
Using Attack Injection to Discover New Vulnerabilities

Nuno Neves, João Antunes,
Miguel Correia, Paulo Verı́ssimo

Fac. de Ciências da Univ. de Lisboa
{nuno,jantunes,mpc,pjv}@di.fc.ul.pt

Rui Neves
Instituto Superior Técnico da

Univ. Técnica de Lisboa
rui.neves@tagus.ist.utl.pt

Abstract

Due to our increasing reliance on computer systems, se-
curity incidents and their causes are important problems
that need to be addressed. To contribute to this objective,
the paper describes a new tool for the discovery of security
vulnerabilities on network connected servers. The AJECT
tool uses a specification of the server’s communication pro-
tocol to automatically generate a large number of attacks
accordingly to some predefined test classes. Then, while it
performs these attacks through the network, it monitors the
behavior of the server both from a client perspective and
inside the target machine. The observation of an incorrect
behavior indicates a successful attack and the potential ex-
istence of a vulnerability. To demonstrate the usefulness of
this approach, a considerable number of experiments were
carried out with several IMAP servers. The results show
that AJECT can discover several kinds of vulnerabilities,
including a previously unknown vulnerability.

1. Introduction
Our reliance on computer systems for everyday life ac-

tivities has increased over the years, as more and more tasks
are accomplished with their help. Software evolution has
provided us with applications with ever improving function-
ality. These enhancements however are achieved in most
cases with larger and more complex projects, which re-
quire the coordination of several teams of people. Third
party software is frequently utilized to speedup program-
ming tasks, even tough in many cases it is poorly docu-
mented and supported. In the background, the ever present
tradeoff between time to market and thorough testing, puts
pressure on the quality of the software. Consequently, these
and other factors have brought us to the current situation,
where it is extremely difficult to find applications without

This work was partially supported by the EC through project
IST-2004-27513 (CRUTIAL), and by the FCT through projects
POSC/EIA/61643/2004 (AJECT) and the Large-Scale Informatic Systems
Laboratory (LASIGE).

software bugs. Experience has shown that some of these
bugs result in security vulnerabilities that can be exploited
by malicious adversaries.

The existence of a vulnerability per se does not cause
a security hazard, and in fact many times they can remain
dormant for many years. An intrusion is only material-
ized when the right attack is discovered and applied to ex-
ploit that vulnerability. After an intrusion, the system might
or might not fail, depending on the kind of capabilities it
possesses to deal with errors introduced by the adversary.
Sometimes the intrusion can be tolerated [32], but in the
majority of the current systems, it leads almost immediately
to the violation of one or more security properties (e.g., con-
fidentiality or availability).

Several tactics can be employed to improve the depend-
ability of a system with respect to malicious faults [1].
Of course, intrusions would never arise if all vulnerabil-
ities could be eliminated. Vulnerability removal can be
performed both during the development and operational
phases. In the last case, besides helping to identify pro-
gramming flaws which can later be corrected, it also assists
the discovery of configuration errors and/or other similar
problems. Intrusion prevention (e.g., vulnerability removal)
has been advocated because it reduces the power of the at-
tacker [32]. In fact, even if the ultimate goal of zero vulner-
abilities is never attained, vulnerability removal reduces the
number of entry points into the system, making the life of
the adversary increasingly harder (and ideally discouraging
further attacks).

This paper describes a tool called AJECT – Attack in-
JECtion Tool that can be used for vulnerability detection
and removal. AJECT simulates the behavior of an adver-
sary by injecting attacks against a target system. Then, it
observes the execution of the system to determine if the at-
tacks have caused a failure. In the affirmative case, this in-
dicates that the attack was successful, which reveals the ex-
istence of a vulnerability. After the identification of a flaw,
one can employ traditional debugging techniques to exam-
ine the application code and running environment, to find
out the origin of the vulnerability and allow its subsequent

Remove the vulnerabilities
or p revent the attac k s

failureerro rin t rus io n

v uln erab ilit y

at t ac k

G enerate various
attac k s L ook f or errors /

f ailures

(2)
(1)

(3)

TARGET SYSTEM

Figure 1. Using the composite fault model
to demonstrate the vulnerability discovery
methodology.

elimination.
The current version of AJECT mainly targets network

server applications, although it can also be utilized with
most local daemons. We chose servers because, from a se-
curity perspective, they are probably the most relevant com-
ponents that need protection. They constitute the primary
contact points of a network facility – an external hacker
normally can only enter into the facility by connecting to
a server. Moreover, if an adversary compromises a server,
she or he immediately gains access to a local account, which
can then be used as a launch pad for further attacks. The tool
does not need the source code of the server to perform the
attacks, i.e., it treats the server as black box. However, in
order to be able to generate intelligent attacks, AJECT has
to obtain a specification of the protocol implemented by the
target server.

To demonstrate the usefulness of our approach, we have
conducted a number of experiments with several IMAP
servers. The main objective was to show that AJECT could
automatically discover a number of different vulnerabilities,
which were described in bug tracking sites by various peo-
ple. The tests managed to confirm that AJECT could be
used to detect many IMAP vulnerabilities (this was true for
all flawed IMAP servers that we managed to get). More-
over, AJECT was also able to discover a new vulnerability
that was previously unknown to the security community.

