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Abstract

Consensus is one of the key problems in fault tolerant

distributed computing. A very popular model for solving

consensus is the failure detector model defined by Chandra

and Toueg. However, the failure detector model has limita-

tions. The paper points out these limitations, and suggests

instead a model based on communication predicates, called

HO model. The advantage of the HO model over failure de-

tectors is shown, and the implementation of the HO model is

discussed in the context of a system that alternates between

good periods and bad periods. Two definitions of a good

period are considered. For both definitions, the HO model

allows us to compute the duration of a good period for solv-

ing consensus. Specifically, the model allows us to quantify

the difference between the required length of an initial good

period and the length of a non initial good period.

1. Introduction

Consensus is one of the key problems in fault tolerant

distributed computing. Consensus is related to replication

and appears when implementing atomic broadcast, group

membership, etc. The problem is defined over a set of pro-

cesses Π, where each process pi ∈ Π has an initial value

vi: All processes must agree on a common value that is the

initial value of one of the processes.

Consensus can be impossible to solve, as established

by the FLP impossibility result [13]. Later it has been

shown that consensus can be solved in a partially syn-

chronous system with a majority of correct processes [12].

Roughly speaking, a partially synchronous system is a sys-

tem that is initially asynchronous, but eventually becomes

synchronous.1 Moreover, in a partially synchronous system

links are initially lossy, but eventually become reliable.

∗Research funded by the Swiss National Science Foundation under

grant number 200021-111701.
1This is not the only definition of a partially synchronous system.

The notion of failure detectors has been suggested a few

years later [5]. The failure detector model is defined as an

asynchronous system “augmented” with failure detectors,

which are defined by some completeness and some accu-

racy property (see [5] for details). Over the years failure

detectors have become very popular. The model is today

widely accepted and has become the model mostly used for

expressing consensus algorithms. However, the failure de-

tector model has limitations.

First, failure detectors are not an abstraction of the par-

tially synchronous model (even though this claim has some-

times been made). The reason is that in the partially syn-

chronous model links are initially lossy, while the use of

failure detector to solve a problem requires perpetual reli-

able links.2 When using failure detectors, either the sys-

tem must provide reliable links, or reliable links need to

be implemented on top of the unreliable system links. As a

consequence, the capability of algorithms of tolerating mes-

sage loss — as it is the case for the Paxos algorithm [19] —

cannot be expressed naturally in the failure detector model.

Only a variant of Paxos that assumes reliable links can be

expressed using failure detectors, as done, e.g., in [4].

Second, failure detectors are not well suited to solve con-

sensus in the crash-recovery model, with or without stable

storage [1]. In the crash-recovery model, a process can

crash and later recover. This is in contrast to the crash-stop

model, in which process crashes are permanent. Intuitively,

one would think that solving consensus in the crash-stop

model or in a crash-recovery model should not lead to ma-

jor algorithmic differences. However, the comparison of

(i) the 3S consensus algorithm in the crash-stop model [5]

with (ii) the corresponding algorithm in the crash-recovery

model with stable storage [1] shows that the crash-recovery

algorithm is a much more complicated protocol than the

corresponding crash-stop algorithm. Moreover, the com-

plexity of the crash-recovery consensus algorithm makes it

hard to see that the crash-recovery algorithm is based on the

2Failure detectors lead to the following programming pattern: Process

p (i) waits for a message from process q or (ii) suspects q. If q is not

suspected while the message is lost, p is blocked.
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same basic ideas as the crash-stop algorithm. This leads to

the following question: Is there an inherent gap between the

crash-stop and the crash-recovery model that would explain

the higher complexity of the crash-recovery consensus al-

gorithm?

Third, failure detectors cannot handle Byzantine failures.

The reason is that the definition of a Byzantine behavior is

related to an algorithm: It is impossible to achieve a com-

plete separation of failure detectors from the algorithm us-

ing them. To overcome this problem, the notion of muteness

detectors has been suggested [9, 10, 18]. However, it is not

clear what system model could allow the implementation of

muteness detectors, which is an inherent limitation of the

approach.

These arguments suggest that failure detectors might not

be the ultimate answer to the consensus problem. As an al-

ternative to failure detectors, one could program directly at

the level of the partially synchronous system model. How-

ever, this model provides too low level abstractions. It is in-

deed useful to provide higher level abstractions for express-

ing consensus algorithms. The goal of this paper is to show

that another abstraction, namely communication predicates,

provides a better abstraction than failure detectors for solv-

ing consensus. Specifically, the paper brings an answer to

the question raised in [17], about quantifying the time it

takes the environment to reach round synchronization after

the system has stabilized.

The paper is structured as follows. Section 2 serves as a

motivation to the introduction of communication predicates.

Communication predicates are defined in Section 3. The

implementation of communication predicates is presented

in Section 4. Related work is discussed in Section 5, and

Section 6 concludes the paper. Note that the paper is re-

stricted to benign faults; Byzantine faults will be addressed

in another paper.

2. Fault taxonomy

In this section we discuss the taxonomy of faults, with

the goal to understand the limitation of failure detectors.

The discussion will serve as the basis for the introduction

of the notion of communication predicates.

