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Abstract

In recent years, many DHT-based P2P systems have
been proposed, analyzed, and certain deployments have
reached a global scale with nearly one million nodes. One
is thus faced with the question of which particular DHT sys-
tem to choose, and whether some are inherently more ro-
bust and scalable. Toward developing such a comparative
framework, we present the reachable component method
(RCM) for analyzing the performance of different DHT
routing systems subject torandom failures. We apply RCM
to five DHT systems and obtain analytical expressions that
characterize theirroutability as a continuous function of
system size and node failure probability. An important con-
sequence is that in the large-network limit, the routability of
certain DHT systems go to zero foranynon-zero probability
of node failure. These DHT routing algorithms are therefore
unscalable, while some others, including Kademlia, which
powers the popular eDonkey P2P system, are found to be
scalable.

1 Introduction

Developing scalable and fault tolerant systems to lever-
age and utilize the shared resources of distributed comput-
ers has been an important research topic since the dawn of
computer networking. In recent years, the popularity and
wide deployment of peer-to-peer (P2P) systems has inspired
the development of distributed hash tables (DHTs). DHTs
typically offer scalableO(log n) routing latency and effi-
cient lookup interface. According to a recent study [12],
the DHT based file-sharing network eDonkey is emerging
as one of the largest P2P systems with millions of users
and accounting for the largest fraction of P2P traffic, while
P2P traffic currently accounts for 60% of the total Internet
bandwidth. Given the transient nature of P2P users, analyz-
ing and understanding the robustness of DHT routing algo-

rithms in the asymptotic system size limit under unreliable
environments become essential.

In the past few years, there has been a growing number
of newly proposed DHT routing algorithms. However, in
the DHT routing literature, there have been few papers that
provide a general analytical framework to compare across
the myriad routing algorithms. In this paper, we develop a
method to analyze the performance and scalability of differ-
ent DHT routing systems under random failures of nodes.
We would like to emphasize that we intend to analyze the
performance of thebasic routing geometry and protocol.
In a real system implementation, there is no doubt that a
system designer have many optional features, such as addi-
tional sequential neighbors, to provide improved fault tol-
erance. Nevertheless, the analysis of the basic routing ge-
ometry will give us more insights and good guidelines to
compare among systems.

In this paper, we investigate the routing performance of
five DHT systems with uniform node failure probabilityq.
Such a failure model, also known as thestatic resilience
model1, is assumed in the simulation study done by Gum-
madi et al. [2]. A static failure model is well suited for
analyzing performance in the shorter time scale. In a DHT,
very fast detection of faults is generally possible through
means such as TCP timeouts or keep-alive messages, but
establishing new connections to replace the faulty nodes is
more time and resource consuming. The applicability of the
results derived from this static model to dynamic situations,
such as churn, is currently under study.

Intuitively, as the node failure probabilityq increases, the
routing performance of the system will worsen. A quantita-
tive metric, calledroutability is needed to characterize the
routing performance of a DHT system under random fail-
ure:

Definition 1 The routability of a DHT routing system is
the expected number of routable pairs of nodes divided by

1The termstatic refers to the assumption that a node’s routing table
remains unchanged after accounting for neighbor failures.
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the expected number of possible pairs among the surviving
nodes. In other words, it is the fraction of survived routing
paths in the system. In general, routability is a function of
the node failure probabilityq and system sizeN .

As the DHT-based eDonkey is reaching global scale, it is
important to study how DHT systems perform as the num-
ber of nodes reaches millions or even billions. In fact, we
know from site percolation theory [15], that ifq > (1−pc),
wherepc is called the percolation threshold of the underly-
ing network, then the network will get fragmented into very
small-size connected components and for large enough net-
work size. As a result, the routability of the network will
approach zero for such failure probability due to the lack
of connectivity. However, because of how messages get
routed as specified by the underlying routing protocol, all
pairs belonging to the same connected component need not
be reachable under failure.

