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Abstract 

 
Society is increasingly requiring quantitative assessment 
of risk and associated dependability cases. Informally, a 
dependability case comprises some reasoning, based on 
assumptions and evidence, that supports a dependability 
claim at a particular level of confidence. In this paper we 
argue that a quantitative assessment of claim confidence 
is necessary for proper assessment of risk.  We discuss 
the way in which confidence depends upon uncertainty 
about the underpinnings of the dependability case (truth 
of assumptions, correctness of reasoning, strength of 
evidence), and propose that probability is the 
appropriate measure of uncertainty. We discuss some of 
the obstacles to quantitative assessment of confidence 
(issues of composability of subsystem claims; of the 
multi-dimensional, multi-attribute nature of 
dependability claims; of the difficult role played by 
dependence between different kinds of evidence, 
assumptions, etc). We show that, even in simple cases, 
the confidence in a claim arising from a dependability 
case can be surprisingly low. 
 
1. Introduction: uncertainty, confidence 

 
Risks associated with the use of computer-based 

systems are becoming increasingly important to society. 
Whilst the problems have been recognized for a long 
time in safety-critical industries, there is a new awareness 
in other industries, such as banking (see, e.g., the Basel II 
accords [6]). Assessing these risks, so that intelligent 
decisions can be made – e.g. about deployment, or about 
the cost-effectiveness of possible risk reduction 
procedures – is hard. Much of the difficulty stems from 
the fact that the fallibility of software plays such an 
important role as a source of risk.  

Risk involves notions of failure and consequence of 
failure. Its assessment therefore requires an assessment of 
dependability; this might be expressed, for example, as 
probability of failure upon demand, rate of occurrence of 
failures, probability of mission failure, and so on. In this 
paper we shall address this dependability assessment 

problem only, and not further discuss the 
cost/consequence part of risk assessment. 

There is now a huge literature on the assessment of 
the dependability of software-based systems, going back 
several decades. In recent years the assessment process 
has started to be formalized in dependability cases, most 
notably safety cases. A safety case has been defined as: 

 
A documented body of evidence that provides a 
convincing and valid argument that a system is 
adequately safe for a given application in a given 
environment [7]. 
 
In this paper we shall discuss the important role 

played by uncertainty in dependability cases. We believe 
that some aspects of uncertainty have been long 
neglected and we propose a formal quantitative treatment 
of ‘confidence’ to address this omission. 

Computer scientists have long had an uneasy 
relationship with uncertainty, and with its most powerful 
calculus, probability. One of us can remember 
discussions of thirty years ago about software reliability. 
It was difficult then to persuade some software experts 
that there was inherent uncertainty in the failure 
processes of programs, and that probability was the 
appropriate way of capturing this uncertainty. Instead, it 
was asserted that software failed systematically, and thus 
that notions of ‘reliability’ were meaningless. 

Over the years the position has changed. It is now 
widely agree that ‘systematic failure’ just means that a 
program that has failed in certain circumstances will 
always fail whenever those circumstances are exactly 
repeated. The uncertainty lies in our not knowing 
beforehand which circumstances (e.g. inputs to a 
program) will cause failure, and when these will arise 
during the operational execution of the program. It is this 
uncertainty that is represented in a probabilistic measure 
of dependability, such as reliability.1 

                                                             
1 It is interesting that a similar reluctance to acknowledge 
uncertainty has occurred recently as attempts have been made 
to model security probabilistically. Here, notions of attacker 



The uncertainty discussed above concerns system 
behaviour – it is ‘uncertainty-in-the-world’. There is 
another form of uncertainty that has, we believe, been 
neglected: this is uncertainty in the dependability 
assessment process itself.  

Consider, for example, a situation in which we want 
to claim that a software component has a probability of 
failure on demand (pfd) smaller than 10-3 (a figure that 
may have arisen from the requirements of a wider system 
safety case). Our evidence to support such a claim may 
be testing data, different types of static analysis, etc (it is 
a characteristic of dependability assessment, particularly 
for software-based systems, that the supporting evidence 
is usual disparate in nature).  