2. Using Attacks to Find Vulnerabilities

The AVI (attack, vulnerability, intrusion) composite fault
model introduced in [1, 31] helps us to understand the
mechanisms of failure due to several classes of malicious
faults (see Figure 1). It is a specialization of the well-known
sequence of fault → error → failure applied to malicious
faults – it limits the fault space of interest to the composition
(attack + vulnerability) → intrusion. Let us analyze these

fault classes. Attacks are malicious external activities1 that
intentionally attempt to violate one or more security proper-
ties of the system – we can have an outsider or insider user
of our network (e.g., a hacker or an administrator) trying
to access sensitive information stored in a server. Vulnera-
bilities are usually created during the development phase of
the system (e.g., a coding bug allowing a buffer overflow),
or during operation (e.g., files with root setuid in UNIX).
These faults can be introduced accidentally or deliberately,
with or without malicious intent. An attack that successfully
activates a vulnerability causes an intrusion. This further
step towards failure is normally succeeded by the produc-
tion of an erroneous state in the system (e.g., a root shell, or
new account with root privileges), and if nothing is done to
process the error, a failure will happen.

The methodology utilized in the construction of AJECT
emulates the behavior of an external adversary attempting
to cause a failure in the target system. The tool first gener-
ates a large number of attacks which it directs against the
interface of the target (step 1, in Figure 1). A majority of
these attacks are expected to be deflected by the validation
mechanisms implemented in the interface, but a few of them
will be able to succeed in exploiting a vulnerability and will
cause an intrusion. Some conditions help to augment the
probability of success of the attack, for example: a correct
understanding of the interaction protocol utilized by the tar-
get facilitates the creation of more efficient attacks (e.g., re-
duces the number of random tests); and a good knowledge
about what type of vulnerabilities appear more frequently
also helps to prioritize the attacks.

While attacks are being carried out, AJECT also moni-
tors how the state of system is evolving, looking for errors
or failures (step 2). Whenever one these problems is ob-
served, it indicates that a new vulnerability has potentially
been discovered. Depending on the collected evidence, it
can indicate with more or less certainty that a vulnerability
exists. For instance, there is a high confidence if the system
crashes during (or after) the attack – this attack at least com-
promises the availability of the system. On the other hand,
if what is observed is the abnormal creation of a large file,
though it might not be a vulnerability – related to a possible
denial of service – it still needs to be further investigated.

After the discovery of a new vulnerability, there are sev-
eral alternatives to deal with it, depending on the current
stage of the development of the system (step 3). If the sys-
tem is, for instance, in a implementation stage, it is best
to provide detailed information about the attack and er-
ror/failure, so that a decision can be made about which cor-
rective action should be taken (e.g., repair a software bug).
On the other hand, if the tests are performed when the sys-
tem is in the operational stage, then besides giving infor-
mation about the problem, other actions might be worth-

1Outside the target system boundaries.

Target Protocol
S p eci f i cati on

A ttack I n j ector

Target S y s tem
an d M on i tor

Execution monitor
S y nc control l er

S y nc control l er
P a ck et col l ector

A tta ck a na l y z erA tta ck
g enera tor

P a ck et
inj ector

T es t a na l y z er
T es t

ma na g er

P rotocol s p ecif ica tion

responsea t t a c k sy nc h roni z a t i on

ex ec u t i on
d a t a

X M L spec

T a rg et
S y s tem

D a ta col l ector

Figure 2. The architecture of the AJECT tool.

while taking, such as: automatically change the execution
environment to remove the attack (e.g., by modifying some
firewall rules); or, shutdown the system until the adminis-
trator decides what to do. In the current version, AJECT
only provides information about the attack and observed er-
rors/failures.

In order to get a higher level of confidence about the ab-
sence of vulnerabilities in the system, the attacks should be
exhaustive and should exercise an extensive number of dif-
ferent classes of vulnerabilities. Still, one should also know
that for complex systems it is infeasible to try all possible
attack patterns, and therefore it is possible that some vulner-
abilities will remain undisclosed. Nevertheless, we feel that
AJECT can be an important contributor for the construction
of more secure systems because it mimics the malicious ac-
tivities carried out by many hackers, allowing the discovery
and subsequent removal of vulnerabilities before a real at-
tempt is performed to compromise the system.

3. AJECT Tool
There are four basic entities in the architecture of

AJECT, the Target System, the Target Protocol Specifica-
tion, the Attack Injector and the Monitor (see Figure 2). The
first entity corresponds to the system we want to test and the
last three are the main components of AJECT.

The Target System is composed by the target application
and its execution environment, which includes the operat-
ing system, middleware libraries and hardware configura-
tion. The target application is typically some service that
can be invoked remotely from client programs (e.g., a mail
or FTP server). In addition, it can also be a local daemon
supporting a given task of the operating system. In both

cases, the target application uses a well-known protocol to
communicate with the clients, and these clients can carry
out attacks by transmitting malicious packets. If the pack-
ets are not correctly processed, the target can suffer various
kinds of errors with distinct consequences, ranging, for in-
stance, from a slow down to a crash.

The Target Protocol Specification component provides
a graphical interface for the specification of the communi-
cation protocol used by the target application. The Attack
Injector, or simply the Injector, is responsible for the gen-
eration and execution of the attacks, and for receiving the
responses returned by the target. It also does some analy-
sis on the information acquired during the attack, to deter-
mine if a vulnerability was exposed. The main objective of
the Monitor is to observe and gather data about the target
system execution, which requires a careful synchronization
with the Injector.

The architecture was defined to achieve two main pur-
poses, the automatic injection of attacks and the data col-
lection for analysis. However, its design was done in such a
way that there is a clear separation between the implemen-
tation of these two goals. On one hand, in order to obtain
extensive information about the execution, a proximity rela-
tion between AJECT and the target is necessary. Therefore,
the Monitor needs to run in the same machine as the target,
where it can use the low level operating system functions
to get, for example, statistics about the CPU and memory
usage. On the other hand, the injection of attacks can usu-
ally be performed from a different machine. In fact this is
a desirable situation, since it is convenient to maintain the
target as independent as possible from the Injector, so that
interference is kept to a minimal level.