In general, the size of the connected components do not
directly give us the routability of the subnetworks. Hence,
one needs to develop a framework different from the well-
known framework of percolation. As a result, this work in-
vestigates DHT routability under the random failure model
for both finite system sizes and the infinite limit. We will
define thescalabilityof a routing system as follows:

Definition 2 A DHT routing system is said to bescalableif
and only if its routability converges to a nonzero value as the
system size goes to infinity for a nonzero failure probability
q. Mathematically, it is defined as follows:

lim
N→∞

r(N, q) > 0 for 0 < q < 1− pc

wherer(N, q) denotes the routability of the system as a
function of system sizeN and failure probabilityq. Simi-
larly, the system is said to beunscalableif and only if its
routability converges to zero as the system size goes to in-
finity for a nonzero failure probabilityq:

lim
N→∞

r(N, q) = 0 for 0 < q < 1− pc

We want to emphasize that in a real implementation, there
are many system parameters that the system designer can
specify, such as the number of near neighbors or sequential
neighbors. As a result, the designer can always add enough
sequential neighbors to achieve an acceptable routability
under reasonable node failure probability for a maximum
network size that exceeds the expected number of nodes that
will participate in the system. The scalability definition is
provided for examining thetheoreticalasymptotic behavior
of DHT routing systems, not for claiming a DHT system is
unsuitable for any large-scale deployment.

Having specified the definition of the key metrics, we
will present the reachable component method (RCM), a

simple yet effective method for analyzing DHT routing per-
formance under random failure. We apply the RCM method
to analyze the basic routing algorithms used in the following
five DHT systems: Symphony [10], Kademlia [11], Chord
[16], CAN [14] and Plaxton routing based systems [13]. For
all algorithms except Chord routing, we derive the analyt-
ical expression for each algorithm’s routability under ran-
dom failure, while an analytical expression for a tight lower
bound is obtained for Chord routing. In fact, our analyti-
cal results match the simulation results carried out in [2],
where different DHT systems were simulated and the per-
centage of failed paths (i.e., 1-routability) was estimated for
N = 216, as illustrated in Fig. 6. In addition, we also derive
the asymptotic performance of the routing algorithm under
failure as the system scales.

One interesting finding of this paper is that under ran-
dom failure, the basic DHT routing systems can be classi-
fied into two classes:scalableandunscalable. For example,
the XOR routing scheme of Kademlia is found to bescal-
able, since the routability of the system under nonzero prob-
ability of failure converges very fast to a positive limit even
as the size of the system tends to infinity. This is consistent
with the observation that the Kademlia-based popular P2P
network eDonkey is able to scale to millions of nodes. In
contrast, as the system scales, the routability of Symphony’s
routing scheme is found to quickly converge to zero for any
failure probability greater than zero. Thus, the basic routing
system for Symphony is found to beunscalable. However,
as briefly discussed above in this section, a system designer
for Symphony can specify enough near neighbors to guar-
antee an acceptable routability in the system for a maximum
network size and a reasonable failure probabilityq.

The rest of this paper is organized as follows. In section
2, we discuss previous work on the fault tolerance of P2P
routing systems. In section 3, we will give an overview of
the DHT routing systems that we intend to analyze. In sec-
tion 4, we present thereachable component method(RCM)
and apply the RCM method on several DHT systems. In
section 5, we examine the scalability of DHT routing sys-
tems. In section 6, we give our concluding remarks.

2 Related Work

The study of robustness in routing networks has grown in
the past few years with researchers simulating failure con-
ditions in DHT-based systems. Gummadi et al. [2] showed
through simulation results that the routing geometry of each
system has a large effect on the network’s static resilience
to random failures. In addition, there have been research
work done in the area of analyzing and simulating dynamic
failure conditions (i.e. churn) in DHT systems [5,7,8].

Theory work has been done to predict the performance
of DHT systems under a static failure model. The two
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main approaches thus far have been graph theoretic meth-
ods [1, 6, 9] and Markov processes [17]. Most analytical
work to date has dealt with one or two routing algorithms to
which their respective methods are well-suited but have not
provided comparisons across a large fraction of the DHT
algorithms. Angel et al. [1] use percolation theory to place
tight bounds on the critical failure probability that can sup-
port efficient routing on both hypercube andd-dimensional
mesh topologies. By efficient they mean that it is possible
to route between two nodes with time complexity on the
order of the network diameter. While this method predicts
the point at which the network becomes virtually unusable,
it does not allow the detailed characterization of routabil-
ity as a function of the failure probability. In contrast, the
reachable component method (RCM) method exploits the
geometries of DHT routing networks and leads to simple
analytical results that predict routing performance for arbi-
trary network sizes and failure probabilities.

3 Overview of DHT Routing Protocols

We will first review the five DHT routing algorithms that
we intend to analyze. An excellent discussion of the geo-
metric interpretation of these routing algorithms (exceptfor
Symphony) is provided by Gummadi et al. [2] and we use
the same terms for the geometric interpretations of DHT
routing systems in this paper (e.g. hypercube and ring ge-
ometry for CAN and Chord routing systems, respectively).
By following the algorithm descriptions in [2] as well as the
descriptions in this section, one can construct Markov chain
models (e.g. Fig. 4) for the DHT routing algorithms. The
application of the Markov chain models will be discussed
in section 4.1 and 4.2.