2.1. Failure detectors and the paradox of
the classical fault taxonomy

Let us come back to the second limitation of failure de-

tectors (see Section 1), namely the gap between solving

consensus with failure detectors in the crash-stop model and

in the crash-recovery model. Our goal is to explain this gap,

and so to understand the limited context in which failure de-

tectors provide a good abstraction.

When looking at process failures, the classical fault tax-

onomy distinguishes, from the most benign to the most se-

vere, (i) crash faults, (ii) send-omission faults, (iii) general-

omission faults (which includes receive-omission faults),

and (iv) malicious faults [22]. It can be observed that this

taxonomy does not distinguish crash faults without recov-

ery (the crash-stop model) and crash faults with recovery

(the crash-recovery model). So, one would expect little dif-

ference when solving consensus in either of these two mod-

els. However, as already mentioned, this is not the case with

failure detectors:

• In the crash-stop model, a standard solution to consen-

sus is the rotating coordinator algorithm that requires

the failure detector 3S and a majority of processes [5].

• Extending this solution to the crash-recovery model is

not easy. It requires the definition of new failure de-

tectors, and the algorithm becomes more complex [1].

This can be observed by comparing the two algorithms

that are given in the appendix of [16].

This observation leads to the following question: What

is the key issue, not captured by the classical fault tax-

onomy, that explains the gap between the crash-stop and

crash-recovery consensus algorithm? The key issue is in the

distinction between permanent faults and transient faults.

Crash-stop is a model with permanent (crash) faults, while

crash-recovery is a model with transient (crash) faults. A

fault taxonomy that does not distinguish between perma-

nent and transient fault is not able to explain the limitation

of the failure detector model. In the next section we sug-

gest another new fault taxonomy that makes the distinction

between permanent and transient fault explicit.

2.2. Alternative fault taxonomy (for benign
faults)

An alternative process fault taxonomy can be organized

along two dimensions. The first dimension distinguishes

between the already discussed permanent (P) and transient

faults (T). The second dimension distinguishes faults that

can hit any process in the system from faults that hit only a

subset of the processes. We use the term static (S) for faults

that can hit only a fixed subset of processes and dynamic3

(D) for all other cases, i.e., faults that can hit all processes.

Combining this two dimensions leads to four classes of

process faults:

• SP: at most f processes out of n are faulty (f<n); a

faulty process is permanently faulty.

• ST: at most f processes out of n are faulty (f<n);

faults are transient.

3This notion of static/dynamic faults was also used by [21].
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• DP: all processes can be faulty; faults are permanent.

• DT: all processes can be faulty; faults are transient.

Among this classes, SP is clearly the most restrictive,

whereas DT is the most general one. The crash-stop fault in

the classical taxonomy corresponds the SP class. The send-

omission and general-omission faults are transient faults. If

we assume that only a subset of processes suffer from send-

omission or general-omission faults, then send-omission

and general-omission faults are classified as ST. Otherwise,

these faults are classified as DT.

This alternative taxonomy is able to capture the distinc-

tion between the crash-stop model and the crash-recovery

model: The crash-stop model corresponds to the class SP,

whereas the crash-recovery model can be classified either

as ST (if some processes never crash) or as DT. Failure de-

tectors are well-suited to handle the SP fault class, but not

to handle dynamic faults. Communication predicates will

allow us to handle SP and DT faults in the same way.

2.3. Transmission faults

It is usual to distinguish between process faults and link

faults. However, the distinction becomes irrelevant with DT

faults. To see this, consider process p sending message m
to process q. Process q might not receive m if (i) p suffers

from a send-omission fault, (ii) the link loses m, or (iii) q
suffers from a receive-omission fault. In case (i) p is the

faulty component, in case (ii) the link lpq is the faulty com-

ponent, in case (iii) q is faulty. However, if the fault is tran-

sient, it may not occur later, for another message m′ sent

by p to q. For this reason, it makes no sense to put the re-

sponsibility of the fault on one of the components (process

p, process q, or link lpq). This observation leads to consider

only transmission faults:4 a transmission fault is a fault that

results in the non reception of some message m.

As we will see in Section 3, communication predi-

cates are based on the notion of transmission faults. As

such, communication predicates — contrary to failure de-

tectors — are able to handle SP and DT fault classes uni-

formly.

3. Communication predicates and algorithms

3.1. Communication predicates

Communication predicates are defined in the context of a

communication-closed round model. An algorithm for this

model comprises, for each round r and process p ∈ Π, a

sending function Sr
p and a transition function T r

p . At be-

ginning of a round r, every process sends a message to all

4The term is taken from [21], in which transmission faults are consid-

ered in the context of synchronous systems.

Algorithm 1 The OneThirdRule algorithm [6].

1: Initialization:

2: xp ← vp

3: Round r:

4: Sr
p :

5: send 〈xp〉 to all processes

6: T r
p :

7: if |HO(p, r)| > 2n/3 then

8: if the values received, except at most ⌊n
3
⌋, are equal

to x then

9: xp ← x
10: else

11: xp ← smallest xq received

12: if more than 2n/3 values received are equal to x then

13: DECIDE(x)

according to Sr
p(sp), where sp is p’s state at the beginning

of the round. At the end of a round r, p makes a state tran-

sition according to T r
p (~µ, sp), where ~µ is the partial vector

of all messages that have been received by p in round r.