The problem is that such evidence will never allow us 
to be certain that the claim is true: there is inherent 
uncertainty here. If we collect more supportive evidence, 
we might reasonably expect to increase our confidence in 
the truth of the claim, but it will rarely be possible to 
collect sufficient evidence to eliminate doubt 
completely.2   As the cases often deal with critical 
systems there needs to be high confidence in the resulting 
judgement. Often there are areas where there is lack of 
understanding (e.g. due to deficiencies in the science, in 
experimental data) or there are problems that the 
engineering process has not been rigorously followed. 
There may be problems with uncertainties in the 
prediction due to the high level of human-computer 
interaction (e.g. in a cockpit) making quantified estimates 
of reliability problematic due, among other things, to the 
sensitivity to the exact context and variability of 
performance. Not that we argue against the use of 
humans, indeed it is often this inherent variability in 
human performance that allows systems to recover from 
unsafe situations, turning potential accidents into 
incidents or near misses. Rather that all these factors lead 
to uncertainties in our judgement. 

This prompts questions such as: How confident are we 
that the claim is true? How do we express ‘confidence’ 
quantitatively? What effect does this ‘assessment 
uncertainty’ have upon decision-making? 

Confidence in dependability cases stems from a 
multiplicity of judgements, some informal, some very 
formal, some from individuals and others from groups of 
experts. Confidence, like proof, is the product of a social 
process.  

The greatest difficulty is to deal with the uncertainty 
that arises from weaknesses in the argument that supports 
a dependability claim. These might arise, for example, 

                                                                                              
intentionality have been used to claim that probabilistic 
measures of security are not appropriate. 
2 One exception might be exhaustive testing in some 
specialized situations. Such exceptions are, we believe, very 
rare. 

from uncertainty as to whether underlying assumptions 
are true. Although we are not aware of any formal 
treatments of this kind of uncertainty in the literature, the 
problem has been acknowledged implicitly. For example, 
in [9,10] it is recognized that there will be uncertainty 
arising from a single argument leg supporting a 
dependability claim, so that a second, different, leg 
should be added – a kind of ‘argument fault-tolerance’. 
However, the reasoning here is informal and qualitative – 
there is no guidance about how much benefit will ensue, 
nor about how confident one would be in a claim after 
following this procedure. The recent reissue of the UK 
Defence Standards recognises the role of confidence and 
an earlier version of this paper provided some rationale 
behind the guidance in Part 2 [8].  Two of us were 
involved in a study of the use of computers in the UK 
nuclear industry [11].  One recommendation of this 
group was that the principle underlying much regulation 
in this area, ALARP (that the failure rate stated by a 
dependability claim should be As Low As Reasonably 
Practicable), ought to be accompanied by another 
principle, ACARP (that one should be As Confident As 
Reasonably Practicable in the truth of a claim). The 
recommendation has not yet been adopted. 

In the rest of this paper we look at some of these 
problems in more detail, and provide some very tentative 
pointers to ways forward.  

 
2. Judging the range of probability of failure 

 
As an example of the interplay between confidence 

and failure rate (or pfd) we examine the judgement that a 
system has a certain classification safety integrity level 
(SIL): a measure of how safety critical a function is. 
While we have chosen the standard IEC 61508 [4] for 
this illustration the use of levels and the judgement of 
membership of “levels” is a pervasive issue (e.g. in 
aerospace [2], defence, security, nuclear, railways). IEC 
61508 is a generic standard for the functional safety of 
computer-based systems and it defines safety integrity 
both in terms of a probability of dangerous failure on 
demand and the probability of dangerous failure per 
hour. SILs are defined by a range. For example a Safety 
Integrity Level n safety function with a low demand 
mode of operation has an average probability of failure to 
perform its design function on demand in the range 10-

(n+1) to 10-n. In practice SILs are used in a variety of ways, 
not only to describe the judged probability of failure 
(whether qualitative or quantitative), but also to indicate 
confidence in the judgement being made. There is an 
interesting interplay between level and confidence: 
people seem to expect the higher SILs to be 
demonstrated to higher confidence.  