In addition, we will use the notation ofphasesas used
in [3]: we say that the routing process has reached phasej if
the numeric distance (used in Chord and Symphony) or the
XOR distance (used in Kademlia) from the current message
holder to the target is between2j and2j+1. In addition,
we will use binary strings as identifiers although any other
base besides 2 can be used. Finally, for those systems that
require resolving node identifier bitsin order, we use the
convention of correcting bits from left to right.

3.1 Tree (Plaxton)

Each node in a tree-based routing geometry haslogN
neighbors, with theith neighbor matching the firsti−1 bits
and differ on theith bit. When a source nodeS, wishes
to route to a destination,D, the routing can only be suc-
cessful if one of the neighbors ofS , denotedZ, shares a
prefix withD and has the highest-order differing bit. Each
successful step in the routing results in the highest-orderbit
being corrected until no bits differ.

The routing Markov chain (Fig. 4(a)) for the tree geome-
try can easily be generated by examining the possible failure
conditions during routing. At each step in the routing pro-
cess, the neighbor that will correct the leftmost bit must be
present in order for the message to be routed. Otherwise,
the message is dropped and routing fails.

3.2 Hypercube (CAN)

In the hypercube geometry, each node’s identifier is a
binary string representing its position in thed-dimensional
space. The distance between nodes is simply the Hamming
distance of the two addresses. The number of possible paths
that can correct a bit is reduced by 1 with each successful
step in the route. This fact makes the creation of the hyper-
cube routing Markov chain (Fig. 4(b)) straightforward.

3.3 XOR (Kademlia)

In XOR routing [11], the distance between two nodes is
the numeric value of the XOR of their node identifiers. Each
node keepslog(N) connections, with theith neighbor cho-
sen uniformly at random from an XOR distance in the range
of [2d−i, 2d−i+1] away. Messages are delivered by routing
greedily in the XOR distance at each hop. Moreover, it is a
simple exercise to show that choosing a neighbor at an XOR
distance of[2d−i, 2d−i+1] away is equivalent to choosing a
neighbor by matching the first (i-1) bits of one’s identifier,
flipping theith bit, and choose random bits for the rest of
the bits.

Effectively, this construction is equivalent to the Plaxton-
tree routing geometry. As a result, when there is no failures,
the XOR routing protocol resolves node identifier bits from
left to right as in the Plaxton-tree geometry. However, when
the system experiences node failures, nodes have the option
to route messages to neighbors that resolve lower order bits
when the neighbor that would resolve the highest order bit is
not available. Note that resolving lower order bits will also
make progress in terms of decreasing the XOR distance to
destination. Nonetheless, the progress made by resolving
lower order bits is not necessarily preserved in future hops
or phases (see Fig. 5(a)).

For example, at the start of the routing process, one phase
is advanced if the neighbor correcting the leftmost bit exists.
Otherwise, the routing process can correct one of the lower
order bits. However, if all of the neighbors that would re-
solve bits have failed, the routing process fails. A Markov
chain model for the routing process is illustrated in Fig.
5(b).

3.4 Ring (Chord)

In Chord [16], nodes are placed in numerical order
around a ring. Each node with identifiera maintains
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log(N) connections or fingers, with each finger at a distance
[2d−i, 2d−i+1] away (the randomized version of Chord is
discussed here). Routing can be done greedily on the ring.
When the system experiences failure, each node will con-
tinue to route a message to the neighbor closest to destina-
tion (i.e. in a greedy manner). A Markov chain model for
the routing process is illustrated in Fig. 8(a).

3.5 Small-World (Symphony)

Small-world routing networks in the1-dimensional case
have a ring-like address space where each node is connected
to a constant number of its nearest neighbors and a constant
number of shortcuts that have a1/d distance distribution (d
is the ring-distance between the end-points of the shortcut).
Each node maintains a constant number of neighbors and
uses greedy routing. Due to the distance distribution it will
take an average ofO(logN) hops before routing halves the
distance to a target node, therefore requiringO(logN) such
phases to reach a target node for a total expected latency of
O(log2 N).