We denote by HO(p, r) the support of ~µ, i.e., the set

of processes (including itself) from which p receives a mes-

sage at round r: HO(p, r) is the heard of set of p in round r.

If q /∈ HO(p, r), then the message sent by q to p in round r
was subject to a transmission failure. Communication pred-

icates are expressed over the sets (HO(p, r))p∈Π,r>0
. For

example,

∃r0 > 0, ∀p, q ∈ Π : HO(p, r0) = HO(q, r0)

ensures the existence of some round r0 in which all pro-

cesses hear of the same set of processes. Another exam-

ple is a communication predicate that ensures that in every

round r all processes hear of a majority of processes (n is

the number of processes):

∀r > 0, ∀p ∈ Π : |HO(p, r)| > n/2.

Let A = 〈Sr
p , T r

p 〉 be an HO algorithm. A problem is

solved by a pair 〈A,P〉, where P is a communication pred-

icate. The consensus problem is specified by the following

conditions:

• Integrity: Any decision value is the initial value of

some process.

• Agreement: No two processes decide differently.

• Termination: All processes eventually decide.

The termination condition requires all processes to decide;

a weaker condition is considered later. An example of a

consensus algorithm is given by Algorithm 1.5 The send-

ing function is specified in lines 4–5. When the transition

5We have chosen this algorithm, rather than Paxos or another algorithm,

for its simplicity. It allows us to keep the algorithmic part as simple as

possible.
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function (lines 6–13) is called, messages are available such

that the predicate on the HO sets is guaranteed to hold. The

consensus problem is solved by Algorithm 1 and the com-

munication predicate Potr , given in Table 1 (next page).

Theorem 1. The pair 〈 Algorithm 1,Potr 〉 solves consen-

sus.

Proof. Algorithm 1 never violates the safety properties of

consensus, namely integrity and agreement. For agreement,

if some process decides v at line 13 of round r, then in any

round r′ ≥ r, only v can be assigned to any xp, and hence

only v can be decided. Predicate Potr ensures the liveness

property of consensus (termination). The first part of Potr ,

namely the existence of some round r0 in which all pro-

cesses in Π have the set HO equal to some (large enough)

set Π0, ensures that at the end of round r0 all processes in

Π adopt the same value for xp. The second part of Potr

forces every process p ∈ Π to make a decision at the end of

round rp.

Note that Potr allows rounds in which no messages are

received.

3.2. Restricted scope communication pred-
icates

Section 2.3 has introduced the “transmission fault” ab-

straction, which covers various types of faults. One instan-

tiation is to assume that transmission faults abstract link

faults, send-omission faults and receive-omission faults, but

not process crashes (i.e., processes do not crash). In this

case the predicate Potr , which expresses a condition that

must hold for all processes p ∈ Π, is perfectly adapted.

This interpretation of transmission faults is also consistent

with the termination condition for consensus that requires

all processes to decide.

Let us now assume that transmission faults include in ad-

dition process crashes (without recovery). As already men-

tioned in [6], from the viewpoint of an HO algorithm this

is still not a problem, since a crashed process does not send

any messages and is thus indistinguishable from one that re-

ceives all messages but sends no messages. This holds no

more if we implement the HO machine in a system where

processes may exhibit any sort of benign faults. The prob-

lem can be addressed by restricting the scope of Potr to the

subset Π0, as defined by Prestr
otr

, see Table 1 (next page).

Predicate Prestr
otr

sets a requirement only for processes

in Π0, and so ensures termination only for processes in Π0.

If processes in Π0 do not crash, while processes in Π \ Π0

crash, then 〈Algorithm 1, Prestr
otr

〉 allow all processes that

do not crash to decide. So we have:

Theorem 2. The pair 〈Algorithm 1,Prestr
otr

〉 ensures the va-

lidity and agreement property of consensus. Moreover, all

processes in Π0 eventually decide.

Proof. Proof of Theorem 1, by replacing Π with Π0.

3.3. Crash-recovery model

Algorithm 1 with predicate Prestr
otr

solves consensus with

process crashes (crash-stop), link faults, send-omission, and

receive-omission faults. In Section 2.1 we pointed out the

gap between solving consensus with failure detectors in the

crash-stop vs. the crash-recovery model. The gap disap-

pears with the transmission fault abstraction and commu-

nication predicates.

Without any changes, Algorithm 1 can be used in the

crash-recovery model. Handling of recoveries is done at a

lower layer (cf. Section 4).

4. Achieving predicate Prestr
otr

in good periods

We discuss now the implementation of the communi-

cation predicate Prestr
otr

introduced in Section 3. Figure 1

shows the algorithmic HO layer, the predicate implemen-

tation layer that we discuss now, and the interface between

these two layers defined by communication predicates. This

illustration shows also that the implementation of the pred-

icates relies on assumptions about the underlying system

(these assumptions define the fault and synchrony hypothe-

sis). Note that “transmission faults” is an abstraction rele-

vant to the upper layer: This abstraction does not appear at

the lower layer.