3.1. Test, Attack and Packet Hierarchy

The injection of an attack is related to the type of test
one wants to perform and materialized through the actual
transmission of (malicious) packets. Therefore, the attack
concept is relatively vague and can be quite generic. For in-
stance, an attack could correspond to something as general
as the creation of requests that violate the syntax of the tar-
get’s protocol messages, or as specific as a special request
that contains a secret username and password.

In AJECT, the process of creating an attack can be seen
at three levels. The first and most generic level defines the a
general test classes. Each test will then be systematically in-
stantiated resulting in specific attacks for that particular test
(the second level). In the last level, an attack is implemented
through the transmission of its corresponding packets.

As an example, consider one of the tests currently sup-
ported in AJECT, a syntax test (see Section 4.2 for more
details). This test validates the format of the packets uti-
lized by the target protocol, and looks for processing errors
in the number and order of the packets’ fields. Even for

a straightforward protocol with a few different packets, it
is quite simple to generate a reasonable number of distinct
attacks, i.e., to create several instances of the test. For ex-
ample, just imagine a packet with three fields that have to
appear in a given order, and an attack corresponds to the
re-ordering of these fields.

3.2. The Components of the Tool

3.2.1. Target Protocol Specification (TPS) Component.
TPS is used to create a specification of the communication
protocol utilized by the target. This specification is essen-
tial for two reasons: First, AJECT needs to be capable of
bringing the application from one initial state to any other
of its states (or at least to a majority of them) because cer-
tain messages can only be sent in particular situations (e.g.,
a command C is only allowed to proceed after an authenti-
cation). Second, the syntax of the messages must be well-
known because many non-trivial attacks can only be created
if this information is available. Another reason for having a
TPS component is to simplify the use of the tool – instead
of having to code a special module for each new server pro-
tocol, one only needs to produce a high level specification.

Currently, the specification is done with a graphical in-
terface that allows the definition of a state and flow graph
of the protocol. For each state it is possible to identify
which messages can be sent and their syntax. The output
of the TPS component is a XML description of the proto-
col, which is then imported by the Injector.

3.2.2. Attack Injector Component. The Injector is decom-
posed into three groups of modules, each one corresponding
to a level of the attack generation hierarchy (see Figure 2).
In every level there is a module whose function is related to
the construction of the attacks and another module for the
collection and analysis of the responses. In more detail,

Test level The test manager controls the whole process of
attack injection. It receives a protocol specification and
a description of a test and then it calls the attack gen-
erator to initiate a new attack. The test analyzer saves
and examines various information about the attacks, to
determine the effectiveness of a test to discover vulner-
abilities.

Attack level The actual creation of new attacks is the re-
sponsibility of the attack generator. The attack ana-
lyzer collects and studies the data related to the tar-
get’s behavior under a particular attack. It obtains data
mainly from two sources: the responses returned by
the target after the transmission of the malicious pack-
ets; and the execution and resource usage data gathered
by the Monitor.

Packet level The packet injector connects to the target ap-
plication and sends the packets defined by the attack
generator. Currently, it can transmit messages using
either the TCP or UDP protocols. The main task of the
packet collector is the storage of the network data (i.e.,
attack injection packets and received responses).

3.2.3. Monitor Component. Although the Monitor appears
to be a simple component, it is a fundamental entity, and it
hides some complex aspects. On one side, this component
is in charge of setting up all testing environment in the target
system: it needs to start up the target application, perform
all configuration actions, initiate the monitoring activities,
and in the end, to free all utilized resources (e.g., processes,
memory, disk space). We chose to reset the whole system
after each experiment to guarantee that there are no inter-
ferences among the attacks. On the other side, the Moni-
tor observes the execution of the the target while the attack
is being carried out. This task is highly dependent on the
mechanisms that are available in the local operating system
(e.g., the ability to catch signals).

The monitor is composed by the modules: the execution
module, which coordinates the various tasks of each exper-
iment and traces the target execution; the data collector,
responsible for monitoring data storage and its transmission
back to the Injector; and the sync controller that determines
the beginning and ending of each experiment.

As an example, on a UNIX machine, the current ver-
sion of the Monitor collects mainly two types of data. First,
it observes the target’s flow of control by intercepting and
logging any software exceptions. To achieve this goal, the
PTRACE family functions were utilized to intercept any
signals that the target receives (e.g., SIGSEGV). Second,
the supervision of the system resources allocated during
the target execution is helpful to detect abnormal behavior
which may be indicative of a vulnerability. AJECT cor-
relates the target’s behavior information with its resource
usage, such as the memory used by the process (e.g., to-
tal number of allocated memory pages, number of pages of
virtual memory, number of non-swapped pages), and user-
mode and kernel-mode CPU time accumulated by the pro-
cess. This resource monitoring data is obtained with the
LibGTop2 library functions.