When the system experiences node failures, some of the
shortcuts will be unavailable and the route will have to take
”suboptimal” hops. The small-world Markov chain model
is fundamentally different from the ones for XOR routing
(Fig. 5(b)) and ring routing (Fig. 8(a)). A routing phase
is completed if any of the node’s shortcuts connects to the
desired phase. This happens with probabilityks

d
whereks

denotes the number of shortcuts that each node maintains.
Alternatively, the routing fails if all of the node’s near neigh-
bor and shortcut connections fail, which happens with prob-
ability qkn+ks . If neither of the above happens then the
route takes a suboptimal hop, which happens with probabil-
ity 1− ks

d
− qkn+ks .

4 Reachable Component Method and its Ap-
plications

4.1 Method Description

We now describe the steps of thereachable component
method(RCM) in calculating the routability of a DHT rout-
ing system under random failure. Before we delve into the
description, let us first clarify several concepts and nota-
tions on DHT routing. First, we allow all DHTs to fully
populate their identifier spaces (i.e. node identifier length
d = logb N ). Second, when a DHT is not in its perfect
topological state, it can be the case that a pair of nodes are in
the same connected component but these two nodes cannot
route between each other. Thus, the reachable component of
nodei is the set of nodes that nodei can route to under the
given routing algorithm. Note that the reachable component

of nodei is a subset of the connected component contain-
ing nodei. Third, we assume that no ”back-tracking” is
allowed (i.e. when a node cannot forward a message fur-
ther, the node is not allowed to return the message back to
the node from whom the message was received).

RCM is fairly simple in concept and involves the follow-
ing five steps:

1. Pick a random node, nodei, from the system and de-
note it as theroot node. Construct the root node’s rout-
ing topology from the routing algorithm of the system
(i.e. the topology by which the root node routes to all
other nodes in the system).

2. Obtain the distribution of the distances (in hops or in
phases) between the root node and all other nodes (de-
noted asn(h)); in other words, for each integerh, cal-
culate the number of nodes at distanceh hops from the
root node. Note that the meaning ofhopsor phases
will be clear from the context.

3. Compute the probability of success,p(h, q), for rout-
ing to a nodeh hops away from the root node under a
uniform node failure probability,q.

4. Compute the expected size of thereachable component
from the root node by first calculating the expected
number of reachable nodes at distanceh hops away
(which is simply given byn(h) ∗ p(h, q)). Now, we
sum over all possible number of hops to obtain the ex-
pected size of the reachable component.

5. By inspection, the expected number of routable pairs
in the system is given by summing all surviving nodes’
expected reachable component sizes. Then, dividing
the expected number of routable pairs by the number
of possible node pairs among all surviving nodes pro-
duces the routability of the system under uniform node
failure probabilityq.

The formula for computing the expected size of the
reachable component,E[Si], described in step 4 is derived
as follows:

E[Si] = E[

N
∑

j=1
j 6=i

Yj ] =

N
∑

j=1
j 6=i

E[Yj ] =

d
∑

h=1

n(h)p(h, q)

whereYj is Bernoulli random variable for denoting reach-
ing nodej, andd is the node identifier length.

Since nodes in the system are removed with probability
q, there are(1− q)N or pN nodes that survive on average.
In step 5, the formula for calculating the routability,r, of
the system under uniform failure probabilityq is given as
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Figure 1. Here we
illustrate the reachable
component method us-
ing an 8-nodes hyper-
cube.

Figure 2. We select node 011
to be the root of the routing
graph. The symmetry of the
system means that each node
will be the root of a routing
graph with identical structure.

h n(h) Pr(Sh, Sh+1)

1
(

3
1

)

1− q3

2
(

3
2

)

1− q2

3
(

3
3

)

1− q

Figure 3. For illustration purpose, we examine how
011 routes a message to 100. Note that three choices
exist for the first hop, 2 choices exist for the second hop
and only one choice left for the last hop. For this exam-
ple,p(h, q) is: p(3, q) = (1− q3)(1− q2)(1− q).

follows:

r =
Mrp

Mp

=

E

[

pN
∑

i=1

Si

]

2
(

⌊pN⌋)
2

)
≈

pN
∑

i=1

E[Si]

pN(pN − 1)

=
E[S]

(pN − 1)
(1)

whereMrp denotes the expected number ofroutable pairs
among surviving nodes, andMp is the expected number of
all possible pairsamong surviving nodes. Note that the last
equality follows from the observation that DHTs investi-
gated in this paper have symmetric nodes. Therefore, the
routing topology of each node is statistically identical to
each other. Thus, allSi’s are identically distributed for all
i’s: E[S] = E[Si] ∀i.