Although we use judgement of SIL as an example, the 
issues this raises apply to many of the judgements made 
in safety and dependability cases. We should point out 
that while SIL applies to one important attribute of a 
safety critical system there are others such as robustness, 
security and maintainability that should be addressed in a 
full safety case. 

Throughout the paper we shall interpret probabilities 
in the Bayesian sense of ‘degrees of belief’. This has the 
practical advantage of providing a formalism that allows 
uncertainty to be treated in a consistent way, whether 
evidence comes from empirical data or the judgement of 
a human expert. 
 
3 Modelling judgement of SIL 
 
Deriving a SIL can be done in a number of interrelated 
ways. For example: 
 
• Relying entirely on qualitative arguments to 

directly assess a SIL: the failure rate or SIL is not 
quantified and it may be denied that software 
reliability can be quantified at all. 

• Using expert judgment based on standards 
compliance to assess the system. This approach 
suffers from lack of validation, calibration, and 
many influencing parameters some of which are 
ignored in the standard (e.g. size of the software). 

• Using a best fit reliability growth model, assessing 
the accuracy of predictions, adding  a margin for 
subjective assessment of assumption violation. 

• Using a worst-case model of the failure process, 
taking into account uncertainty in parameters 
quantitatively, and using a subjective estimate of 
invalid model assumptions. 

• Developing an argument of high confidence in 
zero defects. This may be credible for small highly 
analysed systems or hardware logic but is not 
developed further here. 

What distinguishes these methods is the confidence 
that can be placed on the judged SIL but in every case 
there is some uncertainty that needs to be assessed. This 
essential uncertainty arises from a number of sources: 
 
• uncertainty in the completeness and validity of 

data 

• doubts about assumptions in the model and model 
validity  

• doubts about the implementation of the model 
(this may be based on complex software itself) 

• doubts about the application of the model and how 
to deal with conservatism in the model and the 
data  

Confidence in SIL n can be expressed as the 
probability that the judged pfd (λ) is within the upper 
bound of the pfd for that SIL band: 
 

  

If the failure rate was normally distributed or 
symmetrical in linear space, changing the confidence in it 
by narrowing the distribution would not affect the mean 
value. However none of the examples would necessarily 
have a normal distribution and we think normality is 
unlikely to be the case for a number of reasons: 

 
• The distribution cannot be negative yet we 

can have a large uncertainty in our judgement 
of a small pfd. 

• We would expect the distribution’s density 
function to tend to zero as the rate λ→0,  
although there may be special cases where 
there is belief in possible perfection of the 
system.3 

We have undertaken some experimental work on how 
experts make judgements of the probability of failure on 
demand.  The results are summarised in Section 3.3.  We 
also note that in reactor safety studies log-normality is 
often chosen for model parameters (see the discussion in 
 [3]). So in the analysis that follows we deploy a log 
normal distribution but the thrust of the results only 
require a non-symmetric distribution. We have repeated 
some of the results for a gamma distribution to illustrate 
the (low) sensitivity to the log-normal assumptions. 

 
3.1  A log normal model  
 
If we model our judgement of the dangerous failure rate 
or pfd with a log normal distribution, the mean will be 

                                                             
3 At first glance it appears contradictory to allow the pfd to take 
the value 0, and at the same time assign almost zero probability 
to a very small non-zero value, say 10-10. In fact, the reasoning 
to support such values would be very different. In the first case, 
the claim is one of perfection, and this might be supportable by 
non-probabilistic reasoning. In the second case, it is assumed 
that the system is imperfect, but it is claimed that the impact of 
its faults is vanishingly small.  
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different from the most likely "peak" value (the mode). 
The log-normal distribution is specified by two 
parameters: µ which controls the peak value and σ which 
controls the spread. Although the log-normal is generally 
difficult analytically, the mean and the mode can be 
calculated as: 

a_mean µ σ,( ) exp µ
1
2

σ
2

⋅+ 
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and the peak value is at
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where: 
 
log_mean is the log of the mean failure rate  
log_mode is the log of the peak failure rate 
 