3.2.4. Test and Attack Analyzer. After the execution of the
experiments, AJECT must be able to detect the presence
of vulnerabilities by resorting to the analysis of the target’s
behavior. For each action there’s a reaction, so for each
attack injection there’s the target’s reaction. The Test and
Attack analyzer modules examine an attack injection exper-
iment result by observing the network data of the respective
attack and response messages, and by correlating this in-

2http://directory.fsf.org/libs/LibGTop.html

Any State (S1) Not Authenticated
CAPABILITY STARTTLS
NOOP AUTHENTICATE <auth mechanism>

LOGOUT LOGIN <username> <password>

(S2) Authenticated (S3) Selected
SELECT <mbox> CHECK
EXAMINE <mbox> CLOSE
CREATE <mbox> EXPUNGE
DELETE <mbox> SEARCH [charset spec] <criteria...>
RENAME <mbox> <new name> FETCH <seq set> <msg data | macro>

SUBSCRIBE <mbox> STORE <seq set> <msg data> <value>
UNSUBSCRIBE <mbox> COPY <seq set> <mbox>

LIST <reference> <mbox [wildcards]> UID <COPY | FETCH |... > <args>
LSUB <reference> <mbox [wildcards]>
STATUS <mbox> <status data items...>
APPEND <mbox> [flag list] [date] <msg literal>

Table 1. Commands tested in each IMAP state.

formation with the one provided by the execution monitor
module (i.e., target’s execution and resource usage data).
AJECT can then assert about the presence of a vulnerability
in a specific protocol command (e.g., IMAP SEARCH com-
mand) by looking to the target’s execution (e.g., detecting a
SIGSEGV signal), resource usage (e.g., resource allocation
starvation), or protocol responses (e.g., a message giving
access authorization to a forbidden file) during a particular
attack injection.

4. Experimental Framework
This section gives a brief overview of the IMAP commu-

nication protocol that is utilized by the servers under test. It
also describes the classes of attacks that were tried by the
injector, and provides some information about the testbed.

4.1. IMAP Protocol

The Internet Message Access Protocol (IMAP) is a pop-
ular method for accessing electronic mail and news mes-
sages maintained on a remote server [11]. This proto-
col is specially designed for users that need to view email
messages from different computers, since all management
tasks are executed remotely without the need to transfer the
messages back and forth between these computers and the
server. A client program can manipulate remote message
folders (mailboxes) in a way that is functionally equivalent
to local folders.

The client and server programs communicate through a
reliable data stream (TCP) and the server listens for incom-
ing connections on port 143. Once a connection is estab-
lished, it goes into one of four states. Normally, it starts in
the not authenticated state, where most operations are for-
bidden. If the client is able to provide acceptable authenti-
cation credentials, the connection goes to the authenticated
state. Here, the client can choose a mailbox, which causes

the connection to go to the selected state. In the selected
state it is possible to execute the commands that manipu-
late the messages. The connection goes to the logout state
when the client indicates that it no longer wants to access
the messages (by issuing a LOGOUT command) or when
some exceptional action occurs (e.g., server shutdown).

All interactions between the client and server are in the
form of strings that end with a CRLF. The client initiates an
operation by sending a command, which is prefixed with a
distinct tag (e.g., a string A01, A02, etc). Depending on the
type of command, the server response contains zero or more
lines with data and status information, and ends with one
of following completion results: OK (indicating success),
NO (indicating failure), or BAD (indicating a protocol or
syntax error). To simplify the matching between requests
and responses, the completion result line is started with the
same distinct tag as provided in the client command.

The IMAP protocol provides a extensive number of op-
erations, which include: creation, deletion and renaming
of mailboxes; checking for new messages; permanently re-
moving messages; server-based RFC-2822 and MIME pars-
ing and searching; and selective fetching of message at-
tributes and texts for efficiency. Table 1 represents the com-
mands that were experimented in the various IMAP states.
Some of the commands are very simple (e.g., composed by
a single field) but others are much more intricate.

4.2. Predefined Tests

The Injector component currently implements three dif-
ferent kinds of tests, which are used to automatically gen-
erate a large number of attacks. The tool however was de-
veloped to support tests in a generic way, which means that
other tests will possibly be added in the future to cover more
classes of attacks.

Att. Nr. Attack Packet Description
. . .
328 SELECT removed field
329 /inbox removed field
330 /inbox SELECT /inbox duplicated field
331 SELECT SELECT /inbox duplicated field
332 SELECT /inbox /inbox duplicated field
333 SELECT /inbox SELECT duplicated field
334 SELECT SELECT rem. and dupl. field
335 /inbox /inbox rem. and dupl. field
336 EXAMINE removed field
337 /inbox removed field
338 /inbox EXAMINE /inbox duplicated field
. . .

Table 2. Syntax test attacks sample.

4.2.1. Syntax Test. This kind of test generates at-
tacks/packets that infringe the syntax specification of the
protocol as provided by the TPS. Example of attack gen-
erations that constitute syntax violations consist on the ad-
dition or elimination of each field of a correct message, or
permutations of all its fields.

This test regards a packet as a sequence of fields, each
one with a certain number of bits. The type of data stored
in a field or its content is considered irrelevant. The im-
plementation of this test generates all possible combina-
tions within certain parameters, such as maximum number
of added/removed fields, producing a large number of at-
tacks.

Table 2 shows a subset of the attacks that are automati-
cally generated using this test. In the example, these attacks
are packet variations of the SELECT and EXAMINE com-
mands. The field contents are kept unchanged, but they are
removed or duplicated in some cases.

4.2.2. Value Test. The TPS component also defines the type
and range of valid values of the fields of the messages. This
test class verifies if the target is able to cope with packets
containing erroneous values. An attack is generated in the
following manner: first, a set of all valid packet specifica-
tions for a particular state is obtained; second, a packet with
correct fields is generated for each specification; third, each
field of every packet is mutated with a number of malicious
values (each mutation corresponds to a distint attack). Since
there are several fields in a packet, and a field can take many
different values, this procedure can produce a large number
of attacks. With the objective of keeping this number man-
ageable, not all illegal values are experimented, but only a
subset such as frontier values or large strings.