In our implementation model, the system alternates be-

tween good and bad periods. In a good period the syn-

chrony and fault assumptions hold; in a bad period the be-

havior of the system is arbitrary (but malicious behavior is

excluded). The idea is here to compute the minimal dura-

tion of a good period that allows us to implement the com-

munication predicates, i.e., the minimal duration of a good

period that allow Algorithm 1 to solve consensus.

synch. assumptions

Fault model +Implementation

Predicate

Comm. predicatesHO Algorithm

Figure 1. The two layers.
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Potr :: ∃r0 > 0,∃Π0, |Π0| > 2n/3 : (∀p ∈ Π : HO(p, r0) = Π0) ∧ (∀p ∈ Π, ∃rp > r0 : |HO(p, rp)| > 2n/3) (1)

Prestr
otr

:: ∃r0 > 0,∃Π0, |Π0| > 2n/3 : (∀p ∈ Π0 : HO(p, r0) = Π0) ∧ (∀p ∈ Π0,∃rp > r0 : HO(p, rp) ⊇ Π0) (2)

Table 1. Communication predicates

4.1. System model

Our system model is inspired by [12]; the differences

are pointed out at the end of the section. We consider a

message-passing system, and assume the existence of a fic-

titious global real-time clock that measures time with val-

ues from IR (see the remark on the next page for the reason

for considering values from IR rather than integers). The

clock is used only for analysis and is not accessible to the

processes. Processes execute a sequence of atomic steps,

which are either send steps or receive steps. As in [12],

steps take no time (atomic steps), but time elapses between

steps.6 The network can take a make-ready step that is in-

troduced to distinguish a message ready for reception from

a message in transit: (i) Every process has two sets of mes-

sages called networkp and bufferp; (ii) a make-ready step

transfers a message from the first to the second set. Send

steps, receive steps, and make-ready steps are defined to ad-

equately model a real system:

• In a send step, a process p sends a message to either

a single process or to all other processes and makes

some local computation. More precisely, if p executes

sendp(m) to all, then m is put into networks, for all

s ∈ Π.

• In a make-ready step, the network transfers some mes-

sages from networkp into bufferp. More precisely, if

the network executes make-readyp(M) for some sub-

set M ⊆ networkp, all messages m ∈ M are re-

moved from networkp and put into bufferp. Messages

in bufferp are ready for reception by process p.

• In a receive step executed at time t, a process p may

receive a single message that was in bufferp at time t
and makes some local computation. So n receive steps

are needed to receive n messages. If bufferp = ∅ at

the time of a receive step, the empty message λ is re-

ceived. A process p may specify any policy, according

to which the message bufferp is selected for reception

(e.g., “message with the largest round number first”).

We consider that the system alternates between good and

bad periods. In a bad period, processes can crash and re-

cover and suffer from send and receive omission; further-

more links can loose messages. We distinguish three types

6We model a step that “terminates” at time t as an atomic step that

“occurs” at time t.

of good periods, from the strongest to the weakest. All these

definitions refer to a subset π0 of Π. In all the three defini-

tions, the following property π0-sync holds in a good period

for processes in π0:

π0-sync: The subsystem π0 is synchronous, i.e., there is

a known upper and lower bound on the process speed and

a known upper bound on the communication delays among

processes in π0. Formally:

Let I be an open contiguous time interval and R a run.

Processes and links are synchronous during I if there exist

Φ+,Φ−,∆ ∈ IR such that:

• In any contiguous sub-interval of I of length Φ+, every

process in π0 takes at least one step.

• In any open contiguous sub-interval of I of length Φ−,

every process in π0 takes at most one step.

• Consider two processes p, q ∈ π0. If process p exe-

cutes sendp(m) at time t ∈ I , then m ∈ bufferq at

time t + ∆, provided that t + ∆ ∈ I .

The length of the good period is |I|. If I starts at time 0,

we say I is an initial good period. We denote Π \ π0 by π0.

We can now define the three types of good periods:

1. Π-good period: The property π0-sync holds for

π0 = Π. All processes are up, none of these processes

crashes (during the good period).

2. “π0-down” good period: The property π0-sync holds

for π0 ⊆ Π. Processes in π0 do not crash. Processes

in π0 are down and do not recover (during the good

period). Moreover, no messages from processes in π0

are in transit during the good period.

3. “π0-arbitrary” good period: The property π0-sync

holds for π0 ⊆ Π. There are no restrictions on the pro-

cesses in π0 and on the links to and from processes

processes in π0 (during the good period processes in π0

can crash, recover, be asynchronous; links to and from

processes in π0 can lose messages, be asynchronous).

Case 2 includes case 1, and case 1 leads to the same im-

plementation as case 2. Thus we distinguish below only

between case 2 and case 3. For simplicity, we will use the

following notation: We scale all values Φ+,Φ−,∆, and t
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with 1/Φ− and use φ = Φ+/Φ− as the normalized upper

bound of the process speed, δ = ∆/Φ− as the normalized

transmission delay, and τ = t/Φ− as normalized time. Re-

member that φ and δ are “known” values, and note that these

values are unit-less.7

Remark: For our modeling, we have chosen real-values

clocks to represent time. Consider case 3 above, assuming

integer clock values instead. By the definition of Φ+, the

slowest process in π0 takes at least one step in any interval

Φ+. However, with integer clock values, any process can

take at most Φ+ steps in an interval Φ+, independent how

small Φ− is chosen. So, in case 3, processes in π0 cannot

be arbitrarily fast with respect to processes in π0. In other

words, with integer clock values, processes in π0 have some

synchrony relation with respect to processes in π0, which

we wanted to exclude under case 3.