The probability density function is: 
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It can be shown that the ratio of the mean and the mode 
is: log10 (mean / mode)= 0.65 σ 2. So the difference 
between the mode and mean varies with the spread of the 
distribution (σ). As you might expect there is no 
difference when there is no spread (σ = 0), but for a 
broad spread there is a surprisingly big difference, e.g. 
the mean failure rate is one decade greater than the mode 
if σ = 1.2, and two decades greater if σ = 1.7: See 
examples in Figure 1. All judgements estimate the most 
likely failure rate to be 0.003 (i.e. in the middle of SIL2 
range of 10-3 to 10-2 as defined in Table 1) but with 
varying degrees of confidence. The mean of the dashed 
curve is 0.004, which is quite close to the mode value of 
0.003. By contrast, the solid curve has the widest spread 
and the mean is 0.01 putting the mean value in the SIL1 
band rather than the SIL2 band.  
 

 
 
Figure 1: Density functions of the judgement of SIL 
 
The impact of higher failure rates can be seen from 
plotting the probability density functions on a linear 
scale: 
 
 

 

Figure 2: Log normal distribution functions on a linear 
scale 
 
 
3.2  Variation of mean with confidence in SIL 
membership 
 
We can calculate from the probability distributions how 
the mean SIL varies with the spread in the distribution. 
One measure of the spread in the distribution is to 
calculate the probability that we judge the system to be in 
the desired SIL or better. This is our one sided 
confidence in the system’s SIL membership: 



 

confidence_better_x bound( )
0

bound
λpdf_λl 0 λ, 4.6−, ln 0.003( ),( ) 

 
 

d:=
 

We model this by keeping the mode of the distribution 
constant. This is shown in Figure 3 where the mode has 
been kept at 0.003 (the middle of SIL2) and we see that if 
our confidence falls below about 67% that the system is 
SIL2 then the mean rate is actually in the SIL1 band. 
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Figure 3: Relationship between confidence in a SIL and 
the mean value 

Another of way of looking at the problem is, for a 
given mode and actual mean, to calculate the chances of 
the true system failure rate being in the different SIL 
bands. This is shown in Figure 4. 

 

Figure 4: Confidence mean failure rate better than a 
bound 

So for the widest distribution (corresponding to the 
solid line in Figure 1), the system has about a 67% 

chance of being in SIL2 or higher and a 99.9% chance of 
being SIL1 or higher.  
 
3.3 Experimental results 
 
We conducted an experiment with 12 experts from a 
variety of European countries and backgrounds. All 
were familiar with safety rated systems and some were 
experts with many years experience of the 
development and assessment of such systems. The 
experts were asked for judgments in four phases 

1. After a 20 minute presentation describing a 
safety critical system and the implementation of 
a particular safety function. This was based on 
the Public Domain Case Study of the European 
nuclear R&D project Cemsis [5]. 

2. After a request for additional information, 
which (if available) was provided individually 

3. After a group presentation of all items of 
additional information provided individually to 
the different participants in the previous phase; 

4. After a Delphi phase where there was an 
opportunity to discuss decisions with the other 
participants;  

Interestingly the assessors seem to fall into two 
groups: a minority of (3) doubters who expressed these 
doubts by giving the system a very high failure rate and 
another group that expressed their beliefs as shown 
below: 
 

 
Figure 5 Experimental results 

The group were about 90% confident that the system 
was in SIL2 or better yet the resulting pfd (0.01) is on the 
2-1 boundary. However the main point of the experiment, 
as far this exercise is concerned, is to add plausibility to 
the use of an asymmetric distribution. 
 



3.4 Assessment heuristics and reducing the claim 
 
These modelling results would seem to confirm the 
heuristic used by safety assessors that although the 
evidence points to say a SIL2 system they consider it 
SIL1 because of the uncertainties.  

It is therefore more likely that a better case can be 
made if the system is judged as most likely a SIL n+1 
system and it could then be taken as a SIL n with high 
confidence. This can be seen in the safety justification for 
the Sizewell B Primary Protection System where doubts 
about the quality of the development process of the 
software led to an order of magnitude reduction in the 
judged probability of failure on demand (some 
background is provided in [1]). The situation is likely to 
be exacerbated when qualitative expert judgements are 
made on the SIL. It may be that the type of standards 
compliance argument that is often attempted should 
really lead to a greater than 1 reduction in the claimed 
SIL. This is discussed further in Section 3.2. 
Because the judgement of the SIL is likely to be a 
combination of several sub-judgements, it would be 
useful to understand how the confidence in these 
contributing arguments can be combined. This is the 
subject of some on-going work. 