For example, consider a packet with two integer fields,
the first is always 1 and the second can take values between
0 and 1000. An attack on the second field would utilize val-
ues that are almost valid (e.g., the boundary values -1, 0,
1000, 1001) or very invalid (e.g., large negative/positive in-

tegers). On the IMAP protocol, several of the command pa-
rameters are strings. The construction of malicious strings
is reasonably complex because it can easily lead to an ex-
plosion on the number of attacks3. Therefore, a procedure
based on heuristics was employed in their generation: First,
(i) a set of random tokens (fixed sized strings) is obtained;
(ii) a set of malicious tokens is pre-selected (e.g., “%c”);
(iii) a set of joining tokens is chosen (e.g., “\”, space or
none); Then, a large number of strings with different sizes
is obtained from the combination of one or more types of
tokens. These strings are later used to replace valid values,
hence testing the target’s robustness in coping with this type
of malicious input.

4.2.3. Information Disclosure Test. This type of test tries
to get secret (or private) information that is stored in the
target machine. The information is usually saved in the disk
or in the memory of the server, and it can correspond, for
instance, to the passwords kept in a configuration file or the
in memory resident environment variables.

The current implementation of the test focus mainly in
obtaining data stored in files. First, it determines which
fields of a packet are utilized by the server to name files
(e.g., argument with value “X” is used to select the file
“./../dir/X”). To accomplish this task, either the field is
tagged as a name during protocol specification or a conser-
vative approach has to be taken, where all fields are consid-
ered as an eventual name. Then, the test generates a large
number of path names to well known files, which it uses
during the attack generation. If a response provides valid
data for one of the malicious requests, then the server is
probably disclosing some confidential information.

For example, consider the file “/etc/passwd” that con-
tains the usernames (and possibly the encrypted passwords)
on a UNIX machine. Some of the names that could be tried
in the attacks are: [“./../etc/passwd”]; [“./../../etc/passwd”];
[“./../../../etc/passwd”]. On the IMAP protocol, there are a
few commands that use arguments to name a file – for ex-
ample, the mbox on a EXAMINE command.

4.3. Testbed

The experiments used several IMAP applications that
were developed for different operating system flavors.
Therefore, it was necessary to utilize a flexible testbed to
ensure that the distinct requirements about the running en-
vironment could be accommodated. The testbed consisted
of three PCs with Intel Pentium 4 at 2.80GHz and 512
MBytes of main memory. Two of the PCs corresponded to
target systems, and each contained the IMAP applications
and a Monitor. One of the machines could be booted in a
few Linux flavors (e.g., Fedora and Suse) and the other in

3Just think that a string with 10 characters can have 26
10 different com-

binations, even if we limit ourselves to the a .. z characters.

Windows (e.g., XP and 2000). The third PC run the Injec-
tor components, collected the statistics, and performed the
analysis of the results. This configuration of the testbed al-
lows for the parallel execution of two injection experiments
(if needed, more target PCs can be easily added to increase
the concurrency of the system).

5. Experimental Results

The current section presents an evaluation of the vulner-
ability discovery capabilities of AJECT. This study carried
out several experiments to accomplish three main objec-
tives: One goal was to confirm that AJECT is capable of
catching a significant number of vulnerabilities automat-
ically. A second goal was to demonstrate that different
classes of vulnerabilities could be located with the tool, by
taking advantage of the implemented tests. A third goal was
to illustrate the generic nature of the tool, by showing that
it can support attack injections on distinct IMAP server ap-
plications.

To achieve these objectives, we used AJECT to expose
several vulnerabilities that were reported in the past in some
IMAP products. Basically, the most well known bug track-
ing sites were searched, to find out all IMAP vulnerabilities
that were disclosed in the current year. The vulnerable prod-
ucts were then obtained (at least most of them) and installed
in the testbed. The experiments consisted in using AJECT
to attack these products, to determine if the tool could detect
the flaws.

Another approach that we considered following was to
spend all our resources testing a small group of IMAP
servers (one or two), trying to discover a new set of vul-
nerabilities. We decided not to use this strategy because it
would probably not allow us to fulfill all goals. For exam-
ple, the second goal would be difficult to achieve, since we
would be testing code produced by the same developers, and
these tend to make similar mistakes. Nevertheless, during
the experiments, we were able to discover a new vulnera-
bility that, as far as we can tell, was previously unknown by
the security community.

5.1. Applications Under Test

To set up the experiments, we have searched for
IMAP flaws in two of the most well-known vul-
nerability tracking sites – the bugtraq archive of
www.securityfocus.com, and the Common
Vulnerabilities and Exposures (CVE) database at
www.cve.mitre.org – and several other hacker
and security sites. From this search it was possible to find
27 reports of security problems related to IMAP products
during the year 2005. 7 of these reports, however, only
provided minimal information, which did not allow us
to completely understand the vulnerability. Therefore,

ID Application OS Date Vuln. ID
A1 MailEnable Professional 1.54

and Enterprise Edition 1.04
Win Apr 1014/5,

2278
A2 GNU Mailutils 0.6 Lin May 1523
A3 E-POST Inc. SPA-PRO Mail

@Solomon 4.0 4
Win Jun BT13838/9

A4 Novell NetMail 3.52 B W/L Jun 1756/7/8
A5 TrueNorth eMailServer Corpo-

rate Edition 5.2.2
Win Jun BT14065

A6 Alt-N MDaemon 8.0 3 Win Jul BT14315/7
A7 GNU Mailutils 0.6.1 Lin Sep 2878
A8 University of Washington Imap

2004f
Lin Oct 2933

A9 Floosietek FTGate 4.4 Win Nov BT15449
A10 Qualcomm Eudora WorldMail

Server 3.0
Win Nov 3189

A11 MailEnable Professional 1.6
and Enterprise Edition 1.1

Win Nov BT15492/4

A12 MailEnable Professional 1.7
and Enterprise Edition 1.1

Win Nov BT15556

Table 3. Applications with vulnerabilities.

we decided to exclude these 7 reports and pursue our
investigation with the remaining 20.