Differences between our system model and DLS [12]:

In [12] the clocks take integer values. We have explained

the reason to consider clocks with real-time values. In [12]

a send step allows a process to send a message only to a

single destination. Our send primitive allows messages to

be broadcast, a facility provided, e.g., by UDP-multicast.

In [12], a receive step allows a process to receive several

messages. Our receive primitive allows reception of a mes-

sage from one single process only, which reflects the fea-

ture, e.g., of UDP. The reception of messages one by one

led us to introduce the make-ready step. Two different syn-

chrony assumptions are considered in [12]: (i) The syn-

chrony bounds are known but hold only eventually; (ii) the

synchrony bounds are not known, but hold from the begin-

ning. We considered option (i), which is needed to com-

pute the minimal length of a good period (in the context of

the implementation of the communication predicates). In

the context of option (i), [12] assumes that the good period

holds eventually forever and that the synchrony assumption

holds on the whole system. We consider the system alter-

nating between good and bad periods, and synchrony as-

sumptions that hold only on a subset π0. We also assume

the more general crash-recovery model, while [12] consid-

ers the crash-stop model. On the other hand, contrary to our

fault model, [12] considers also Byzantine faults.

4.2. Implementation of Prestr
otr

We give now algorithms for implementing the predicate
Prestr

otr
in π0-down and π0-arbitrary good periods. It turns

out that both definitions of a good period lead naturally
to the implementation of a predicate that is stronger than

7For obtaining real-time values, the results in this section have thus to

be multiplied by Φ−.

Prestr
otr

. We define:

Psu(Π0, r1, r2) :: ∀p ∈ Π0, ∀r ∈ [r1, r2] : HO(p, r) = Π0

Pk (Π0, r1, r2) :: ∀p ∈ Π0, ∀r ∈ [r1, r2] : HO(p, r) ⊇ Π0

P2

otr (Π0) :: ∃r0 > 0 : Psu(Π0, r0, r0)

∧ Pk (Π0, r0+1, r0+1)

P
1/1

otr (Π0) :: ∃r0 > 0, ∃r1 > r0 : Psu(Π0, r0, r0)

∧ Pk (Π0, r1, r1)

Predicate Psu(Π0, r1, r2) ensures that rounds from r1

to r2 are so called “space uniform” for the processes in

Π0. Predicate Pk (Π0, r1, r2) ensures a weaker property (k
stands for kernel). Predicate P2

otr
(Π0) ensures two consec-

utive rounds such that the first satisfies Psu(Π0,−,−) and

the second Pk (Π0,−,−). Predicate P
1/1

otr (Π0) ensures the

same property for two rounds that do not need to be consec-

utive. We clearly have:

(∃Π0, s.t. |Π0|>2n/3 : P2
otr

(Π0)) ⇒ Prestr
otr

(∃Π0, s.t. |Π0|>2n/3 : P
1/1

otr (Π0)) ⇒ Prestr
otr

.

We give below algorithms for Psu(−,−,−) and

Pk (−,−,−), for both definitions of good periods. We also

analyze the timing property of the algorithms under the fol-

lowing two scenarios:

1. Assume that a good period starts at an arbitrary time

tG resp. τG = tG/Φ−. We compute, in the worst

case, the minimal length of the good period needed to

implement the communication predicates. We call this

value minimal length of a good period.

2. We do the same, assuming that a good period starts

from the beginning, i.e., τG = 0. We call this value

minimal length of an initial good period.

Intuitively, scenario 2 allows us to compute the time to

solve consensus in the fault-free case, which is often called

a “nice” run. Scenario 1 allows us a timing analysis of con-

sensus in “not nice” runs.

4.2.1. Ensuring Prestr
otr

in a “π0-down” good period

Let us consider a “π0-down” good period that is “long

enough”, with π0 arbitrary. Algorithm 2 implements

Psu(π0,−,−). The function S
rp

p at line 7 returns the mes-

sage to be sent; the send occurs at line 8. Variable ip
(line 9, 11) counts the number of receive steps. If p ex-

ecutes x steps, at least x and at most xφ (normalized) time

has elapsed (see Section 4.1). Process p executes at most

⌈2δ +n+2φ⌉ receive steps, see line 12 (message reception

takes place at line 14; non-empty messages are added to

the set msgsRcvp, see line 16). Process p executes receive

steps (1) until ⌈2δ + n + 2φ⌉ receive steps have been exe-

cuted, or (2) if p receives a message from a round r′ larger
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Algorithm 2 Ensuring Psu(π0,−,−) with a ‘π0-down”

good period

1: Reception policy: Highest round number first

2: msgsRcvp ← ∅ {set of messages received}

3: rp ← 1 {round number}

4: next rp ← 1 {next round number}

5: sp ← initp {state of the consensus algorithm}

6: while true do

7: msg ← S
rp

p (sp)
8: send 〈msg, rp〉 to all

9: ip ← 0
10: while next rp = rp do

11: ip ← ip + 1
12: if ip ≥ 2δ + n + 2φ then

13: next rp ← rp + 1;