4.2 Using the Hypercube Geometry as an
Example

A simple application of the RCM method is illustrated
for the CAN hypercubic routing system in Fig. 1-3. The
RCM steps involved are as follows:
Step 1. As reviewed in section 3, in a hypercube routing
geometry [14], the distance (in hops) between two nodes is
their Hamming distance. Routing is greedy by correcting
bits in any order for each hop.
Step 2.Thus, for any random nodei in a hypercube routing
system with identifier length ofd bits, we have the follow-
ing distance distribution:n(h) =

(

d
h

)

. The justification is
immediate: a node ath hops away has a Hamming distance
of h bits with nodei. Since there are

(

d
h

)

ways to place the
h differing bits, there are

(

d
h

)

nodes at distanceh (see Fig.
2).

Step 3. The routing process can be modeled as a discrete
time Markov chain (Fig. 3 and 4(b)). The statesS′

is of
the Markov chain correspond to the number of corrected
bits. Note that there are only two absorbing states in the
Markov chain: the failure stateF and the success state (i.e.
Sh). Thus, the probability of successfully routing to a target
node at distanceh hops away is given by the probability of
transitioning fromS0 to Sh in the Markov chain model:

p(h, q) = Pr(S0 → S1 → ... → Sh)

= Pr(S0 → S1)Pr(S1 → S2)...Pr(Sh−1 → Sh)

= (1 − qh)(1− qh−1)...(1 − q)

=
h
∏

m=1

(1 − qm) (2)

Step 4.Thus, the expected size of the reachable component
is given as:

E[S] =

d
∑

h=1

n(h)p(h, q) =

d
∑

h=1

(

d

h

) h
∏

m=1

(1 − qm)

Step 5.Using Eq. 1, we obtain the analytical expression for
routability:

r =

d
∑

h=1

n(h)p(h, q)

(1− q)2d − 1
(3)

=

d
∑

h=1

(

d

h

) h
∏

m=1

(1− qm)

(1− q)2d − 1
(4)
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Sh-1

q

(a)Tree

F

S0

S1

S2

1-q

q

q

q

h

1-q h-1

1-q h-2

h

h-1

h-2

Sh

1-q

1-q 2

Sh-1

q

(b) Hypercube

Figure 4. The above diagrams illustrate the Markov chain model of the routing process to a target at distanceh hops from the
root node. Note that there are only two absorbing states in these Markov chains: the failure state (denoted byF ) and the success
state (denoted bySh). (a) Markov chain model for tree routing: TheS′

is represent the states that correspond to number of corrected
orderedbits. At eachSi, the neighbor that will correct the leftmost bit must be present in order for the message to be routed.
Otherwise, the message is dropped and routing fails. Thus, the transition probability fromSi to Si+1 is 1− q, while the transition
probabilities to the failure state isq. (b) Markov chain model for hypercube routing: Here, theS′

is represent the states that correspond
to number of corrected bits in any order. The transition probabilities are obtained by noting that at stateSi, there areh− i neighbors
to route the message to.

4.3 Summary of Results for other Routing
Geometries

Using the RCM method, the analytical expressions for
the other DHT routing geometries can be similarly derived
as for the hypercube routing geometry. In all the deriva-
tions, the majority of the work involves finding the expres-
sion forp(h, q) through Markov chain modeling. Note that
the analytical expressions derived in this section are com-
pared with the simulation results obtained by Gummadi et
al. [2] in Fig. 6(a) and 6(b).

For ease of exposition, we will use the notationG(i, j),
which denotes the probability that, starting at statei,
the Markov chain ever visits statej. By any of the
Markov chain models for the routing protocols, we note that
G(S0, S1) = 1 − Q(h), G(S1, S2) = 1 − Q(h − 1), and
so forth, where the functionQ(m) can be thought of as the
probability of failure at themth phase of the routing pro-
cess. As a result, all of the DHT systems under study have
the property that the probability of successfully traveling h
hops or phases from the root node,p(h, q), is given by the

following common form:

p(h, q) = G(S0, S1)G(S1, S2)...G(Sh−1, Sh)

=

h
∏

m=1

(1−Q(m)) (5)

Using Eq. 3, we see that only the expressions forn(h) and
Q(m) are needed to compute the routability of the DHT
routing system under investigation. As a result, we will only
provide then(h) andQ(m) expressions for each system for
conciseness.

4.3.1 Tree

For the tree routing geometry, the routing distance distribu-
tion, n(h), is

(

d

h

)

by inspection. Furthermore, it is sim-
ple to show thatp(h, q) = (1 − q)h by examining the
Markov chain model (see Fig. 4(a)). In sum, the ex-
pression for routability can be succinctly given as follows:

r = (2−q)d−1
(1−q)2d−1
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(a)XOR Routing under Failure

q(1-q)

. . .