From the analysis of the reports, it was possible to iden-
tify 9 IMAP products with vulnerabilities (see Table 3).
In a few cases, more than one version of the same appli-
cation had problems. For each product version, the table
indicates our internal identifier (ID), the operating system
where it runs (OS) and the date of the first report about a
vulnerability (Date). Sometimes other reports appeared at
a later time. Column Vuln. ID has the identifiers of the as-
sociated reports. If a four digit number NNNN is present,
then the identifier is CVE-2005-NNNN. In some situations
there was no CVE number assigned to the vulnerability,
and in those cases the bugtraq identifier is provided (e.g.,
BT13838). For applications with multiple reports, it was
used a condensed representation – for example, 1014/5 cor-
responds to CVE-2005-1014 and CVE-2005-1015.

There were two other products identified in the reports
– the Ipswitch Collaboration Suite/IMail 8.13 and the Up-
IMAPProxy 1.2.4. For the products we were able to obtain
the allegedly vulnerable versions and the exploits that were
distributed by the hacker community. However, for some
unknown reason, the exploits were incapable of exploring
the described flaw, and therefore, we decided to disregard
these products from further evaluation (either the reports
were false or the obtained applications had already been
fixed).

5.2. Vulnerability Assessment

After the identification of the products with flaws, it was
necessary to obtain as many applications (with the right ver-
sions) as possible. We had one main difficulty while at-
tempting to accomplish this objective – in some cases the

ID Vuln State Potential Attack
Type

A3 ID S2 A01 SELECT ./../../<OTHER-U>/inbox
A4 BO any <A×2596>

a) Potentially detected vulnerabilities.

ID Vuln State First Successful Attack
Type

A1 BO S2 A01 AUTHENTICATE <A×1296>

BO S2 A01 SELECT <A×1296>

A2 FS any <%s×10>

A5 FS S2 A01 LIST <A×10> <%s×10>

A6 BO S2 A01 CREATE <A×244>

BO any∗ <A×1260>

A7 FS S3 A01 SEARCH TOPIC <%s×10>

A8 BO S2 A01 SELECT ”{localhost/user=\”}”
A9 BO S2 A01 EXAMINE <A×300>

A10 ID S2 A01 SELECT ./../../<OTHER-U>/inbox

A11 BO S2 A01 SELECT <A×1296>

ID S2 A01 CREATE /<A×10>

A12 DoS S2 A01 RENAME <A×10> <A×10>

b) Detected previously known vulnerabilities.

Application Vuln State First Successful Attack
Type

TrueNorth eMail-
Server Corporate
Edition 5.3.4

BO S3 A01 SEARCH <A×560>

c) New vulnerability discovered with AJECT.

Table 4. Attacks generated by AJECT to de-
tect IMAP vulnerabilities (∗ using CRAM-MD5
auth scheme).

vulnerable versions were no longer available in the official
web sites. This was specially true for commercial prod-
ucts, where whenever a new patched version is produced,
the older ones are removed. A web search had to be car-
ried out to get the older versions, however, in two occasions
without success.

Table 4 presents a summary of the attacks generated by
AJECT that successfully activated the software bugs. Each
line contains our internal application identifier (ID, also see
Table 3), the type of vulnerability (where BO is a heap or
stack Buffer Overflow; ID is an Information Disclosure; FS
is a Format String; DoS is a Denial of Service [26]), the
IMAP state in which the attack was successful (also see Ta-
ble 1), and the attack itself. In order to keep the descrip-
tion of the attacks small, we had to use a condensed form
of command representation where: <A×N> means letter
’A’ repeated N times; and <OTHER-U> corresponds to an-
other existing username.

For the two applications that we were unable to get, it
was necessary to employ a different approach in the tests.
The Injector was used to generate and carry out the attacks
against a dummy IMAP server. Basically, this server only

stored the contents of the received packets and returned sim-
ple responses. The packets were then later analyzed to de-
termine if one of the attacks could activate the reported vul-
nerability. In Table 4 a) are presented the results of these
experiments, and in both cases an attack was generated that
could supposedly explore the vulnerabilities.

The vulnerabilities actually detected with AJECT are
presented in Table 4 b). From the table it is possible to
conclude that AJECT is capable of detecting several kinds
of bugs, ranging from buffer overflows to information dis-
closure. Since we had a limited time for testing, and since
we wanted to evaluate a large number of applications, we
had to interrupt the tests as soon as a vulnerability was dis-
covered so only the first successful attack is presented. In
the few cases where experiments were run for a longer pe-
riod, we noticed that several distinct attacks were able to
uncover the same problem. For example, after 24500 injec-
tions against the GNU Mailutils, there were already more
than 200 attacks that similarly crashed the application.

Sometimes it was difficult to determine if distinct attacks
were equivalent in terms of discovering the same flaw, spe-
cially in the cases where they used different IMAP com-
mands. For example, if a bug is in the implementation of a
validation routine that is called by the various commands,
then the attacks would be equivalent. On the other hand,
if no code was shared then there should be different bugs.
Therefore, in order to find out exactly if attacks are equiva-
lent, one would need to have access to the source code of the
applications (something impossible to obtain for a majority
of the products). Consequently, we decided to take a conser-
vative approach, where all attacks were deemed equivalent
except in the situations where they correspond without any
doubt to different vulnerabilities.