14: receive a message

15: if message is 〈msg, r′〉 from q then

16: msgsRcvp ← msgsRcvp ∪ {〈msg, r′, q〉}
17: if r′ > rp then

18: next rp ← r′

19: R← {〈msg′, q′〉 | 〈msg′, rp, q′〉 ∈ msgsRcvp}

20: sp ← T
rp

p (R, sp)

21: forall r′ in [rp+1, next rp−1] do sp ← T r′

p (∅, sp)
22: rp ← next rp

than rp. In both cases the state transition function T
rp

p is

executed with the set R of messages received in round rp

(line 20). Then the state transition function T
rp

p is executed

for all rounds rp + 1 to next rp − 1 with an empty set of

messages.8

In order to cope with recoveries after crashes, variables

rp and sp are stored on stable storage. In case of a recovery,

the algorithm starts on line 6, with msgsRcvp and next rp

reinitialized. Reading variables on stable storage is ineffi-

cient. The implementation can be made more efficient by

keeping a copy of the variables in main memory: a read op-

eration reads the in memory copy, a write operation updates

the in memory and the stable storage copies. Upon recov-

ery, the in memory copy is reset with the value of the stable

copy.9

Algorithm 2 is not optimized regarding space, i.e., the set

msgsRcvp grows forever. Obviously, messages for round

smaller than rp can safely be discarded. To keep the pre-

sentation short, we did not include this simple optimization.

It should be noted that Algorithm 2 relies exclusively on

messages sent by the upper algorithmic layer: Algorithm 2

does not send any additional message.

We prove Algorithm 2 in two steps. First we prove that

there exists r > 0 such that, for any x > 0, Algorithm 2 en-

sures Psu(π0, r, r+x−1), assuming a “long enough” good

8This is required only if T
rp

p (∅, sp) 6= sp. Calling the sending func-

tion S
rp

p is not needed, since the function does not change the state sp.
9We could express this formally as a variant of Algorithm 2, but the

space constraints prevent us from doing this.

period. Then we compute the minimal duration of a good

period to ensure P2
otr

(π0), and the minimal duration of two

good periods to ensure P
1/1

otr (π0). Note that by the defini-

tion of a π0-down good period, all processes in π0 are down

in a good period, and no messages from these processes are

in transit in the good period. In other words, processes in

π0 can simply be ignored.

Theorem 3. With Algorithm 2, the minimal length of a good

period to achieve Psu(π0, ρ0, ρ0+x−1) is:

(x + 1)(2δ + n + 2φ + 1)φ + δ + φ.

The proof, also for all other theorems of this paper,

can be found in [16]. The following Corollary follows di-

rectly from Theorem 3 with x=1 and x=2, and the fact that

Psu(−,−,−) ⇒ Pk (−,−,−):

Corollary 4. For implementing P2
otr

(π0) with Algorithm 2,

we need one “π0-down” good period of length

(6δ + 3n + 3 + 6φ)φ + δ + φ.

For implementing P
1/1

otr (π0) with Algorithm 2, we need two

“π0-down” good periods of length

(4δ + 2n + 2 + 4φ)φ + δ + φ.

Corollary 4 shows an interesting trade-off in terms of the

length of a good period. The next theorem gives us the min-

imal length of an initial good period:

Theorem 5. With Algorithm 2, the minimal length of an

initial good period to achieve Psu(π0, 1, x) is:

x(2δ + n + 2φ + 1)φ.

As already pointed out, Theorem 5 is related to so-called

“nice” runs, while Theorem 3 is related to “not nice” runs.

This second case has not been addressed in the literature

with a time analysis as done here (see Section 5). The re-

sults show a factor of approximately 3/2 between the two

cases for the relevant value x = 2.

4.2.2. Ensuring Prestr
otr

in a “π0-arbitrary” good period

In this section we consider a π0-arbitrary good period.

Compared with the previous section, the problem is more

complex. We proceed in two steps. First we show

how to implement the predicate Pk (π0,−,−). Second,

we show how to obtain the predicate Psu(π0,−,−) from

Pk (π0,−,−). Note that we introduce here a parameter f
defined such that |π0| = n − f . The implementation of

Pk (π0,−,−) requires f < n/2.
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a) Implementing Pk (π0,−,−)

The algorithm for implementing Pk (π0,−,−) is given as

Algorithm 3. It uses two different types of messages, INIT

messages and ROUND messages. Processes express the in-

tention to enter a new round ρ with an 〈INIT, ρ,−〉 message.

If a process receives at least f + 1 INIT messages for some

round ρ, it starts round ρ and sends a 〈ROUND, ρ,−〉 mes-

sage. A process in round ρ that receives a ROUND message

for a higher round ρ′ enters immediately round ρ′. This

ensures fast synchronization at the beginning of a good pe-

riod, and is one of the major differences of this algorithm

compared to Byzantine clock synchronization algorithms.

