;
is_ reqched if_the optimal n_eighbor co_r_recting the leftmost 4 5 3 Ring
bit exists, which happens with probability- ¢ (S; denotes
the state that corresponds to tile advanced phase). How- Inring routing as implemented in Chord, when a node takes
ever, if all h neighbors have failed (i.e. with probability a suboptimal hop in the routing process, the progress made
¢™), the failure stateF is entered. Otherwise, the rout- by taking this suboptimal hop is preserved in later hops.
ing process can correct one of the lower order bits, which For example, consider the scenario that a message is to be
happens with probability(1 — ¢"~1). Note that there is  routed to a node at a numeric distance tha?(v) (i.e. the
a maximum number of — 1 lower order bits that can be message is to be routed one full circle around the ring), and
corrected in the first phase. All other transition probabil- the fingers are connected to nodes that are half way across
ities can be obtained similarly. By inspecting the Markov the ring, one quarter across the ring, etc. For the message’s
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Figure 7. (a) Asymptotic limit: This figure plots the percentage ofdédi paths (i.e. 1-routability) for varying node failure pebility in the
asymptotic limit. The curves are obtained by evaluatingathalytical expressions at %0, Note that the curves for tree and symphony are very
close to a step function, which is consistent with our ariglyg addition, the curves for the other three geometriesvary close to the case for
N=216_ (b) Routability vs N: This plot shows the routability of theuting geometries for varying system size and a constaatdaprobability
(g=0.1). This figure clearly demonstrates the lack of sdlithatof the tree and Symphony routing geometries. As theeaysscales, the routability
of both the tree and Symphony routing systems monotonicedfyrades toward zero. In contrast, the other three ge@aetimain highly routable

in the face of failure even as the systems scale to billionsodes. (In both plots, we set the number of near neighborstendumber of shortcuts
equal to one for Symphony.)



first hop, it takes a suboptimal hop which takes the mes-advanced if any of the node’s shortcuts connects to the de-
sage only one quarter across the ring, because the fingesired phase, which happens with probabilﬁw wherek,

that would have taken the message half way across the ringlenotes the number of shortcuts. Alternatively, the rautin
has failed. Then, for the message’s second hop, none of thédails if all of the node’s near neighbor and shortcut connec-
finger connections has failed. Thus, the message takes ations fail, which happens with probabiliy~+*=. The third
optimal hop which takes the message half way across thepossibility is taking a suboptimal hop, which happens with
ring. Therefore, after two hops, the message is now threeprobabilityl — % — ¢F»tks Al other transition probabili-
guarters of the way across the ring. Note that the progresgies in the Markov chain can be similarly derived. Note that
made in the first suboptimal hop is this scenario is later pre-we approximate the maximum number of suboptimal hops
served by a subsequent hop. by [%] .

This property that suboptimal hops in ring routing con- For the Symphony routing geometry, we note that the
tribute non-trivially to the routing process is not accatht  expression for th€)’s is constant for all phases. The results
for in the the Markov chain model as illustrated in fig. B(a). are similarly derived as the other systems by inspecting Fig
The reason is that accounting for progress made by suboptiB(B]):

mal hops would lead to an exponential blowup in the num- (o
i—q

ber of terms that we need to keep track of for computing P ks ok

p(h,q). This simplified Markov chain model essentially Qoym =q """ (1- P ey

makes the assumption that progress made by suboptimal 7=0

hops do not contribute to the routing process. Therefore, o, 1 — (11— % — qkn+ks)ﬁ+1

the analytical expression fgi(h, ¢) using this model pro- ~ g 1— (1 & — ghathe) ) @

vides alower bound
The Markov chain model for ring routirfg 8]a) is very The symbolsk,, andk, denote the number of near neigh-
similar to the one for XOR routing (Fig-_5{b)). However, bors and shortcuts respectively. Similarly to ring routing
fundamental differences exist: first, when a suboptimal hop then(h) expression for the Symphony routing algorithm is
is taken in Chord, the number of next hop choices does notgiven by:n(h) = 2"~1.
decrease. For example, in the first phase, therg ammices
for the next hop, thus the transition probabilities from the g5 Scalability of DHT Routing Protocols un-
states in the first phase to _the faﬂurg state are _gl\./eq_(fby der Random Failure
In contrast, the corresponding transition probabilitieBig.
B(B] are given by;", ¢"~1, and so forth. In addition, the
maximum number of suboptimal hops in Chord is given by
2h=1 2h=2 and so forth, while the corresponding transition
probabilities in Fig[ 5(B) are given by, h — 1, and so forth.
This difference is due to the fact that in XOR routing, rout-
ing fails if all the lower order bits are resolved and the-left
most bit is not yet resolved. However, Chord does not have
such restriction.The results for the ring routing geomesry
derived by inspecting Fif. 8{(a):

For a DHT routing system to be scalable, its routabil-
ity must converge to a non-zero value as the system size
goes to infinity (Definitior[R). Alternatively, we examine
the asymptotic behavior qgf(h, ¢) with h set to the aver-
age routing distance in the system (i’e.= O(log N) or
O(log2 N) for Symphony). Using Eq[3, it is simple to
show that the equivalent condition for scalability is as fol
lows:

I Jim p(h,g) = lim p(h,q) > 0for0 <g<1-—pe (8)
Qring(m) = ¢™ Z la(1 = g™ )" Otherwise, the routing system is unscalable. In other words
k=0 the equivalent condition for system scalability states #sa

Coml—g =g h the number of routing hops to reach a destination node in the
N 1—q(1—q¢gm 1 system approaches infinity, the probability of succesgfull
routing to the destination node must not drop to zero for a
In addition, one can easily see by inspection thatrttve) non-zero node failure probability in the system.
expression for the ring geometry is given byh) = 2" 1. As discussed in sectidi .3, all of the DHT systems un-

der study have the property that the probability of success-
fully traveling h hops or phases from the root node is given

4.3.4  Symphony by the following form:

Symphony’s Markov chain model (Fif_8[b)) is fundamen-

h
tally different from the ones for XOR routing (Fid-_b[b)) hoq) — 1— 9
and ring routing (Fig [8(§)). Starting &, one phase is p(h9) H (1=Q(m) ®)

m=1



(a) Markov chain model for ring routing

(b) Markov chain model for Symphony routing

Figure 8. The above two diagrams illustrate the Markov chain modetifag and Symphony routing geometries.

whereQ(m) can be thought of as the probability of failure
at themth phase of the routing process.

Theorem 1 (From Knopp[4]) If, for everyn, 0 < a,, < 1,
then the producf[(1 — a,,) tends to a limit greater than 0
if, and only if,> " a,, converges.

Theorenfll allows us to conveniently convert our prob-
lem of determining the convergence of an infinite product
to a simpler infinite sum. Thug(h, q) is convergent if and
only if >~ Q(m) converges.

5.1 Tree

The case for the tree routing geometry can be trivially
shown to baunscalable

lim (1 — ¢)" =0 foranyq >0

h—o0

(10)

5.2 Hypercube

For hypercube routingp(h, ¢) is given byp(h,q) =
h

H (1 — ¢™) (Eq. @). By invoking Theorerfil1, it is triv-
m=1

ial to see thad_ ¢™ converges fof) < ¢ < 1 — p.. Thus,
the hypercube routing geometryssalable

5.3 XOR
In XOR routing, theQ(m) expression given by Ed] 6.
It is simple to show that th&)(m) series involves only™

andmg™ terms. Thus}_ Q(m) is convergentand the XOR
routing scheme iscalable
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5.4 Ring

We will demonstrate that the ring routing geometry is
also scalable by showing that the XOR results derived above
is a lower bound for the ring geometry. We compare the
Markov chain models for the ring geometry and the XOR
geometry (Fig[8(&) and Fifl. 5{b)). We note that the transi-
tion probabilities for the suboptimal hops in ring are styic
greater than the corresponding probabilities for XOR. For
example, in Fig[[8(%), note that the transition probabkiiti
for So — (0,1), (0,1) — (0,2) and so forth are given by
q(1—q"~1). These probabilities are strictly greater than the
corresponding transition probabilities in Hg. 3(b). Thioyg
comparing these two Markov chain models, it is simple to
show that thev(h, ¢) expression for the ring routing geom-
etry is strictly greater than the(h, ¢) expression for XOR
routing. Thus, the ring routing geometry is alstalable

5.5 Symphony

In Symphony routing, the&)(m) expression given by
Eq.[d. Note that th€)(m) expression is given by a constant
term. Therefore)_ Q(m) is divergent and the Symphony
routing scheme isinscalable

Please refer to Fig. [ 7{a) an[d_4q(b) for plots of the
above scalability results.

6 Concluding Remarks

In this work, we present the reachable component
method (RCM) which is an analytical framework for char-
acterizing DHT system performance under random failures.



The method’s efficacy is demonstrated through an analysis [6] S. S. Lam and H. Liu. Failure recovery for structured p2p

of five important existing DHT systems and the good agree-

ment of the RCM predictions for each system with simu-
lation results from the literature. Researchers involved i

P2P system design and implementation can use the method
to assess the performance of proposed architectures and to
choose robust routing algorithms for application develop-
ment. In addition, although the analysis presented in this
work assumes fully-populated identifier spaces, analytica

results for real world DHTs with non-fully-populated iden-
tifier spaces can be similarly derived. Detail investigatio
in this area will be left for future work.

One of the most interesting implications of this analy-
sis is that in the large-network limit, some DHT routing

systems are incapable of routing to a constant fraction of

the network if there is any non-zero probability of random

node failure. These DHT algorithms are therefore consid-

ered to baunscalable Other algorithms are more robust to

random node failures, allowing each node to route to a con- [11]
stant fraction of the network even as the system size goes to

infinity. These systems are considered tosbalable Now
that real DHT implementations have on the order of mil-
lions of highly transient nodes, it is increasingly impaitta

to characterize how the size and failure conditions of a DHT

will affect its routing performance.
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