. . .

F
S0

S1

Sh

S2

1-q

1-q

1-q

1-q

1-q

1-q

q

 1
 h-2

 0
h-1

 1
 2

 0
 2

 1
 1

 0
 1

qh qh-1 qh-2

qh-1 qh-2 qh-3
q

q(1-q)

.

.

.

. . .

q(1-q     )         h-3

q(1-q     )         h-2q(1-q     )         h-1

q(1-q     )         h-2

(b) XOR Markov Chain Model

Figure 5. (a) Illustration of XOR routing under failure: in this simple example, node010 tries to route a message to node 101.
However, its first neighbor 111 (i.e. the randomly chosen node that flips the first bit and chooses random bits for the rest ofthe
identifier bits), has just failed. As a result, the message isrouted to node 010’s second neighbor, node 000, correcting alower
order bit. Now, node 000’s first neighbor, node 110, is available, and node 110’s second neighbor, node 100, is also available.
Consequently, the message is routed to the destination node101, by following the dashed arrows in the diagram. (b) Markov chain
model for XOR routing: this diagram illustrates routing to atarget located ath phases in distance, which is equivalent to correcting
h bits in order (left to right). TheS′

is denote the states that correspond to the number of correctedorderedbits, which is equivalent
to the number of phases advanced. The states(i, j) denote a state that corresponds toj suboptimal hops taken after advancingi
phases.

4.3.2 XOR

As reviewed in section 3, connecting to a neighbor at an
XOR distance of[2d−i, 2d−i+1] is equivalent to choosing a
neighbor by matching the first (i-1) bits of one’s identifier,
flipping theith bit, and choose random bits for the rest of
the bits. Note that this is equivalent to how neighbors are
chosen in the Plaxton-tree routing geometry. As a result,
then(h) expression is given as:n(h) =

(

n
h

)

just as in the
tree case.

Now, let’s examine how the Markov chain model (Fig.
5(b)) is obtained: in this scenario, a message is to be routed
to a destinationh phases away; starting at stateS0, stateS1

is reached if the optimal neighbor correcting the leftmost
bit exists, which happens with probability1− q (Si denotes
the state that corresponds to theith advanced phase). How-
ever, if all h neighbors have failed (i.e. with probability
qh), the failure stateF is entered. Otherwise, the rout-
ing process can correct one of the lower order bits, which
happens with probabilityq(1 − qh−1). Note that there is
a maximum number ofh − 1 lower order bits that can be
corrected in the first phase. All other transition probabil-
ities can be obtained similarly. By inspecting the Markov

chain model, we note thatG(S0, S1) = 1 − Qxor(h),
G(S1, S2) = 1 − Qxor(h − 1), and so forth, where the
functionQxor(m) is defined as follows:

Qxor(m) = qm +

m−1
∑

k=1

qm[

m−1
∏

j=m−k

(1− qj)] (6)

≈ qm(m+
q

1− q
(qm−1(m− 1)−

1− qm+1

1− q
))

The approximation is obtained by invoking the following:
1− x ≈ e−x for x small.

4.3.3 Ring

In ring routing as implemented in Chord, when a node takes
a suboptimal hop in the routing process, the progress made
by taking this suboptimal hop is preserved in later hops.
For example, consider the scenario that a message is to be
routed to a node at a numeric distance that isO(N) (i.e. the
message is to be routed one full circle around the ring), and
the fingers are connected to nodes that are half way across
the ring, one quarter across the ring, etc. For the message’s
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Figure 6. Both plots show the percentage of failed paths (i.e. 1-routability) for varying node failure probability and system size
of N=216. (a) Analysis vs simulation: The simulation data points arereproduced from [2]. For all three routing geometries, the
analytical curves show a great fit to the simulation curves. (b) Analysis vs simulation (ring): For the ring routing algorithm, the
discrepancy between the analytical and simulation curve isdue to the algorithm’s property that suboptimal hops contribute non-
trivially to the routing process. In effect, the analyticalcurve provides an upper bound for percentage of failed paths. Note that the
analytical curve is very close to simulation in the region ofpractical interest (i.e. for failure probability less than20%)
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Figure 7. (a) Asymptotic limit: This figure plots the percentage of failed paths (i.e. 1-routability) for varying node failure probability in the
asymptotic limit. The curves are obtained by evaluating theanalytical expressions at N=2100 . Note that the curves for tree and symphony are very
close to a step function, which is consistent with our analysis. In addition, the curves for the other three geometries are very close to the case for
N=216 . (b) Routability vs N: This plot shows the routability of therouting geometries for varying system size and a constant failure probability
(q=0.1). This figure clearly demonstrates the lack of scalability of the tree and Symphony routing geometries. As the system scales, the routability
of both the tree and Symphony routing systems monotonicallydegrades toward zero. In contrast, the other three geometries remain highly routable
in the face of failure even as the systems scale to billions ofnodes. (In both plots, we set the number of near neighbors andthe number of shortcuts
equal to one for Symphony.)
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first hop, it takes a suboptimal hop which takes the mes-
sage only one quarter across the ring, because the finger
that would have taken the message half way across the ring
has failed. Then, for the message’s second hop, none of the
finger connections has failed. Thus, the message takes an
optimal hop which takes the message half way across the
ring. Therefore, after two hops, the message is now three
quarters of the way across the ring. Note that the progress
made in the first suboptimal hop is this scenario is later pre-
served by a subsequent hop.