It is unlikely that we will have precise estimates of the 
confidence of experts. To cope with this we have 
developed a conservative, worst case, way of distributing 
our doubt about the system. Consider the simple situation 
where the dependability case just has to support a claim 
about the pfd of a system.  

We treat pfd as a random variable, with probability 
density function f(p). This can be regarded as the 
(Bayesian subjective) belief of an expert that takes 
account of all his uncertainty, including assumption 
doubt.  

In such a situation, for a randomly selected demand 
the expert’s belief is: 

 
P(system fails on randomly selected demand)

= pf(p)dp
0

1

  (4)
 

                 
In fact it is well known, as we have stated earlier, that 

it is hard to elicit the beliefs of an expert in the form of a 
complete distribution like this. Indeed, some would argue 
that describing this as elicitation begs the question that 
the expert really does ‘have’ a complete distribution to be 
elicited. Rather he may only be prepared to express a 
belief of the kind P(pfd < y) =1− x . If this is all he is 
prepared to say, it is reasonable to ask what is the worst 
case f(p) – i.e. the distribution that gives the most 
conservative result in (4). 

Figure 6a shows a typical ‘real’ distribution, f(p) that 
satisfies the expert’s belief: P(pfd < y) =1− x . Of all the 
many such distributions that satisfy his belief, Figure 6b 
shows the most conservative: here all the probability 
mass for the interval (0,y) is concentrated at y, and all the 
mass for the interval (y,1) is concentrated at 1. 
 

 
 
 

It is easy to see that the maximum value of the 
probability of failure for a randomly selected demand 
occurs when f(p) takes the form in Figure 6b. In other 
words, we have:  
 
P(system fails on randomly selected demand )

< (1− x)y + x = x + y − xy
      (5) 

 
This should be interpreted as the expert being certain 

that the probability of failure on a randomly selected 
demand is smaller than x+y-xy. 

The inequality, (5), can be used to give some support 
to the kind of informal reasoning that goes as follows: I 
need to claim that the pfd is less than 10-3, but with my 
present dependability case I still have a small doubt that 
the pfd may be greater than this; so I strengthen my case 
(e.g. collect more supportive evidence) to make with high 
confidence the stronger claim that the pfd is smaller than 
10-4. This is the kind of reasoning we have seen applied 
in real safety cases. 



The details of how to proceed are as follows. Suppose 
that the requirement imposed by a wider dependability 
case is that the pfd for the system is no greater than y (in 
our example, 10-3). We thus wish this claim to be true. 
Suppose further that the expert believes sufficiently 
strongly, say with confidence (1-x*), that the pfd is no 
greater than y* (<y). Then, if x*+y*-x*y*<y, it follows 
from the result above that the expert believes the 
probability of failure on a randomly selected demand is 
less than y. 

The point here is that the confidence (or doubt) about 
the pfd has been turned into a probability of the 
occurrence of an event (failure of the system on a 
randomly selected demand). This thus relates directly to 
the dependability requirement placed upon the system by 
the wider safety case. 

It is instructive to consider some examples of (x*,y*) 
pairs, representing the expert’s beliefs about the pfd, 
when y=10-3=x*+y*-x*y*.  

Example 1 At one extreme, we have x*=0, y*=10-3. 
This is simply the expert believing directly that he is 
certain that the pfd is smaller than 10-3, i.e. that his 
beliefs, represented by the probability density function 
f(p) are such that there is zero probability mass to the 
right of 10-3. 

Example 2 At the other extreme, we have x*=10-3, 
y*=0. This case represents the expert believing with 
99.9% confidence that the system is ‘perfect’, i.e. has 
zero pfd. In the event that it is not perfect, the worst that 
can happen is that it is certain to fail – so for a randomly 
selected demand, there is a 10-3 chance of failure (i.e. that 
the system is not perfect). 