During the course of our experiments, we were able to
discover a previously unknown vulnerability (see Table 4
c)). The attack sends a large string in a SEARCH command
that causes a crash in the server. This indicates that the bug
is a boundary condition verification error, which probably
corresponds to a buffer overflow. Several versions of the
eMailServer application were tested, including the most re-
cent one, and all of them were vulnerable to this attack.

6. Related Work

The paper describes a methodology and a tool for the dis-
covery of vulnerabilities on services provided by network
or local daemons, through the injection of attacks (i.e, ma-
licious faults). This work has been influenced by several
research areas, namely:

Fault Injection is an experimental approach for the
verification of fault handling mechanisms (fault removal)
and for the estimation of various parameters that charac-
terize an operational system (fault forecasting), such as

fault coverage and error latency [3, 20]. Traditionally,
fault injection has been utilized to emulate several kinds
of hardware faults, ranging from transient memory cor-
ruptions to permanent stuck-at faults. Three main tech-
niques have been developed to inject these faults: hardware-
based tools resort to additional hardware to actually intro-
duce the faults in the system, in most cases through pin-
level injection, but also through radiation and electromag-
netic interference [4, 17, 24]; simulation models with dif-
ferent levels of abstraction, e.g., device and network, have
been employed by simulation-based tools to study the be-
havior of systems, starting from the early stages of de-
sign [16, 22]; software-based tools insert errors in the vari-
ous parts of a running system by executing specific fault in-
jection code [23, 29, 18, 7]. The emulation of other types of
faults has also been accomplished with fault injection tech-
niques, for example, software and operator faults [8, 12, 6].
Robustness testing mechanisms study the behavior of a sys-
tem in the presence of erroneous input conditions. Their ori-
gin comes both from the software testing and fault-injection
communities, and they have been applied to various ar-
eas, for instance, POSIX APIs and device driver inter-
faces [25, 2].

Vulnerability Scanners are tools whose purpose is the
discovery of vulnerabilities in computer systems (in most
cases network-connected machines). Several examples of
these tools have been described in the literature, and cur-
rently there are some commercial products: COPS [14],
FoundStone Enterprise [15], Internet Scanner [21], Nes-
sus [28], and QualysGuard [27]. They have a database of
well-known vulnerabilities, which should be updated pe-
riodically, and a set of attacks that allows their detection.
The analysis of a system is usually performed in three steps:
first, the scanner interacts with the target to obtain informa-
tion about its execution environment (e.g., type of operat-
ing system, available services, etc); then, this information is
correlated with the data stored in the database, to determine
which vulnerabilities have previously been observed in this
type of system; later, the scanner performs the correspond-
ing attacks and presents statistics about which ones were
successful. Even though these tools are extremely useful to
improve the security of systems in production, they have the
limitation that they are unable to uncover unknown vulner-
abilities.

Static vulnerability analyzers look for potential vulner-
abilities in the source code of the applications. Typically,
these tools examine the source code for dangerous patterns
that are usually associated with buffer overflows, and then
they provide a listing of their locations [34, 33, 19]. Next,
the programmer only needs to go through the parts of the
code for which there are warnings, to determine if an actual
problem exists. More recently, this idea has been extended
to the analysis of binary code [13]. Static analysis has also

been applied to other kinds of vulnerabilities, such as race
conditions during the access of (temporary) files [5]. In the
past, a few experiments with these tools have been reported
in the literature showing them as quite effective for locating
programming problems. These tools however have the lim-
itation of producing many false warnings, and skip some of
the existing vulnerabilities.

Run-time prevention mechanisms change the run-time
environment of programs with the objective of thwarting the
exploitation of vulnerabilities. The idea here is that remov-
ing all bugs from a program is considered infeasible, which
means that it is preferable to contain the damages caused
by their exploitation. Most of these techniques were devel-
oped to protect systems from buffer overflows. A few ex-
amples are: StackGuard [10], Stack Shield [30], and Point-
Guard [9] are compiler-based tools that determine at run-
time if a buffer overflow is about to occur, and stop the pro-
gram execution before it can happen. A recent study com-
pares the effectiveness of some of these techniques, show-
ing that they are useful only to prevent a subset of the at-
tacks [35].

7. Conclusion

The paper presents a tool for the discovery of vulnerabil-
ities in server applications. AJECT simulates the behavior
of a malicious adversary by injecting different kinds of at-
tacks against the target server. In parallel, it observes the
application while it runs in order to collect various informa-
tion. This information is later analyzed to determine if the
server executed incorrectly, which is a strong indication that
a vulnerability exists.

To evaluate the usefulness of the tool, several experi-
ments were conducted with many IMAP products. These
experiments indicate that AJECT could be utilized to locate
a significant number of distinct types of vulnerabilities (e.g.,
buffer overflows, format strings, and information disclosure
bugs). In addition, AJECT was able to discover a new buffer
overflow vulnerability.

References

[1] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese,
Y. Deswarte, K. Kursawe, J. C. Laprie, D. Pow-
ell, B. Randell, J. Riordan, P. Ryan, W. Simmonds,
R. Stroud, P. Verı́ssimo, M. Waidner, and A. We-
spi. Conceptual Model and Architecture of MAF-
TIA. Project MAFTIA deliverable D21. Jan. 2002.
http://www.research.ec.org/maftia/deliverables/D21.pdf.

[2] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the
impact of faulty drivers on the robustness of the Linux ker-
nel. In Proc. of the Int. Conference on Dependable Systems
and Networks, pages 867–876, June 2004.

[3] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell.
Fault injection and dependability evaluation of fault-tolerant
systems. IEEE Trans. on Computers, 42(8):913–923, Aug.
1993.