This property that suboptimal hops in ring routing con-
tribute non-trivially to the routing process is not accounted
for in the the Markov chain model as illustrated in Fig. 8(a).
The reason is that accounting for progress made by subopti-
mal hops would lead to an exponential blowup in the num-
ber of terms that we need to keep track of for computing
p(h, q). This simplified Markov chain model essentially
makes the assumption that progress made by suboptimal
hops do not contribute to the routing process. Therefore,
the analytical expression forp(h, q) using this model pro-
vides alower bound.

The Markov chain model for ring routing 8(a) is very
similar to the one for XOR routing (Fig. 5(b)). However,
fundamental differences exist: first, when a suboptimal hop
is taken in Chord, the number of next hop choices does not
decrease. For example, in the first phase, there areh choices
for the next hop, thus the transition probabilities from the
states in the first phase to the failure state are given byqh.
In contrast, the corresponding transition probabilities in Fig.
5(b) are given byqh, qh−1, and so forth. In addition, the
maximum number of suboptimal hops in Chord is given by
2h−1, 2h−2 and so forth, while the corresponding transition
probabilities in Fig. 5(b) are given byh, h−1, and so forth.
This difference is due to the fact that in XOR routing, rout-
ing fails if all the lower order bits are resolved and the left-
most bit is not yet resolved. However, Chord does not have
such restriction.The results for the ring routing geometryis
derived by inspecting Fig. 8(a):

Qring(m) = qm
2m−1−1
∑

k=0

[q(1 − qm−1)]k

= qm
1− [q(1− qm−1)]2

m−1

1− q(1− qm−1)

In addition, one can easily see by inspection that then(h)
expression for the ring geometry is given by:n(h) = 2h−1.

4.3.4 Symphony

Symphony’s Markov chain model (Fig. 8(b)) is fundamen-
tally different from the ones for XOR routing (Fig. 5(b))
and ring routing (Fig. 8(a)). Starting atS0, one phase is

advanced if any of the node’s shortcuts connects to the de-
sired phase, which happens with probabilityks

d
whereks

denotes the number of shortcuts. Alternatively, the routing
fails if all of the node’s near neighbor and shortcut connec-
tions fail, which happens with probabilityqkn+ks . The third
possibility is taking a suboptimal hop, which happens with
probability1− ks

d
− qkn+ks . All other transition probabili-

ties in the Markov chain can be similarly derived. Note that
we approximate the maximum number of suboptimal hops
by ⌈ d

1−q
⌉.

For the Symphony routing geometry, we note that the
expression for theQ’s is constant for all phases. The results
are similarly derived as the other systems by inspecting Fig.
8(b):

Qsym = qkn+ks

⌈ d
1−q

⌉
∑

j=0

(1−
ks
d

− qkn+ks)j

≈ qkn+ks(
1− (1 − ks

d
− qkn+ks)

d
1−q

+1

1− (1 − ks

d
− qkn+ks)

) (7)

The symbolskn andks denote the number of near neigh-
bors and shortcuts respectively. Similarly to ring routing,
then(h) expression for the Symphony routing algorithm is
given by:n(h) = 2h−1.