Example 3 A more interesting example gives some 
supporting formalism to the way of proceeding that we 
have seen used, with informal justification, in real safety 
cases. The reasoning is as follows. The expert constructs 
an argument that allows him to have high confidence that 
the pfd is a whole decade better than the goal of 10-3, i.e. 
he claims high confidence in the pfd being better than 10-

4. That is, y*=10-4. His (informal) reasoning is that if he 
believes strongly that the pfd is smaller than 10-4, then he 
can be ‘effectively certain’ that it is smaller than (the 
more modest) 10-3. In fact, since x*+y*-x*y*=10-3, it 
follows that x*=10-3-10-4=0.0009 (approximately – we 
can ignore the x*y* term here). So, for this reasoning to 
apply, he needs to have an argument sufficiently strong 
to be able to claim the pfd is smaller than 10-4 with 
confidence 99.91%. 

More generally, if the expert wishes to claim that the 
probability of failure on a randomly selected demand is 
better than y, he needs to be able to claim with 
confidence 1-x* that the pfd is smaller than y*, where 
x*+y*-x*y*=y.  

This last example shows how unforgiving this kind of 
reasoning can be. The bounds given above in (4) are 

conservative. The expert needs to have an argument that 
is sufficiently strong that his ‘single point’ elicited belief, 
(x*,y*) has the property that both x* (doubt) and y* 
(claim) are smaller than the required claim, y. The 
coupling here between claim and doubt suggest that there 
would be strict limitations to the use of this kind of 
reasoning. Imagine, for example, that the requirement is 
the more stringent y=10-5. To use this kind of argument, 
the expert would need to believe the pfd is smaller than 
y* (itself smaller than y) with a confidence greater than 
99.999%. It seems unlikely that real experts would ever 
express confidence of this magnitude (and if they did 
they would not be believed by others). 

Note that, if the expert believes there is a probability 
p0 that the system is ‘perfect’ (i.e. pfd=0: f(p) has 
probability mass p0 at the origin), the upper bound in (5) 
becomes x+y-(x+p0)y. It is simple to modify the 
reasoning of examples like those above. 

This example has used the worst case assignment of 
the doubt to “1”. If  we could defend other approaches, 
for example that we were sure we were not wrong by 
more than  a factor of 100, then other models along the 
same lines are possible – but harder to defend. 

 
4  Discussion 
 
There are a number of strategies that can be adopted in 
the dependability case to address the confidence issue: 

• Reducing the claimed figure due to lack of 
confidence. See discussion Section 2.3 and 
Section 3.2  

• Undertaking confidence building measures  
• Reducing the required confidence by additional 

argument “legs”. 
The last two are now briefly discussed. 
 
4.1  Confidence building from experience 
 
The other side of reducing a judged pfd because of lack 
of confidence is undertaking assurance activities 
explicitly to increase confidence.  In view of this in [11] 
we proposed a sister principle to ALARP that of As 
Confident as Reasonably Practicable (ACARP). In 
practice we often undertake analysis and verification 
activities that increase our confidence without actually 
changing the system and this is especially so for 
software.  An alternative strategy to just reducing the SIL 
rating to give high confidence, is to use techniques that 
attack the high failure rate tail of the distribution. It is 
this tail that is causing the reduction of the SIL from n to 
n-1. Operating experience or statistical testing can “cut 
off” this tail so the distribution gets modified by the 
survival probability and renormalized. Later work will 
describe this in more detail. 



Similarly we could analyse the growth in dangerous 
failure rate with failures (some safety systems such as air 
traffic control can fail several times a year and the overall 
system still be safe due to the large mitigations from 
others systems, providence etc). Preliminary results 
indicate that tests rapidly increase confidence and reduce 
the mean.. So one approach of tackling confidence might 
be to give a system a provisional SIL rating based on a 
broad distribution reflecting the initial uncertainties, and 
then increase this SIL rating after an operating period. 
The risk analysis would have to take into account the 
period of greater risk. This is similar to the organisational 
strategies for using COTS systems initially only in non-
safety-related applications. 