The reception policy for Algorithm 3 (line 1) is a little bit

more complicated than for Algorithm 2. Algorithm 3 has to

ensure that a fast process with a large round number r′ is not

able to prevent messages from other processes with lower

round numbers r < r′ from being received. The reception

policy is as follows: At the ith receive step, the message

with the highest round number from process pi mod n is se-

lected for reception. If no such message exists, an arbitrary

message is selected.

As for the previous algorithm, variables rp and sp are

assumed to be on stable storage (possibly with a copy in

volatile memory) and the algorithm starts after a recovery

in line 6, with msgsRcvp and next rp reinitialized.

We prove the following results:

Theorem 6. With Algorithm 3 and f < n/2, the minimal

length of a good period to achieve Pk (π0, ρ0, ρ0+x−1) is

(x + 2)[τ0φ + δ + nφ + 2φ] + τ0φ =

= (x+2)[(2δ+nφ+φ)φ+δ+2nφ+2φ]+(2δ+n+nφ+φ)φ

Theorem 7. With Algorithm 3 and f < n/2, the minimal

length of an initial good period to implement Pk (π0, 1, x)
is:

(x − 1)[τ0φ + δ + nφ + 2φ] + τ0φ + φ.

b) Implementing Psu(π0,−,−) from Pk (π0,−,−)

We show now that f+1 rounds that satisfy Pk (π0,−,−),
with |π0| = n−f , allow us to construct one macro-round

that satisfies Psu(π0,−,−). The “translation” is given by

Algorithm 4, which is derived from a similar translation

in [6]. Let r1, . . . , rf+1 denote the sequence of the f + 1
rounds that form a macro-round R. In round r1, every pro-

cess p sends its message for macro-round R (line 7). In

all subsequent rounds r2, . . . , rf+1 messages previously re-

ceived are relayed (line 7). In round rf+1 (i.e., r ≡ 0
(mod f+1), see line 9), the set of messages of macro-round

R to be received by p are computed (lines 13 and 14).

Algorithm 3 Ensuring Pk (π0, , ) with a “π0-arbitrary” good

period

1: Reception policy: The highest round message from each

process in a round robin fashion

2: msgsRcvp ← ∅
3: rp ← 1
4: next rp ← 1
5: sp ← initp

6: while true do

7: msg ← S
rp

p (sp)
8: send 〈ROUND, rp, msg〉 to all

9: i← 0
10: while next rp = rp do

11: receive a message

12: if message is 〈ROUND, msg, r′〉 or 〈INIT, msg, r′ + 1〉
from q then

13: msgsRcvp ← msgsRcvp ∪ {〈msg, r′, q〉}
14: if r′ > rp then

15: next rp ← r′

16: if received f+1 messages 〈INIT, rp+1,−〉 from distinct

processes then

17: next rp ← max{rp + 1, next rp}
18: i← i + 1
19: if i ≥ 2δ + n + nφ + φ then

20: send 〈INIT, rp + 1, msg〉 to all

21: R← {〈msg′, q′〉 | 〈msg′, rp, q′〉 ∈ msgsRcvp}

22: sp ← T
rp

p (R, sp)

23: forall r′ in [rp+1, next rp−1] do sp ← T r′

p (∅, sp)
24: rp ← next rp

c) Putting it all together

When combining Algorithm 3 and Algorithm 4, the func-

tion S
rp

p ( ) called in Algorithm 3 refers to line 7 of Algo-

rithm 4. Similarly, the function T
rp

p ( ) called in Algorithm 3

refers to the lines 9 to 17 of Algorithm 4. The functions Sr
p

and T r
p in Algorithm 4 refer to the sending phase and state

transition phase of Algorithm 1.

We compute now the minimal duration of a good period

to ensure P2
otr

(π0) (considering instead P
1/1

otr (π0) is not a

valuable alternative here):

1. We need first f + 1 rounds that satisfy Pk (−,−,−)
to implement one macro-round that satisfies

Psu(−,−,−) (Algorithm 4).

2. Then we need one round that satisfies Pk (−,−,−).

For 1, the worst case happens when the good period starts

immediately after the beginning of a macro-round. In

this worst case, Psu(−,−,−) requires two macro-rounds.

Since one macro-round consists of f+1 rounds, in the worst

case we need 2(f+1) rounds. Item 2 adds one round. So we

end up with a minimal duration of 2f +3 rounds. Applying

Theorem 6, we get the minimal length of a good period:

(2f+5)[(2δ+nφ+φ)φ+δ+2nφ+2φ]+(2δ+n+nφ+φ)φ.
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Algorithm 4 Ensuring Psu(π0,−,−) with Pk (π0,−,−)

(adapted from [6]).