5 Scalability of DHT Routing Protocols un-
der Random Failure

For a DHT routing system to be scalable, its routabil-
ity must converge to a non-zero value as the system size
goes to infinity (Definition 2). Alternatively, we examine
the asymptotic behavior ofp(h, q) with h set to the aver-
age routing distance in the system (i.e.h = O(logN) or
O(log2 N) for Symphony). Using Eq. 3, it is simple to
show that the equivalent condition for scalability is as fol-
lows:

lim
N→∞

p(h, q) = lim
h→∞

p(h, q) > 0 for 0 < q < 1− pc (8)

Otherwise, the routing system is unscalable. In other words,
the equivalent condition for system scalability states that as
the number of routing hops to reach a destination node in the
system approaches infinity, the probability of successfully
routing to the destination node must not drop to zero for a
non-zero node failure probability in the system.

As discussed in section 4.3, all of the DHT systems un-
der study have the property that the probability of success-
fully travelingh hops or phases from the root node is given
by the following form:

p(h, q) =

h
∏

m=1

(1 −Q(m)) (9)
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Figure 8. The above two diagrams illustrate the Markov chain model forring and Symphony routing geometries.

whereQ(m) can be thought of as the probability of failure
at themth phase of the routing process.

Theorem 1 (From Knopp[4]) If, for everyn, 0 ≤ an < 1,
then the product

∏

(1 − an) tends to a limit greater than 0
if, and only if,

∑

an converges.

Theorem 1 allows us to conveniently convert our prob-
lem of determining the convergence of an infinite product
to a simpler infinite sum. Thus,p(h, q) is convergent if and
only if

∑

Q(m) converges.

5.1 Tree

The case for the tree routing geometry can be trivially
shown to beunscalable:

lim
h→∞

(1− q)h = 0 for anyq > 0 (10)

5.2 Hypercube

For hypercube routing,p(h, q) is given byp(h, q) =
h
∏

m=1

(1 − qm) (Eq. 2). By invoking Theorem 1, it is triv-

ial to see that
∑

qm converges for0 < q < 1 − pc. Thus,
the hypercube routing geometry isscalable.

5.3 XOR

In XOR routing, theQ(m) expression given by Eq. 6.
It is simple to show that theQ(m) series involves onlyqm

andmqm terms. Thus,
∑

Q(m) is convergent and the XOR
routing scheme isscalable.

5.4 Ring

We will demonstrate that the ring routing geometry is
also scalable by showing that the XOR results derived above
is a lower bound for the ring geometry. We compare the
Markov chain models for the ring geometry and the XOR
geometry (Fig. 8(a) and Fig. 5(b)). We note that the transi-
tion probabilities for the suboptimal hops in ring are strictly
greater than the corresponding probabilities for XOR. For
example, in Fig. 8(a), note that the transition probabilities
for S0 → (0, 1), (0, 1) → (0, 2) and so forth are given by
q(1−qh−1). These probabilities are strictly greater than the
corresponding transition probabilities in Fig. 5(b). Thus, by
comparing these two Markov chain models, it is simple to
show that thep(h, q) expression for the ring routing geom-
etry is strictly greater than thep(h, q) expression for XOR
routing. Thus, the ring routing geometry is alsoscalable.

5.5 Symphony

In Symphony routing, theQ(m) expression given by
Eq. 7. Note that theQ(m) expression is given by a constant
term. Therefore,

∑

Q(m) is divergent and the Symphony
routing scheme isunscalable.

Please refer to Fig. 7(a) and 7(b) for plots of the
above scalability results.

6 Concluding Remarks

In this work, we present the reachable component
method (RCM) which is an analytical framework for char-
acterizing DHT system performance under random failures.
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The method’s efficacy is demonstrated through an analysis
of five important existing DHT systems and the good agree-
ment of the RCM predictions for each system with simu-
lation results from the literature. Researchers involved in
P2P system design and implementation can use the method
to assess the performance of proposed architectures and to
choose robust routing algorithms for application develop-
ment. In addition, although the analysis presented in this
work assumes fully-populated identifier spaces, analytical
results for real world DHTs with non-fully-populated iden-
tifier spaces can be similarly derived. Detail investigation
in this area will be left for future work.

One of the most interesting implications of this analy-
sis is that in the large-network limit, some DHT routing
systems are incapable of routing to a constant fraction of
the network if there is any non-zero probability of random
node failure. These DHT algorithms are therefore consid-
ered to beunscalable. Other algorithms are more robust to
random node failures, allowing each node to route to a con-
stant fraction of the network even as the system size goes to
infinity. These systems are considered to bescalable. Now
that real DHT implementations have on the order of mil-
lions of highly transient nodes, it is increasingly important
to characterize how the size and failure conditions of a DHT
will affect its routing performance.
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