More work is needed to model how the worst-case 
confidence is impacted by subsequent testing. It may 
well be that there is an equivalent to the conservative 
bound on mtbf  [13] for confidence. 
 
4.2  Confidence building from legs 
 
An alternative strategy to tackling the tail of the 
distribution is to find an alternative way of predicting the 
same result and so develop another argument “leg” that 
the system is in the required SIL band or higher.  “Multi-
legged” arguments are an informal concept and we see 
them used to mean both confidence building where a 
technique (e.g. testing) attacks the tail of the first 
judgement, and where a separate argument is made that 
does not tackle the tail but reduces the required 
confidence in the first argument. 

These issues of interplay between adding assurance 
legs and confidence are subtle and the subject of 
continuing research (see [12]).   
 
4.3  Standards issues  
 
IEC 61508 [4] is an important, generic seven-part safety 
standard that sets out a detailed approach to the 
development of safety related computer based systems. 
In some ways our analysis is at odds with IEC 61508 in 
as much as the standard does not accept – or is at any rate 
inconsistent about – the use of statistics for systematic 
faults, and in the standard this includes software. Despite 
rejecting the use of quantified reliability for software in 
Part 1 the standard talks in Parts 3 and 7 about statistical 
testing of software and discusses statistical requirements 
for operating experience. Furthermore the quantified 
SILs implicitly require the software reliability (with 
respect to dangerous failures) to be quantified. 

The definition of SIL in terms of the probability of 
failure on demand or per hour is technically useful as it 
allows for different distributions and requires the pdf to 
be integrated to arrive at the mean.  

The confidence required in a SIL is not explicitly 
addressed in the standard. Part 3 does not mention 
“confidence” at all. However Part 2 clause 7.4.7.4 
requires better than 70% confidence in hardware failure 
rate data and Part 2 Clause 7.4.7.9 requires 70% single 
side confidence for operating history. Higher confidence 
figures are used in Table B6 Part 2 which gives an 
example of 95% confidence as low effectiveness and 
99.9% for high effectiveness, and Part 7 Table D1 
provides examples for 95% and 99% confidence from 
operating experience. 

If we were to apply the requirements for 70% 
confidence this would nearly push the mean failure rate 
of the system into the next SIL in the example in this 
paper, and in others with a broader spread it would have 
a bigger impact. 

The more profound impact on the use of the standard 
might come if we can recommend adjustments to the SIL 
that can be claimed based on the rigour of the argument 
that is made and even link a claim limit for SIL to the 
argument. For example if a process-based qualitative 
argument was used SIL could be reduced by (at least) 2 
levels. If we were to adopt the conservative approach 
outlined above then we would need at least 99% 
confidence in SIL2. 
 
5 Conclusions 
 
There is uncertainty in the judgement of the pfd of a 
system whether it is based on direct expert judgment, 
field experience or the case made from a wide range of 
test, analysis and experience based evidence. In this 
paper we have explored how the confidence in these 
judgments affects the overall judgement of a safety 
related pfd and have illustrated this with an example of 
SIL membership. It is plausible that judgement of SIL 
will not be a symmetric distribution: in this case 
increasing confidence will increase our belief in the 
integrity of the system. Increasing confidence has an 
effect on the mean failure rate in these common types of 
distributions, and this justifies the use of ACARP as a 
subset of ALARP and the use of confidence building 
verification activities.  

We have modelled the relationship of confidence and 
mean formally for some particular distributions and have 
shown that it is more likely that a better safety 
justification case can be made that if the system is judged 
as most likely a SIL n+1 system it is taken as a SIL n 
with high confidence. We have presented some 
conservative modelling that shows how onerous the need 
for confidence is. More work is needed to establish quite 
how conservative this approach is as, in our experience, 
conservative values at one stage of the analysis do not 



necessarily propagate through to other stages of the 
reasoning. 

The application of standards should take into account 
the rigour of the arguments offered. Compliance with 
process and the predominance of expert judgement in the 
safety argument should lead to claims being heavily 
discounted (e.g. by 2 SILs) and a possible limit put on 
the claims that can be made. 
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