[4] J. Arlat, Y. Crouzet, and J. Laprie. Fault injection for de-
pendability validation of fault-tolerant computer systems. In
Proc. of the Int. Symp. on Fault-Tolerant Computing, pages
348–355, June 1989.

[5] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Computing Systems, 9(2):131–152, Spring
1996.

[6] A. Brown, L. C. Chung, and D. A. Patterson. Including the
human factor in dependability benchmarks. In Workshop
on Dependability Benchmarking, in Supplemental Volume of
DSN 2002, pages F–9–14, June 2002.

[7] J. Carreira, H. Madeira, and J. G. Silva. Xception: A tech-
nique for the experimental evaluation of dependability in
modern computers. IEEE Trans. on Software Engineering,
24(2):125–136, Feb. 1998.

[8] J. Christmansson and R. Chillarege. Generation of an error
set that emulates software faults. In Proc. of the Int. Symp.
on Fault-Tolerant Computing, pages 304–313, June 1996.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities. In
Proc. of the 12th USENIX Security Symposium, Aug. 2003.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. of the 7th USENIX Security
Conference, pages 63–78, Jan. 1998.

[11] M. Crispin. Internet Message Access Protocol - Version
4rev1. Internet Engineering Task Force, RFC 3501, Mar.
2003.

[12] J. Durães and H. Madeira. Definition of software fault emu-
lation operators: A field data study. In Proc. of the Int. Con-
ference on Dependable Systems and Networks, pages 105–
114, June 2003.

[13] J. Durães and H. Madeira. A methodology for the auto-
mated identification of buffer overflow vulnerabilities in ex-
ecutable software without source-code. In Proc. of the Sec-
ond Latin-American Symposium on Dependable Computing,
Oct. 2005.

[14] D. Farmer and E. H. Spafford. The COPS security checker
system. In Proc. of the Summer USENIX Conference, pages
165–170, June 1990.

[15] FoundStone Inc. FoundStone Enterprise, 2005.
http://www.foundstone.com.

[16] K. Goswami, R. Iyer, and L. Young. Depend: A simulation-
based environment for system level dependability analysis.
IEEE Trans. on Computers, 46(1):60–74, Jan. 1997.

[17] O. Gunnetlo, J. Karlsson, and J. Tonn. Evaluation of error
detection schemes using fault injection by heavy-ion radia-
tion. In Proc. of the Int. Symp. on Fault-Tolerant Computing,
pages 340–347, June 1989.

[18] S. Han, K. G. Shin, and H. A. Rosenberg. Doctor: An inte-
grated software fault-injection environment for distributed
real-time systems. In Proc. of the Int. Computer Per-
formance and Dependability Symposium, pages 204–213,
1995.

[19] E. Haugh and M. Bishop. Testing C programs for buffer
overflow vulnerabilities. In Proc. of the Symposium on Net-
worked and Distributed System Security, Feb. 2003.

[20] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection
techniques and tools. IEEE Computer, 30(4):75–82, Apr.
1997.

[21] Internet Security Systems Inc. Internet Scanner, 2005.
http://www.iss.net.

[22] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson.
Fault injection into VHDL models: The MEFISTO tool. In
B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, ed-
itors, Predictably in Dependable Computing Systems, pages
329–346. Springer-Verlag, 1995.

[23] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. Fer-
rari: A tool for the validation of system dependability prop-
erties. In Proc. of the Int. Symp. on Fault-Tolerant Comput-
ing, pages 336–344, June 1992.

[24] J. Karlsson, J. Arlat, and G. Leber. Application of three
physical fault injection techniques to the experimental as-
sessment of the MARS architecture. In Proc. of the Int.
Working Conference on Dependable Computing for Critical
Applications, pages 267–287, Sept. 1995.

[25] P. Koopman and J. DeVale. Comparing the robustness of
POSIX operating systems. In Proc. of the Int. Symp. on
Fault-Tolerant Computing, pages 30–37, June 1999.

[26] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren,
N. Mehta, and R. Hassel. The Shellcoder’s Handbook: Dis-
covering and Exploiting Security Holes. Wiley Publishing
Inc, 2004.

[27] Qualys Inc. QualysGuard Enterprise, 2005.
http://www.qualys.com.

[28] Tenable Network Security. Nessus Vulnerability Scanner,
2005. http://www.nessus.org.

[29] T. Tsai and R. Iyer. An approach towards benchmarking of
fault-tolerant commercial systems. In Proc. of the Int. Symp.
on Fault-Tolerant Computing, pages 314–323, June 1996.

[30] Vendicator. Stack Shield : A stack smashing
technique protection tool for Linux, Jan. 2001.
http://www.angelfire.com/sk/stackshield/.

[31] P. Verı́ssimo, N. F. Neves, and M. Correia. The middleware
architecture of MAFTIA: A blueprint. In Proceedings of the
Third IEEE Information Survivability Workshop, Oct. 2000.

[32] P. Verı́ssimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In R. Lemos, C. Gacek,
and A. Romanovsky, editors, Architecting Dependable Sys-
tems, volume 2677 of Lecture Notes in Computer Science,
pages 3–36. Springer-Verlag, 2003.

[33] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A
static vulnerability scanner for C and C++ code. In Proc.
of the 16th Annual Computer Security Applications Confer-
ence, Dec. 2000.

[34] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vulner-
abilities. In Proc. of the Network and Distributed System
Security Symposium, Feb. 2000.

[35] J. Wilander and M. Kamkar. A comparison of publicly avail-
able tools for dynamic buffer overflow prevention. In Proc.
of the Network and Distributed System Security Symposium,
pages 149–162, Feb. 2003.