1: Variables:

2: Listenp, initially Π {set of processes}

3: NewHOp {set of processes}

4: Knownp, initially {〈S
Rp

p (sp), p〉}
{set of 〈message, process〉 }

5: Round r:

6: Sr
p :

7: send 〈Knownp〉 to all processes

8: T r
p :

9: Listenp ← Listenp ∩ {q | 〈Knownq〉 received}
10: if r 6≡ 0 (mod f+1) then

11: Knownp ← Knownp ∪
S

q∈Listenp
Knownq

12: else

13: NewHOp ← {s | 〈−, s〉 ∈ Knownq for n− f
processes q ∈ Listenp}

14: R← {〈msg, s〉 | s ∈ NewHOp}

15: sp ← T
Rp

p (R, sp)
16: Listenp ← Π

17: Knownp ← {〈S
Rp

p (sp), p〉}

5 Related work

The paper addresses several issues that appear in the lit-

erature. We now point out the key differences.

The HO model was proposed in [6]. The paper es-

tablishes relationship among several communication pred-

icates and identifies the weakest predicate, among the class

of predicates with non-empty kernel rounds, for solving

consensus. The paper also expresses well-known consen-

sus algorithms (or variants) and new ones in the HO model,

with the goal of showing the expressiveness of the model.

The implementation of communication predicates is not ad-

dressed in [6], nor is the ability of the model to handle uni-

formly crash-stop and crash-recovery models, and the rea-

son for that. In [7] the HO model is used to express a new

consensus algorithm.

The HO model generalizes the round model of [12], but

does not reintroduce failure detectors as done in [14] and

in [17]. The implementation in [12], contrary to ours, ex-

plicitly refers to some “common notion of time” and relies

on a distributed clock synchronization algorithm.

It has been sometimes claimed that the partial syn-

chrony model has been superseded by the failure detector

model [5]. In out opinion this claim is only partially cor-

rect. The models that extend the failure detector model, e.g.,

[14, 17], all inherit from the limitations of failure detectors

pointed out in Section 1.

The issue of performance of consensus following asyn-

chronous periods is considered in [11, 17]. In [17] the fo-

cus is on number of rounds rather than time; [11] considers

time. Moreover, in [17] the authors write that being able

to quantify the time it takes the environment to reach round

synchronization after the system has stabilized is an inter-

esting subject for further studies. This question is answered

here. In [11] and [17] the synchronous period is defined

only by properties of links: Processes are always considered

to be synchronous. This is in contrast to our definition of

π0-arbitrary good period, where only a subset of processes

are assumed to be synchronous. This definition opens the

door to the analysis of the duration of good periods with

Byzantine processes. Our algorithm shares some similari-

ties with the Byzantine clock synchronization of [23]. How-

ever, the algorithm in [23] assumes reliable links; adapting

the algorithm to message loss, we end up with the algorithm

of [12].

The notion of good and bad period appears in [8], but the

issue of the length of a good period for solving consensus

is not addressed. Restricting the scope of synchrony, as we

do in good periods, has been considered in other settings,

e.g., [15] and [2, 3]. However, in all these papers the issue

of synchrony is implicitly restricted to links (i.e., process

synchrony is not addressed). This is not the case in our

definition of π0-arbitrary good period.

The Paxos algorithm [19] does not assume reliable links

and, because of this, works under the crash-recovery model

with stable storage. However, the condition for liveness is

not expressed by a clean abstraction as done by communi-

cation predicates in the HO model (a consensus algorithm à

la Paxos in the HO model can be found in [6]). The same

comment applies to [11], where the system must stabilize

before consensus is reached. System stabilization is not re-

quired with π0-arbitrary good periods: the HO model pro-

vides a clean separation of concerns between the HO algo-

rithmic layer and the predicate implementation layer, which

allows a finer definition of good periods, and so a finer tim-

ing analysis. As pointed out in Section 3, we have chosen

here an algorithm that is simpler than Paxos to illustrate as

simply as possible the approach based on communication

predicates.

The notion of transmission faults was suggested in [21],

however only in the context of synchronous systems. Vary-

ing the quorums for “init” and round messages — in the

context of π0-arbitrary good periods — was to our knowl-

edge done first in [20, 24], but for other fault scenarios.

6 Conclusion

Abstractions are essential when solving difficult prob-

lems. Failure detectors provide a nice abstraction for solv-

ing the difficult consensus problem; this explains why they

have been widely adopted. However, transient and dynamic

faults show the limitations of the failure detector approach:

For example, solving consensus in the crash-stop model and
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in the crash-recovery model leads to significantly different

solutions. The HO model provides a different abstraction,

namely the “communication predicates”, which allow us to

handle uniformly static, dynamic, transient, and permanent

faults and so overcome the limitations of failure detectors.

Moreover, the HO model allows a nice and concise expres-

sion of consensus algorithms.

Similarly to failure detectors, solving consensus in the

HO model leads to distinguish two layers: The “algorith-

mic” layer and the “abstraction” layer (the layer at which

the abstraction is implemented). In the case of failure de-

tectors, the abstraction layer must ensure the properties of

the failure detectors, based on assumptions of the underly-

ing system. The same holds for communication predicates.

However, while communication predicates are based on the

very general notion of transmission faults, failure detector

assume the limited notion of process crash faults. The com-

munication predicate layer defines a larger “playground”

than the failure detector playground, in which more issues

can be addressed. Specifically, the communication predi-

cate approach has allowed us to bring an answer the ques-

tion raised in [17], about quantifying the time it takes to

reach round synchronization after the system has stabilized.
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